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Abstract

Neural Chat Translation (NCT) aims to trans-
late conversational text between speakers of
different languages. Despite the promising per-
formance of sentence-level and context-aware
neural machine translation models, there still
remain limitations in current NCT models be-
cause the inherent dialogue characteristics of
chat, such as dialogue coherence and speaker
personality, are neglected. In this paper, we
propose to promote the chat translation by in-
troducing the modeling of dialogue character-
istics into the NCT model. To this end, we
design four auxiliary tasks including mono-
lingual response generation, cross-lingual re-
sponse generation, next utterance discrimi-
nation, and speaker identification. Together
with the main chat translation task, we opti-
mize the NCT model through the training ob-
jectives of all these tasks. By this means,
the NCT model can be enhanced by captur-
ing the inherent dialogue characteristics, thus
generating more coherent and speaker-relevant
translations. Comprehensive experiments on
four language directions (English⇔German
and English⇔Chinese) verify the effective-
ness and superiority of the proposed approach.

1 Introduction

A cross-lingual conversation involves participants
that speak in different languages (e.g., one speak-
ing in English and another in Chinese as shown in
Fig. 1), where a chat translator can be applied to
help participants communicate in their individual
native languages. The chat translator converts the
language of bilingual conversational text in both
directions, e.g. from English to Chinese and vice
versa (Farajian et al., 2020). With more interna-
tional communication worldwide, the chat transla-
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Figure 1: A dialogue example (En⇔Zh) when trans-
lating the utterance Xu. CRG: cross-lingual response
generation. MRG: monolingual response generation.

tion task becomes more important and has a wider
range of applications.

In recent years, although sentence-level Neu-
ral Machine Translation (NMT) models (Sutskever
et al., 2014; Vaswani et al., 2017; Hassan et al.,
2018; Meng and Zhang, 2019; Yan et al., 2020;
Zhang et al., 2019) have achieved remarkable
progress and can be directly used as the chat trans-
lator, they often lead to incoherent and speaker-
irrelevant translations (Mirkin et al., 2015; Wang
et al., 2017a; Läubli et al., 2018; Toral et al., 2018)
due to ignoring the chat history that contains use-
ful contextual information. To exploit chat history,
context-aware NMT models (Tiedemann and Scher-
rer, 2017; Maruf and Haffari, 2018; Bawden et al.,
2018; Miculicich et al., 2018; Tu et al., 2018; Voita
et al., 2018, 2019a,b; Wang et al., 2019a; Maruf
et al., 2019; Chen et al., 2020; Ma et al., 2020,
etc) can also be directly adapted to chat translation.
However, their performances are usually limited
because of lacking the modeling of the inherent
dialogue characteristics (e.g., the dialogue coher-
ence and speaker personality), which matter for
chat translation task as pointed out by Farajian et al.
(2020).

In this paper, we propose a Coherence-Speaker-
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Aware NCT (CSA-NCT) training framework to im-
prove the NCT model by making use of dialogue
characteristics in conversations. Concretely, from
the perspectives of dialogue coherence and speaker
personality, we design four auxiliary tasks along
with the main chat translation task. For dialogue co-
herence, there are three tasks (two generation tasks
and one discrimination task), namely monolingual
response generation, cross-lingual response gener-
ation, and next utterance discrimination. Specifi-
cally, as shown in Fig. 1, (1) the monolingual re-
sponse generation task aims to generate the co-
herent corresponding utterance in target language
given the dialogue history context of the same lan-
guage. Similarly, (2) the cross-lingual response
generation task is to leverage the dialogue history
context in source language to generate the coher-
ent corresponding utterance in target language. Be-
sides the above two generation tasks, (3) the next ut-
terance discrimination task focuses on distinguish-
ing whether the translated text is coherent to be the
next utterance of the given dialogue history context.
Moreover, for speaker personality, (4) we design
the speaker identification task that judges whether
the translated text is consistent with the personal-
ity of its original speaker. Together with the main
chat translation task, the NCT model is optimized
through the joint objectives of all these auxiliary
tasks. In this way, the model is enhanced to capture
dialogue coherence and speaker personality in con-
versation, which thus can generate more coherent
and speaker-relevant translations.

We validate our CSA-NCT framework on
the datasets of different language pairs: BCon-
TrasT (Farajian et al., 2020) (En⇔De1) and
BMELD (Liang et al., 2021a) (En⇔Zh2). The
experimental results show that our model achieves
consistent improvements on four translation tasks
in terms of both BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006), demonstrating its ef-
fectiveness and generalizability. Human evalua-
tion further suggests that our model can generate
more coherent and speaker-relevant translations
compared to the existing related methods.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to incorporate the dialogue coherence and
speaker personality into neural chat transla-
tion.

1En⇔De: English⇔German.
2En⇔Zh: English⇔Chinese.

• We propose a multi-task learning framework
with four auxiliary tasks to help the NCT
model generate more coherent and speaker-
relevant translations.

