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Abstract
Many real-world problems require the com-
bined application of multiple reasoning
abilities—employing suitable abstractions,
commonsense knowledge, and creative syn-
thesis of problem-solving strategies. To help
advance AI systems towards such capabilities,
we propose a new reasoning challenge, namely
Fermi Problems (FPs), which are questions
whose answers can only be approximately
estimated because their precise computation is
either impractical or impossible. For example,
“How much would the sea level rise if all ice
in the world melted?” FPs are commonly
used in quizzes and interviews to bring out
and evaluate the creative reasoning abilities
of humans. To do the same for AI systems,
we present two datasets: 1) A collection of
1k real-world FPs sourced from quizzes and
olympiads; and 2) a bank of 10k synthetic
FPs of intermediate complexity to serve as a
sandbox for the harder real-world challenge.
In addition to question-answer pairs, the
datasets contain detailed solutions in the form
of an executable program and supporting
facts, helping in supervision and evaluation of
intermediate steps. We demonstrate that even
extensively fine-tuned large-scale language
models perform poorly on these datasets, on
average making estimates that are off by two
orders of magnitude. Our contribution is
thus the crystallization of several unsolved AI
problems into a single, new challenge that we
hope will spur further advances in building
systems that can reason.

1 Introduction

How long is the drive from Seattle to NYC? How
big of an emergency fund do I need? We frequently
encounter such questions in our daily lives. Like-
wise, scientists are often faced with questions such
as, How much would the ocean surface rise if the
ice caps melted? Known as Fermi Problems1 (FPs),

1after the celebrated physicist Enrico Fermi. See https:
//en.wikipedia.org/wiki/Fermi_problem.

these questions are problems whose answers can
only be estimated within reasonable limits of er-
ror, as precisely measuring the required quantity is
either impossible or impractical.

Solving a FP requires considerable life experi-
ence, ability to think through long chains of reason-
ing, and mathematical intuition – as illustrated by
fig. 1 for a FP about rising sea levels. Answering
an FP correctly requires multiple different facts,
and the correct estimate can be arrived via various
reasoning paths – this open-ended nature further
adds to their challenge. Unsurprisingly, these ques-
tions are often used to test candidates in science
Olympiads and interviews. Due to the complex-
ity of reasoning that is required to answer these
questions, we propose solving FPs as a new task to
drive progress in AI reasoning systems.

A core skill required for solving FPs is that of
estimation – e.g. “How much money do I need for a
medical emergency?”, “What is the thickness of ice
sheets in Antarctica”, etc. This crucially requires
abstracting out details to simplify a complex real-
world problem, similar to the (in)famous metaphor
of the spherical cow,2 For instance, when estimat-
ing the volume of Mt. Everest3, abstracting that the
mountain is a conical shaped object significantly
simplifies the estimation problem at hand. To the
best of our knowledge, our proposed FP challenge
is the first of its kind that requires reasoning of this
nature. Through this challenge, we hope to spur
research towards building AI reasoning systems
that are capable of performing such abstractions, a
key reasoning skill that is natural to humans.

The complex reasoning involved in solving FPs
(see fig. 1) often means the question must be cre-
atively decomposed into simpler ones. These sim-
pler questions often themselves are open-ended
Fermi problems. We thus hope our challenge will

2https://en.wikipedia.org/wiki/Spherical_cow
3FP: How many dump trucks are needed to empty Mt. Ever-

est?

https://en.wikipedia.org/wiki/Fermi_problem
https://en.wikipedia.org/wiki/Fermi_problem
https://en.wikipedia.org/wiki/Spherical_cow
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Figure 1: Humans solve FPs by employing sophisticated reasoning skills including abstraction, (ice on land ≈
ice on Antarctica), problem decomposition (Volume of ice = Area of Ice × thickness of ice) and commonsense
reasoning (only ice on land causes rise in sea levels).

encourage advances in recursive reasoning models.
Further, FPs require the combined application of

multiple reasoning strategies to solve the problem.
Unlike existing datasets and tasks geared towards
specific reasoning skills (e.g. commonsense rea-
soning or question decomposition), we hope our
work drives progress in not just the ability of AI to
employ suitable abstractions and estimations, but
also in models that can combine various reasoning
abilities to produce a coherent solution.