• Extensive experiments on datasets of different
language pairs demonstrate that our model
with multi-task learning achieves the state-of-
the-art performances on the chat translation
task and significantly outperforms the existing
sentence-level/context-aware NMT models.3

2 Background

Sentence-Level NMT. Given an input sequence
X={xi}|X|i=1, the goal of the sentence-level NMT
model is to generate its translation Y={yi}|Y |i=1.
The model is optimized through the following ob-
jective:

LS-NMT = −
|Y |∑
t=1

log(p(yt|X, y<t)). (1)

Context-Aware NMT. As in (Ma et al., 2020),
given a paragraph of input sentences DX =
{Xj}Jj=1 in source language and its correspond-
ing translations DY = {Yj}Jj=1 in target language
with J paired sentences, the training objective of a
context-aware NMT model can be formalized as

LC-NMT = −
J∑

j=1

log(p(Yj |Xj , X<j , Y<j)), (2)

where X<j and Y<j are the preceding contexts of
the j-th input source sentence and the j-th target
translation, respectively.

3 CSA-NCT Training Framework

In this section, we introduce the proposed CSA-
NCT training framework, which aims to improve
the NCT model with four elaborately designed aux-
iliary tasks. In the following subsections, we first
describe the problem formalization (§ 3.1) and the
NCT model (§ 3.2). Then, we introduce each auxil-
iary task in detail (§ 3.3). Finally, we elaborate the
process of training and inference (§ 3.4).

3.1 Problem Formalization
In the scenario of this paper, the chat involves
two speakers (sx and sy) speaking in two lan-
guages. As shown in Fig. 1, we assume the

3The code is publicly available at: https://github.
com/XL2248/CSA-NCT

https://github.com/XL2248/CSA-NCT
https://github.com/XL2248/CSA-NCT
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two speakers have alternately given utterances
in their individual languages for u turns, re-
sulting in X1, X2, X3, X4, X5, ..., Xu−1, Xu and
Y1, Y2, Y3, Y4, Y5, ..., Yu−1, Yu on the source and
target sides, respectively. Among these utterances,
X1, X3, X5, ..., Xu are originally spoken by the
speaker sx and Y1, Y3, Y5, ..., Yu are the corre-
sponding translations in target language. Analo-
gously, Y2, Y4, Y6, ..., Yu−1 are originally spoken
by the speaker sy and X2, X4, X6, ..., Xu−1 are
the translated utterances in source language.

According to languages, we define the di-
alogue history context of Xu on the source
side as CXu={X1, X2, X3, X4, X5, ..., Xu−1}
and that of Yu on the target side as
CYu={Y1, Y2, Y3, Y4, Y5, ..., Yu−1}. Accord-
ing to original speakers, on the target side, we
define the speaker sx-specific dialogue history
context of Yu as the partial set of its preceding
utterances CsxYu

={Y1, Y3, Y5, ..., Yu−2} and the
speaker sy-specific dialogue history context of Yu
as CsyYu

={Y2, Y4, Y6, ..., Yu−1}.4
Based on the above formulations, the goal of an

NCT model is to translate Xu to Yu with certain
types of dialogue history context.5 Next, we will
descibe the NCT model in our CSA-NCT training
framework.

3.2 The NCT Model

The NCT model is based on transformer (Vaswani
et al., 2017), which is composed of an encoder and
a decoder as shown in Fig. 2.

Encoder. Following (Ma et al., 2020), the en-
coder takes [CXu ; Xu] as input, where [; ] denotes
the concatenation. In addition to the conventional
embedding layer with only word embedding WE
and position embedding PE, we additionally add a
speaker embedding SE and a turn embedding TE.
The final embedding B(xi) of the input word xi
can be written as

B(xi) = WE(xi)+PE(xi)+SE(xi)+TE(xi),

where WE ∈ R|V |×d, SE ∈ R2×d and TE ∈
R|T |×d.6

4For each item of {CXu , CYu , Csx
Yu

, Csy
Yu

}, taking CXu

for instance, we add the special token ‘[cls]’ tag at the head of
it and use another special token ‘[sep]’ to delimit its included
utterances, as in (Devlin et al., 2019).

5Here, we just take one translation direction (i.e., En⇒Zh)
as an example, which is similar for other directions.

6|V |, |T | and d denote the size of shared vocabulary, max-
imum dialogue turns, and the hidden size, respectively.

Figure 2: Architecture of the proposed CSA-NCT
framework. The right part is the general NCT model,
which is enhanced by four auxiliary tasks. The four
auxiliary tasks including monolingual response genera-
tion (MRG), cross-lingual response generation (CRG),
next utterance discrimination (NUD), and speaker iden-
tification (SI), are proposed to improve the coherence
and speaker relevance of chat translation, which are pre-
sented in Fig. 3 in detail.

Then, the embedding is fed into the NCT en-
coder that has L identical layers, each of which is
composed of a self-attention (SelfAtt) sub-layer
and a feed-forward network (FFN) sub-layer.7 Let
hl
e denote the hidden states of the l-th encoder layer,

it is calculated as the following equations:

zle = SelfAtt(hl−1
e ) + hl−1

e ,

hl
e = FFN(zle) + zle,

where h0
e is initialized as the embedding of input

words. Particularly, words in CXu can only be at-
tended to by those in Xu at the first encoder layer
while CXu is masked at the other layers, which is
the same implementation as in (Ma et al., 2020).

Decoder. The decoder also consists of L identi-
cal layers, each of which additionally includes a
cross-attention (CrossAtt) sub-layer compared to
the encoder. Let hl

d denote the hidden states of the
l-th decoder layer, it is computed as

zld = SelfAtt(hl−1
d ) + hl−1

d ,

cld = CrossAtt(zld,h
L
e ) + zld,

hl
d = FFN(cld) + cld,

where hL
e is the top-layer encoder hidden states.

At each decoding time step t, hL
d,t is fed into

a linear transformation layer and a softmax layer
to predict the probability distribution of the next
target token:

p(Yu,t|Yu,<t, Xu, CXu) = Softmax(Woh
L
d,t + bo),

7The layer normalization is omitted for simplicity.
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Figure 3: Overview of four auxiliary tasks. The encoder and the decoder of auxiliary tasks are shared with the
NCT model. The encoder encodes not only source-side but also target-side history context to enhance its ability of
representation.

where Yu,<t denotes the preceding tokens before
the t-th time step in the utterance Yu, Wo ∈
R|V |×d and bo ∈ R|V | are trainable parameters.

Finally, the training objective is as follows:

LNCT = −
|Yu|∑
t=1

log(p(Yu,t|Yu,<t, Xu, CXu)). (3)

3.3 Auxiliary Tasks
We elaborately design four auxiliary tasks to in-
corporate the modeling of dialogue characteristics.
The four auxiliary tasks are divided into two groups.
The first group is for dialogue coherence modeling
while the second is for speaker personality model-
ing. Together with the main chat translation task,
the NCT model can be enhanced to generate more
coherent and speaker-relevant translations through
multi-task learning.

3.3.1 Dialogue Coherence Modeling
Many studies (Kuang et al., 2018; Wang et al.,
2019b; Xiong et al., 2019; Wang and Wan, 2019;
Huang et al., 2020) have indicated that the model-
ing of global textual coherence can lead to more co-
herent text generation. Inspired by this, we add two
response generation tasks and an utterance discrim-
ination task during the NCT model training. All
the three tasks are related to the dialogue coherence
of conversations, thus introducing the modeling of
dialogue coherence into the NCT model.

Monolingual Response Generation (MRG).
As illustrated in Fig. 3(a), given the dialogue his-
tory context CYu in target language, the MRG task
forces the NCT model to generate the correspond-
ing utterance Yu coherent to CYu . Particularly, we
first use the encoder of the NCT model to encode

CYu , and then use the NCT decoder to predict Yu.
The training objective of this task can be formu-
lated as:

LMRG = −
|Yu|∑
t=1

log(p(Yu,t|CYu , Yu,<t)),

p(Yu,t|CYu , Yu,<t) = Softmax(WmhL
d,t + bm),

where hL
d,t is the top-layer decoder hidden state at

the t-th decoding step, Wm and bm are trainable
parameters.

Cross-lingual Response Generation (CRG).
The CRG task is similar to the MRG as shown
in Fig. 3(b), where the NCT model is trained to
generate the corresponding utterance Yu in target
language which is coherent to the given dialogue
history context CXu in source language. We first
use the encoder of the NCT model to encode CXu ,
and then use the NCT decoder to predict Yu. The
training objective of this task can be formulated as:

LCRG = −
|Yu|∑
t=1

log(p(Yu,t|CXu , Yu,<t)),

p(Yu,t|CXu , Yu,<t) = Softmax(Wch
L
d,t + bc),

where hL
d,t denotes the top-layer decoder hidden

state at the t-th decoding step, Wcrg and bcrg are
trainable parameters.

Note that in the above two response generation
tasks, we use the same set of NCT model param-
eters except for the softmax layer (i.e., Wm, bm,
Wc and bc).

Next Utterance Discrimination (NUD). As
shown in Fig. 3(c), we design the NUD task to
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distinguish whether the translated text is coherent
to be the next utterance of the given dialogue his-
tory context. Concretely, we construct positive and
negative samples of context-utterance pairs from
the chat corpus. A positive sample (CYu , Yu+) with
the label ` = 1 consists of the target utterance Yu
and its dialogue history context CYu . A negative
sample (CYu , Yu−) with the label ` = 0 consists of
the identical CYu and a randomly selected utterance
Yu− from the training set. Formally, the training
objective of NUD is defined as follows:

LNUD =− log(p(` = 1|CYu , Yu+))

− log(p(` = 0|CYu , Yu−)).
(4)

For a training sample (CYu , Yu), to estimate the
probability in Eq. 4 for discrimination, we first ob-
tain the representations HYu of the target utterance
Yu and HCYu of the given dialogue history context
CYu using the NCT encoder. Specifically, HYu is
calculated as 1

|Yu|
∑|Yu|

t=1 h
L
e,t while HCYu is defined

as the encoder hidden state hL
e,0 of the prepended

special token ‘[cls]’ of CYu . Then, the concatena-
tion of HYu and HCYu is fed into a binary NUD
classifier, which is an extra fully-connected layer
on top of the NCT encoder:

p(`=1|CYu , Yu)=Softmax(Wn[HYu ;HCYu ]),

where Wn is the trainable parameter of the NUD
classifier and the bias term is omitted for simplicity.