Contributions.

1. We introduce Fermi Problems (FPs), as a task to
drive progress in AI reasoning systems – specif-
ically, testing for their ability to make reason-
able abstractions, creatively decompose ques-
tions into solvable chunks and employ common-
sense reasoning.

2. We collect a set REALFP of 1k real-world FPs
aggregated from numerous websites, quizzes
and Olympiads. Further, we provide a synthetic
dataset SYNTHFP of 10k questions with the aim
of serving as a bank of more accessible prob-
lems of intermediate complexity – and hopefully,
aid the development of AI models for the harder
real-world setting. Both datasets are available at
https://allenai.org/data/fermi.

3. Based on the FP datasets, we propose three tasks
of increasing hardness and establish baselines
built around state-of-the-art language models.
We find that FPs are well beyond the reach of
such systems even after substantial fine-tuning
– on average, making predictions that are off by
two orders of magnitude and only slightly better
than predicting a constant value. Further, we pro-

vide an analysis of both the dataset and baselines
to illustrate the hardness of the proposed tasks
and motivate future advances.

2 Fermi Problems

The following properties of FPs and their solutions
make them an ideal candidate for evaluating and
advancing AI reasoning –

(1) Recursive Nature of Sub-Problems. As
mentioned previously, problem decomposition is
an important aspect of FPs. An interesting property
of FPs is that decomposed sub-problems are also
FPs – e.g. “How many dump trucks to empty Mt.
Everest?” requires answering the – “What is the
volume of Mt. Everest?” and “What is the volume
of a dump truck?”, which are in-turn, FPs. We
employ this property of FPs to create a richer
synthetic dataset (see section 4 for more details).

(2) Creativity in FP solutions. Problem de-
composition for FPs is not only recursive but also
requires considerable amount of creativity. For
the above FP about emptying Mt. Everest, an
alternative decomposition is – “How many dump
trucks to empty Mt. Rainier?” and “How many
Mt. Rainiers fit in Mt. Everest?”. Note that the
decomposition still retains the recursive nature
but now follows an alternate path. The exact
decomposition is a function of the knowledge and
life experiences of a person, and in the case of
an AI, the information accessible to it – either
through information stored in its parameters, a
retrieval mechanism or a knowledge base. As an
accurate estimate is sought at the end, creativity

https://allenai.org/data/fermi
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in problem decomposition is closely intertwined
with the problem of what can be estimated. In
addition to practical scenarios (e.g. “How many
port-a-potties are needed for a gathering of 1
million people?”), FPs often concern (a) unrelated
objects (e.g. Mars bars and Olympic pools), (b)
unusual attributes of common objects (e.g. volume
of a Mars Bar as opposed to its calorific value)
and (c) hypothetical scenarios (e.g. “Consider the
earth and moon are at two ends of the school oval,
how far is the sun?"). Thus, FPs require going
beyond biases encountered in the real world or in
previous problems.4 Estimating the answer to such
questions requires the ability to think creatively, a
thorough understanding of the underlying process
and the intent of the question.

(3) Need for Reasonable Abstractions. De-
spite taking a creative approach, one can be
unsuccesful at solving FPs without the ability
to make reasonable abstractions. Returning to
our running example of emptying Mt. Everest, a
creative decomposition leads us to considering
the volume of Mt. Everest w.r.t. to that of Mt.
Rainier. However, we still need to address the
issue of computing the volume of Mt. Rainier –
here, assuming it to be a conical shaped object
helps us in computing a reasonable estimate. We
humans employ various abstractions regularly in
our daily lives – e.g. spatial abstraction (“Is the
road wide enough to turn my car?”), temporal (“Do
I have enough time to grab lunch before the next
meeting?”) and causal (“Pressing the gas pedal,
makes my car rush forward”). We would require
such a key skill to be well within the reach of AI
systems and to this end, the proposed FP challenge
is an ideal downstream task to evaluate this.