3.3.2 Speaker Personality Modeling
A dialogue always involves speakers who have dif-
ferent personalities, which is a salient characteristic
of conversations. Therefore, we design a speaker
identification task that incorporates the modeling
of speaker personality into the NCT model, making
the translated utterance more speaker-relevant.

Speaker Identification (SI). As explored in
(Bak and Oh, 2019; Wu et al., 2020; Liang et al.,
2021b; Lin et al., 2021), the history utterances
of a speaker can reflect a distinctive personality.
Fig. 3(d) depicts the SI task in detail, where the
NCT model is used to distinguish whether a trans-
lated utterance and a given speaker-specific history
utterances are spoken by the same speaker. We also
construct positive and negative training samples
from the chat corpus. A positive sample (CsxYu

, Yu)
with the label ` = 1 consists of the target utterance
Yu and the speaker sx-specific history context CsxYu

,
because Yu is the translation of the utterance origi-
nally spoken by the speaker sx. A negative sample

Algorithm 1: Optimization Algorithm
Input: Sentence-level/Chat-level translation

data Ds/ Dc,
Sentence-level/Chat-level MaxStep
T1/T2, CoherenceMaxStep T2,
SpeakerMaxStep T2

Init: θ
1 t1 = 0 (Training sentence-level NMT model)
2 for t1 < T1 do
3 Randomly sample a batch k from Ds.
4 Compute LS-NMT.
5 Update the parameters of the standard

transformer model using Adam.
Output: θ
Init: Θ using θ, α = 1.0, β = 1.0

6 t2 = 0 (Training chat-level NMT model)
7 for t2 < T2 do
8 Randomly sample a batch k from Dc.
9 Compute LMRG, LCRG, LNUD, LSI, and

LNCT.
10 Update the parameters of the CSA-NCT

model with respect to J using Adam.
11 d1 = α ∗ t2/T2, d2 = β ∗ t2/T2
12 α = max(0, α− d1)
13 β = max(0, β − d2)

Output: Θ

(CsyYu
, Yu) with the label ` = 0 consists of the target

utterance Yu and the speaker sy-specific history
context CsyYu

. Formally, the training objective of SI
is defined as follows:

LSI =− log(p(` = 1|CsxYu
, Yu))

− log(p(` = 0|CsyYu
, Yu)).

(5)

For a training sample (CsYu
, Yu) with s∈{sx, sy},

we also use the NCT encoder to obtain the repre-
sentations HYu of the target utterance Yu and HCsYu
of the given speaker-specific history context CsYu

.

Similar to the NUD task, HYu= 1
|Yu|

∑|Yu|
t=1 h

L
e,t and

the hL
e,0 of CsYu

is used as HCsYu . Then, to estimate
the probability in Eq. 5, the concatenation of HYu

and HCsYu
is fed into a binary SI classifier, which

is another fully-connected layer on top of the NCT
encoder:

p(`=1|CsYu
, Yu)=Softmax(Ws[HYu ;HCsYu

]),

where Ws is the trainable parameter of the SI clas-
sifier and the bias term is also omitted.
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3.4 Training and Inference

For training, with the main chat translation task and
four auxiliary tasks, the total training objective is
finally formulated as

J = LNCT + α(LMRG + LCRG + LNUD) + βLSI,
(6)

where α and β are balancing hyper-parameters for
the trade-off between LNCT and the other auxiliary
objectives. Algorithm 1 summarizes the training
procedure of the above multi-task learning process,
where θ refers to the parameters of our NCT model
and Θ refers to the whole set of parameters includ-
ing both θ and the parameters of the additional
classifiers for auxiliary tasks.

During inference, the four auxiliary tasks are not
involved and only the NCT model (θ) is used to
conduct chat translation.

4 Experiments

4.1 Datasets and Metrics

Datasets. As shown in Algorithm 1, the training
of our CSA-NCT framework consists of two stages:
(1) pre-train the model on a large-scale sentence-
level NMT corpus (WMT208); (2) fine-tune on the
chat translation corpus (BConTrasT (Farajian et al.,
2020) and BMELD (Liang et al., 2021a)). The
dataset details (e.g., splits of training, validation or
test sets) are described in Appendix A.
Metrics. For fair comparison, we use the Sacre-
BLEU9 (Post, 2018) and TER (Snover et al., 2006)
with the statistical significance test (Koehn, 2004).
For En⇔De, we report case-sensitive score follow-
ing the WMT20 chat task (Farajian et al., 2020).
For Zh⇒En, we report case-insensitive score. For
En⇒Zh, the reported SacreBLEU is at the charac-
ter level.

4.2 Implementation Details

In this paper, we adopt the settings of stan-
dard Transformer-Base and Transformer-Big
in (Vaswani et al., 2017) and follow the main
setting in (Liang et al., 2021a). Specifically, in
Transformer-Base, we use 512 as hidden size (i.e.,
d), 2048 as filter size and 8 heads in multihead at-
tention. In Transformer-Big, we use 1024 as hidden
size, 4096 as filter size, and 16 heads in multihead

8http://www.statmt.org/wmt20/translation-task.html
9BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+

version.1.4.13

Setting En⇒De En⇒Zh
Big Fixed α and β 60.91/24.6 29.69/55.4

Dynamic α and β 61.27/24.3 30.52/54.6

Table 1: The BLEU/TER score (%) results on the vali-
dation sets.

attention. All our Transformer models contain L
= 6 encoder layers and L = 6 decoder layers and
all models are trained using THUMT (Tan et al.,
2020) framework. The training step for the first
pre-training stage is set to T1 = 200,000 while that
of the second fine-tuning stage is set to T2 = 5,000.
The batch size for each GPU is set to 4096 tokens.
All experiments in the first stage are conducted
utilizing 8 NVIDIA Tesla V100 GPUs, while we
use 4 GPUs for the second stage, i.e., fine-tuning.
That gives us about 8*4096 and 4*4096 tokens per
update for all experiments in the first-stage and
second-stage, respectively. All models are opti-
mized using Adam (Kingma and Ba, 2014) with β1
= 0.9 and β2 = 0.998, and learning rate is set to 1.0
for all experiments. Label smoothing is set to 0.1.
We use dropout of 0.1/0.3 for Base and Big setting,
respectively. |T | is set to 10. Following (Liang
et al., 2021a), we set the number of preceding sen-
tences to 3 in all experiments. The criterion for
selecting hyper-parameters is the BLEU score on
validation sets for both tasks. During inference, the
beam size is set to 4, and the length penalty is 0.6
among all experiments.

4.3 Effect of α and β

We also investigate the effect of balancing factor α
and β, where α and β gradually decrease from 1 to
0 over 5,000 steps, which is similar to (Zhao et al.,
2020). “Fixed α and β” means we keep α = β =
1 across the training. “Dynamic α and β” denotes
decaying α and β with the training step of auxiliary
tasks. The results of Tab. 1 show that “Dynamic α
and β” gives better performance than “Fixed α and
β”. Therefore, we apply this dynamic strategy in
the following experiments.

4.4 Comparison Models

Baseline Sentence-Level NMT Models.

• Transformer (Vaswani et al., 2017): The de-
facto NMT model trained on sentence-level
NMT corpus.

• Transformer+FT (Vaswani et al., 2017): The
NMT model that is directly fine-tuned on the
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Models En⇒De De⇒En En⇒Zh Zh⇒En
BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ TER↓

Sentence-Level
NMT models (Base)

Transformer 40.02 42.5 48.38 33.4 21.40 72.4 18.52 59.1
Transformer+FT 58.43 26.7 59.57 26.2 25.22 62.8 21.59 56.7

Context-Aware
NMT models (Base)

Dia-Transformer+FT 58.33 26.8 59.09 26.2 24.96 63.7 20.49 60.1
Doc-Transformer+FT 58.15 27.1 59.46 25.7 24.76 63.4 20.61 59.8
Gate-Transformer+FT 58.48 26.6 59.53 26.1 25.34 62.5 21.03 56.9
CSA-NCT (Ours) 59.50†† 25.7†† 60.65†† 25.4† 27.77†† 60.0†† 22.36† 55.9†

Sentence-Level
NMT models (Big)

Transformer 40.53 42.2 49.90 33.3 22.81 69.6 19.58 57.7
Transformer+FT 59.01 26.0 59.98 25.9 26.95 60.7 22.15 56.1

Context-Aware
NMT models (Big)

Dia-Transformer+FT 58.68 26.8 59.63 26.0 26.72 62.4 21.09 58.1
Doc-Transformer+FT 58.61 26.5 59.98 25.4 26.45 62.6 21.38 57.7
Gate-Transformer+FT 58.94 26.2 60.08 25.5 27.13 60.3 22.26 55.8
CSA-NCT (Ours) 60.64†† 25.3† 61.21†† 24.9† 28.86†† 58.7†† 23.69†† 54.7††

Table 2: Results on the test sets of BConTrasT (En⇔De) and BMELD (En⇔Zh) in terms of BLEU (%) and TER
(%). The best and the second results are bold and underlined, respectively. “†” and “††” indicate that statistically
significant better than the best result of all contrast NMT models with t-test p < 0.05 and p < 0.01, respectively. All
“+FT” models apply the same two-stage training strategy with our CSA-NCT model for fair comparison.

chat translation data after being pre-trained on
sentence-level NMT corpus.