(4) Commonsense Reasoning. Arriving at
the correct answer requires one to make reason-
able abstractions at each step. This requires a
sufficiently accurate working model of world and
is broadly categorized as life experience. For
example – the fact that a Mars Bar can be eaten
in a few bites can help determine its volume.
Similarly, understanding that pizza shops usually
cater to homes within a few mile radius helps in
estimating the number of pizza delivery persons in
Chicago. Further, domain-specific reasoning might

4Perhaps, this is the reason that Fermi problems stump
humans, especially when asked in situations like interviews.

be required to solve some FPs – for example FP
illustrated in fig. 1 requires an understanding of
physics to infer that only land ice leads to increase
in sea levels.

3 Related Work

Mathematical Reasoning In the area of mathe-
matical reasoning, several projects have probed the
limits of transformers to solve pure math problems
(Saxton et al., 2019; Lample and Charton, 2019;
Hendrycks et al., 2021). FPs differ from these
problems in two important ways. First, due to the
heuristic nature of their solutions, FPs do not have
a unique, precise answer with formal proof, in the
way that normal mathematical problems do. Sec-
ond, FPs are stated in natural language (NL) rather
than a formal, mathematical notation. FPs are per-
haps closer to algebra word problems, where a NL
question, e.g., “How many cookies were left?”, is
asked about a simple NL story (Amini et al., 2019;
Ling et al., 2017; Koncel-Kedziorski et al., 2015).
However, in algebra word problems, answers are
again uniquely defined and provable. In addition,
all required information is provided in the story,
while in FPs the solver must find/recall required
information.5 Finally, in story problems, the space
of possible solution equations is typically small
and well-defined enough that it can be exhaustively
searched, while FPs can have arbitrarily complex
solutions (e.g., Figure 1).

Question Decomposition FPs require problem
decomposition, in a way loosely similar to multi-
hop inference. However, for FPs, the appropriate
decomposition is not explicit in the question itself,
unlike early multihop datasets such as HotpotQA
(Yang et al., 2018) or WebQuestions (Berant et al.,
2013). Later multihop datasets, e.g., OBQA (Mi-
haylov et al., 2018), contained questions where
the decomposition was not explicit in the question
(e.g., “Does a suit of armor conduct electricity?”,
implicitly requiring a subquestion about materials),
but typically into just two (or at most three) steps.
In contrast, FPs typically require multiple levels of
decomposition, significantly increasing complexity.
This in turn requires identifying a solution strat-
egy, namely how to factor an unknown quantity
into a function of known (or recursively factorable)
quantities. The StrategyQA (Geva et al., 2021)
dataset illustrates this problem but for a different

5We later also define a simpler FP task in which the re-
quired information is provided.
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task, namely true/false questions about whether
something is possible, and without recursive de-
composition, a key feature of FPs.

Commonsense In addition to mathematical rea-
soning, FPs require significant commonsense
knowledge, both for estimating quantities and for
decomposing problems. For example, “How many
pizza delivery trucks are in Chicago?” requires sig-
nificant commonsense about human behavior (How
often do people order pizza? How many deliver-
ies can a truck make per day?) to even begin to
decompose the problem, let alone estimating basic
quantities (Population of Chicago?). While new
resources of commonsense knowledge are becom-
ing available, e.g., (Bosselut et al., 2019; Sap et al.,
2019), substantial development is still needed for
the kind of world modeling that many FPs require.

Numeric Estimation Large-scale language mod-
els trained on web-scale data have been shown to
contain common numerical facts – e.g. number of
days in a year, distance from earth to moon, num-
ber of hairs on a human head, etc. We leverage one
such model (T5 (Raffel et al., 2020)) for our base-
lines. More recently, researchers have shown that
models can also perform estimation to some degree
(Zhang et al., 2020), and have proposed novel en-
coding strategies to improve number prediction and
estimation (Spithourakis and Riedel, 2018; Berg-
Kirkpatrick and Spokoyny, 2020). Such techniques
would be valuable for improved solutions to FPs.

4 Datasets and Tasks

We present two datasets, REALFP and SYNTHFP,
which are collections of real-world and synthetic
Fermi problems, respectively. We then define three
FP challenge tasks, with varying difficulty levels.