Existing Context-Aware NMT Systems.

• Dia-Transformer+FT (Maruf et al., 2018):
The original model is RNN-based and an ad-
ditional encoder is used to incorporate the
mixed-language dialogue history. We re-
implement it based on Transformer where an
additional encoder layer is used to introduce
the dialogue history into NMT model.

• Doc-Transformer+FT (Ma et al., 2020): A
state-of-the-art document-level NMT model
based on Transformer sharing the first encoder
layer to incorporate the dialogue history.

• Gate-Transformer+FT (Zhang et al., 2018):
A document-aware Transformer that uses a
gate to incorporate the context information.
Note that we share the Transformer encoder
to obtain the context representation instead of
utilizing the additional context encoder, which
performs better in our experiments.

4.5 Main Results

In Tab. 2, We report the main results on
En⇔De and En⇔Zh under Base and Big set-
tings. For comparison, as in § 4.4, “Trans-
former” and “Transformer+FT” are sentence-level
baselines while “Dia-Transformer+FT”, “Doc-
Transformer+FT” and “Gate-Transformer+FT” are
the existing context-aware NMT systems re-

implemented by us. Particularly, “CSA-NCT” rep-
resents our proposed approach.

Results on En⇔De. Under the Base setting,
our model substantially outperforms the sentence-
level/context-aware baselines by a large margin
(e.g., the previous best “Gate-Transformer+FT”),
1.02↑ on En⇒De and 1.12↑ on De⇒En. In term
of TER, CSA-NCT also performs better on the
two directions, 0.9↓ and 0.7↓ lower than “Gate-
Transformer+FT” (the lower the better), respec-
tively. Under the Big setting, on En⇒De and
De⇒En, our model consistently surpasses the base-
lines and other existing systems again.

Results on En⇔Zh. We also conduct experi-
ments on the BMELD dataset. Concretely, on
En⇒Zh and Zh⇒En, our model also presents no-
table improvements over all comparison models
by at least 2.43↑ and 0.77↑ BLEU gains under the
Base setting, and by 1.73↑ and 1.43↑ BLEU gains
under the Big setting, respectively. These results
demonstrate the effectiveness and generalizability
of our model across different language pairs.

5 Analysis

5.1 Ablation Study

Effect of Each Auxiliary Task Group. We con-
duct ablation studies to investigate the effects of
the two groups (DCM and SPM) of auxiliary tasks.
The results under the Big setting are listed in Tab. 3.
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# Models En⇒De De⇒En
BLEU↑ TER↓ BLEU↑ TER↓

0 Baseline 60.40 25.0 61.68 24.9
1 w/ DCM 61.05†† (+0.65) 24.4†† 62.63†† (+0.95) 24.5†

2 w/ SPM 60.57 (+0.17) 24.8 61.97 (+0.29) 24.7

Table 3: Ablation results on the validation sets of each
auxiliary task group under the Big setting. “Base-
line” represents the NCT model without any auxiliary
task. “DCM”: dialogue coherence modeling, including
MRG, CRG, NUD. “SPM”: speaker personality mod-
eling, i.e., SI. “†” and “††” indicate the improvement
over the result of the baseline model is statistically sig-
nificant with p < 0.05 and p < 0.01), respectively.

# Models En⇒De De⇒En
BLEU↑ TER↓ BLEU↑ TER↓

0 Baseline 60.40 25.0 61.68 24.9
1 w/ MRG 61.00†† (+0.60) 24.4†† 62.37†† (+0.69) 24.5†

2 w/ CRG 60.68 (+0.28) 24.6† 62.14† (+0.46) 24.8
3 w/ NUD 60.82† (+0.42) 24.7 62.32†† (+0.64) 24.7
4 w/ SI 60.57 (+0.17) 24.8 61.97 (+0.29) 24.7

Table 4: Ablation results on the validation sets of each
auxiliary task under the Big setting. “†” and “††” in-
dicate the improvement over the result of the baseline
model is statistically significant with p < 0.05 and p <
0.01, respectively.

We have the following findings: (1) DCM substan-
tially improves the NCT model in terms of both
BLEU and TER metrics, which demonstrates mod-
eling coherence is beneficial for better translations.
(2) SPM makes slight contributions to the NCT
model in terms of BLEU, which is less significant
than DCM. However, further human evaluation
in § 5.3 will show that our model can keep the
personality consistent with the original speaker.

Effect of Each Auxiliary Task. We also investi-
gate the effect of each auxiliary task by adding a
single task at a time. In Tab. 4, rows 1∼4 denote
singly adding on the corresponding auxiliary task
with the main chat translation task, each of which
shows a positive impact on the model performance
(rows 1∼4 vs. row 0).