4.1 Dataset Elements
Each instance in our datasets consists of a Fermi
question Q and its answer A, standardized using
the International System of Units, SI.6 Further, we
add two extra elements to each question Q, sup-
porting facts and explanations.

Supporting Facts F : Each question Q is paired
with F , a set of supporting facts, which are sen-
tences describing quantities relevant to Q. This
enables two aspects of our Fermi challenge: (a)
defining certain tasks where the output must in-
clude F as part of an explanation, to encourage

6
https://en.wikipedia.org/wiki/International_System_of_Units

program→ statement*
statement→ comp-expr | support-expr

comp-expr→ qn-id "->" {math-expr | value-expr}
math-expr→ operator "(" qn-id* ")"
operator→ "Add" | "Sub" | "Mul" | "Div"
value-expr→ val-id "because" fact-id

support-expr→ question-expr | fact-expr | val-expr
question-expr→ qn-id ": " question
fact-expr†→ fact-id ": " sentence
val-expr→ val-id ": " number [units]

Figure 2: Grammar for FP explanation programs. †The
proposed FP tasks (proposed in section 4.2.3) separate
out fact-expr from the program to either provide them
as part of the input or expect them in the output.

justifiable reasoning (see below); and (b) defining
simpler FP tasks where F (or a noisy version of it),
is provided as part of the input (as question “con-
text”) to help drive progress on the FP challenge
under the familiar Reading Comprehension setting.

Explanations P : In the case of FPs, the reason-
ing behind an answer is as important as the answer
itself and therefore, each question is paired with an
explanation in the form of an executable program
describing the facts, values, and mathematical com-
putations needed to arrive at an answer – see fig. 3
for an example. The explanation programs that can
be expressed are captured by a simple, recursive
grammar shown in fig. 2.

As seen from the grammar, an FP program is a
sequence of statements, where each statement is
either a computation expression or a support (or
explanation) expression. A computation expression
can be either a mathematical operator applied to
one or more recursively spawned sub-questions
(e.g., Q0→Mul(Q1, Q2) in Figure 3), or a value
expression pointing to the identifier of a numerical
value along with the identifier of a fact supporting
that value (e.g., Q1→ A1 because F1). A support
expression defines a sub-question, supporting fact,
or numerical value, and associates it with a unique
identifier for reference in the rest of the program
(e.g., Q1: What is . . . , F1: There are . . . , and A1:
7 in the example in Figure 3).

A program P that respects this grammar can
be “executed” or evaluated to obtain a numerical
answer, using only the computation and value ex-
pressions contained in P . The sub-question and
fact expressions included in P act as provenance
for the numerical computation captured by P .

https://en.wikipedia.org/wiki/International_System_of_Units
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Inputs:
Q: "How many litres of water does a school use each week?"
F: "F1: There are 7 days in a week.

F2: An average student’s water consumption per day
amounts to 18 litres.

F3: The total number of students in a school is 516."

Outputs:
A: 65016 L
E:
"Q0: How many litres of water does a school use each week?
Q1: What is the duration of the week in days?
Q2: What is the daily water consumption in the school?
Q3: What is the daily water consumption of a student?
Q4: What is the total number of students in the school?

A1: 7
A2: 18 L
A3: 516

Q0 → Mul (Q1, Q2)
Q1 → A1 because F1
Q2 → Mul (Q3, Q4)
Q3 → A2 because F2
Q4 → A3 because F3 "

Figure 3: Example I/O for Task 2. The input is a Fermi
question Q and relevant facts F . The output is the an-
swer A and an explanation P in the form of a program.

In the datasets, P evaluates to A, i.e., is an expla-
nation of A. However, as we show later, if we train
a model to predict A, and to also predict P , the
evaluation of P (called PAns) is typically different
to A. We can view these as two alternative ways
to predict an answer, either directly or via explicit
program synthesis. While the synthesis approach
is more interpretable, it is not obvious which is
better as far as answer prediction is concerned. We
evaluate this shortly in Section 5.