5.2 Dialogue Coherence

Following (Lapata and Barzilay, 2005; Xiong et al.,
2019), we measure dialogue coherence as sentence
similarity, which is determined by the cosine simi-
larity between two sentences s1 and s2:

sim(s1, s2) = cos(f(s1), f(s2)),

Models 1-th Pr. 2-th Pr. 3-th Pr.
Transformer 65.02 60.37 56.59
Transformer+FT 65.87 61.04 57.14
Dia-Transformer+FT 65.53 60.84 57.09
Doc-Transformer+FT 65.69 60.93 57.13
Gate-Transformer+FT 65.96 61.35 57.45
CSA-NCT (Ours) 66.57†† 61.78†† 57.83††

Human Reference 66.63 61.90 57.95

Table 5: Results (%) of dialogue coherence in terms
of sentence similarity on the test set of BConTrasT in
De⇒En direction under the Base setting. The “#-th
Pr.” denotes the #-th preceding utterance to the cur-
rent one. “††” indicates the improvement over the best
result of all other comparison models is statistically sig-
nificant (p < 0.01).

Models Coh. Spe. Flu.
Transformer 0.540 0.485 0.590
Transformer+FT 0.590 0.530 0.635
Dia-Transformer+FT 0.580 0.525 0.625
Doc-Transformer+FT 0.595 0.525 0.630
Gate-Transformer+FT 0.605 0.540 0.635
CSA-NCT (Ours) 0.635 0.575 0.655

Table 6: Results of Human evaluation (Zh⇒En, Base).
“Coh.”: Coherence. “Spe.”: Speaker. “Flu.”: Fluency.

where f(si) = 1
|si|

∑
w∈si(w) and w is the vector

for word w. We use Word2Vec10 (Mikolov et al.,
2013) trained on a dialogue dataset11 to obtain the
distributed word vectors whose dimension is set to
100.

Tab. 5 shows the measured coherence of different
models on the test set of BConTrasT in De⇒En
direction. It shows that our CSA-NCT produces
more coherent translations compared to baselines
and other existing systems (significance test, p <
0.01).

5.3 Human Evaluation

Inspired by (Bao et al., 2020; Farajian et al., 2020),
we use three criteria for human evaluation: (1)
Coherence measures whether the translation is
semantically coherent with the dialogue history;
(2) Speaker measures whether the translation pre-
serves the personality of the speaker; (3) Fluency
measures whether the translation is fluent and gram-

10https://code.google.com/archive/p/word2vec/
11Due to no available German dialogue datasets, we choose

Taskmaster-1 (Byrne et al., 2019), where the English side of
BConTrasT (Farajian et al., 2020) also comes from it.



75

matically correct.
First, we randomly sample 200 conversations

from the test set of BMELD in Zh⇒En direction.
Then, we use the 6 models in Tab. 6 to generate
the translated utterances of these sampled conver-
sations. Finally, we assign the translated utterances
and their corresponding dialogue history utterances
in target language to three postgraduate human an-
notators, and ask them to make evaluations from
the above three criteria.

The results in Tab. 6 show that our model gen-
erates more coherent, speaker-relevant, and fluent
translations compared with other models (signif-
icance test, p < 0.05), indicating the superiority
of our model. The inter-annotator agreements cal-
culated by the Fleiss’ kappa (Fleiss and Cohen,
1973) are 0.506, 0.548, and 0.497 for coherence,
speaker and fluency, respectively, indicating “Mod-
erate Agreement” for all four criteria. We also
present one case study in Appendix B.

6 Related Work

Chat NMT. Little prior work is available due
to the lack of human-annotated publicly available
data (Farajian et al., 2020). Therefore, some exist-
ing studies (Wang et al., 2016; Maruf et al., 2018;
Zhang and Zhou, 2019; Rikters et al., 2020) mainly
pay attention to designing methods to automatically
construct the subtitle corpus, which may contain
noisy bilingual utterances. Recently, Farajian et al.
(2020) organize the WMT20 chat translation task
and first provide a chat corpus post-edited by hu-
mans. More recently, based on document-level par-
allel corpus, Wang et al. (2021) propose to jointly
identify omissions and typos within dialogue along
with translating utterances by using the context.
As a concurrent work, Liang et al. (2021a) pro-
vide a clean bilingual dialogue dataset and design
a variational framework for NCT. Different from
them, we focus on introducing the modeling of di-
alogue coherence and speaker personality into the
NCT model with multi-task learning to promote
the translation quality.

Context-Aware NMT. In a sense, chat MT can
be viewed as a special case of context-aware MT
that has many related studies (Gong et al., 2011;
Jean et al., 2017; Wang et al., 2017b; Zheng et al.,
2020; Yang et al., 2019; Kang et al., 2020; Li et al.,
2020; Chen et al., 2020; Ma et al., 2020). Typi-
cally, they resort to extending conventional NMT
models for exploiting the context. Although these

models can be directly applied to the chat trans-
lation scenario, they cannot explicitly capture the
inherent dialogue characteristics and usually lead
to incoherent and speaker-irrelevant translations.

7 Conclusion

In this paper, we propose to enhance the NCT
model by introducing the modeling of the inher-
ent dialogue characteristics, i.e., dialogue coher-
ence and speaker personality. We train the NCT
model with the four well-designed auxiliary tasks,
i.e., MRG, CRG, NUD and SI. Experiments on
En⇔De and En⇔Zh show that our model notably
improves translation quality on both BLEU and
TER metrics, showing its superiority and generaliz-
ability. Human evaluation further verifies that our
model yields more coherent and speaker-relevant
translations.
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A Datasets

As mentioned in § 4.1, our experiments involve the
dataset WMT20 for pre-training and two chat trans-
lation corpus, BConTrasT (Farajian et al., 2020)
and BMELD (Liang et al., 2021a). The statistics
about the splits of training, validation, and test sets
are shown in Tab. 7.

WMT20. Following (Liang et al., 2021a), for
En⇔De, we combine six corpora including Eupo-
ral, ParaCrawl, CommonCrawl, TildeRapid, News-
Commentary, and WikiMatrix. For En⇔Zh, we
combine News Commentary v15, Wiki Titles v2,
UN Parallel Corpus V1.0, CCMT Corpus, and
WikiMatrix. First, we filter out duplicate sentence
pairs and remove those whose length exceeds 80.
To pre-process the raw data, we employ a series of
open-source/in-house scripts, including full-/half-
width conversion, unicode conversation, punctua-
tion normalization, and tokenization (Wang et al.,
2020). After filtering, we apply BPE (Sennrich
et al., 2016) with 32K merge operations to obtain
subwords. Finally, we obtain 45,541,367 sentence

Datasets # Dialogues # Utterances
Train Valid Test Train Valid Test

En⇒De 550 78 78 7,629 1,040 1,133
De⇒En 550 78 78 6,216 862 967
En⇒Zh 1,036 108 274 5,560 567 1,466
Zh⇒En 1,036 108 274 4,427 517 1,135

Table 7: Statistics of chat translation data.

Models En⇒De De⇒En En⇒Zh Zh⇒En
Transformer (Base) 39.88 40.72 32.55 24.42
Transformer (Big) 41.35 41.56 33.85 24.86

Table 8: The BLEU scores on the newstest2019 of the
first stage.

pairs for En⇔De and 22,244,006 sentence pairs
for En⇔Zh, respectively.

We test the model performance of the first stage
on newstest2019. The results are shown in Tab. 8.

BConTrasT. The dataset12 is first provided by
WMT 2020 Chat Translation Task (Farajian et al.,
2020), which is translated from English into Ger-
man and is based on the monolingual Taskmaster-1
corpus (Byrne et al., 2019). The conversations
(originally in English) were first automatically
translated into German and then manually post-
edited by Unbabel editors13 who are native Ger-
man speakers. Having the conversations in both
languages allows us to simulate bilingual conver-
sations in which one speaker (customer), speaks in
German and the other speaker (agent), responds in
English.

BMELD. The dataset is a recently released
English⇔Chinese bilingual dialogue dataset, pro-
vided by Liang et al. (2021a). Based on the di-
alogue dataset in the MELD (originally in En-
glish) (Poria et al., 2019)14, they firstly crawled the
corresponding Chinese translations from https:
//www.zimutiantang.com/ and then man-
ually post-edited them according to the dialogue
history by native Chinese speakers who are post-
graduate students majoring in English. Finally,
following (Farajian et al., 2020), they assume
50% speakers as Chinese speakers to keep data
balance for Zh⇒En translations and build the
bilingual MELD (BMELD). For the Chinese, we
follow them to segment the sentence using Stanford

12https://github.com/Unbabel/BConTrasT
13www.unbabel.com
14The MELD is a multimodal emotionLines dialogue

dataset, each utterance of which corresponds to a video, voice,
and text, and is annotated with detailed emotion and sentiment.
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Figure 4: An illustrative case of bilingual conversation.

CoreNLP toolkit15.

B Case Study

In this section, we deliver an illustrative case in
Fig. 4 to show different outputs among the compar-
ison models and ours.

Dialogue Coherence and Speaker Personality.
For the case in Fig. 4, we find that all compar-
ison models cannot generate coherent translated
utterences. The reason may be that they fail to
capture contextual clues, i.e., “boat”. By contrast,
we explicitly introduce the modeling of preceding
context through auxiliary tasks and thus obtain sat-
isfactory results. Meanwhile, we observe that the
sentence-level models and the context-aware mod-
els cannot preserve the speaker personality informa-
tion, e.g., joy emotion, even though context-aware
models incorporate the bilingual conversational his-
tory into the encoder.

The case shows that our CSA-NCT model en-
hanced by the four auxiliary tasks yields coherent
and speaker-relevant translations, demonstrating its
effectiveness and superiority.

15https://stanfordnlp.github.io/CoreNLP/index.html