4.2 Challenge Datasets

4.2.1 REALFP: Real-World Fermi Problems
The REALFP dataset contains 928 FPs, collected
from various internet pages7, quizzes, and Fermi
problem Olympiads. The questions cover a wide
variety of topics requiring domain-specific reason-
ing (such as physics, basic mechanics of Poker, etc),
commonsense reasoning, and most importantly, es-
timating various physical quantities such as volume,
speed, density, etc.

As discussed in Section 4.1, each instance in RE-
ALFP consists of four elements: a question Q, an
answer A in SI units, supporting facts F , and an ex-
planation P in the form of an executable program
referring to facts in F ; fig. 3 shows a sample ques-
tion from REALFP. While Q and A were collected

7including https://www.reddit.com/r/estimation/

Figure 4: Distribution of questions in REALFP based
on the type of the reasoning required to arrive at the
correct explanation program for a fermi question.

from various sources, F and P were added as part
of this work using expert annotation. It should be
noted that the supporting facts and numerical esti-
mates provided in this dataset are a function of the
annotator’s life experiences and information avail-
able on the Internet. As a result, they are not always
fully accurate. Due to this, as well as the inherent
variance in the answers to FPs, our annotations are
best viewed as informing us of one potential way
of approaching the solution.

We split the REALFP dataset into train, val-
idation and test splits containing 185, 185 and
558 questions respectively. Reserving a majority
(∼60%) of FPs for testing is in line with our objec-
tive of using the dataset primarily as a test bench to
evaluate and drive progress in AI reasoning. The
baseline models we provide use the train set to fine-
tune large-scale models and report performance on
the test set.
Data Analysis. The questions Q in REALFP have
a median length of 14 tokens. The entire dataset
has 892 unique nouns with each question contain-
ing 3.7 nouns on average. Further, the facts and
subquestions collected as part of the dataset, con-
tain, on average, an additional ∼4 nouns. This
indicates that the decomposition for FPs is not triv-
ial and requires recalling or finding information
about objects often not mentioned in the original
question. The executable program P provided in
the dataset typically contains 2 subquestions; how-
ever 176 questions in REALFP contain a deeper
chain of reasoning requiring up to 10 subquestions.

Further, we analyse the questions in REALFP
based on the core reasoning skill required to solve
it. For example, the fermi question in fig. 1 – “How
much would the sea level rise if all ice melted?” is
an illustrative example requiring causal and spatial

https://www.reddit.com/r/estimation/
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Program Templated Question

Div($y.volume, $x.volume) How many $x fit in $y
e.g. How many Olympic pools fit in Lincoln Memorial Reflecting pool?

Mul($y.density, $x.volume) If $x were to have the same density as $y, how much would it weigh?
e.g. If tennis balls were to have the same density as bones, how much would it weigh?

Div(Div($y.area, 2), $x.area) Assume $x’s area is half its value. How many $y have the same area as $x?
e.g. Assume Indianapolis’s area is half its value.
How many Dublin International Airport (DUB) have the same area as Indianapolis?

Table 1: Example templates used for creating the SYNTHFP dataset along with sample questions for each.

reasoning along with knowledge of science. We
considered six reasoning types—spatial abstrac-
tion, causal abstraction, temporal abstraction, pres-
ence of unusual attributes or relationships, com-
monsense reasoning and science. The frequency
of their occurrence in REALFP is summarized in
fig. 4. Perhaps not surprisingly, commonsense rea-
soning and science knowledge are required to solve
nearly half of the questions. Other reasoning types
like abstraction or presence of unusual attributes
appear in nearly 25% of the dataset with poten-
tial overlap, i.e. one questioning requiring multiple
types of reasoning.

4.2.2 SYNTHFP: Synthetic Fermi Problems
The complexity of REALFP questions and the rela-
tively small size of the dataset makes it difficult to
get started with Fermi-style questions. To address
this, we introduce a larger dataset of 10k synthetic
questions that span a limited set of entities and lines
of reasoning, to serve as a sandbox for researchers
to help tackle the real-world challenge set.

After inspecting questions in the RE-
ALFP dataset, we manually selected a few
recurring themes to create 12 templates, a few
examples of which are shown in table 1. Each
template consists of a Fermi-style question
with objects represented as variables ($x, $y),
etc.), and an associated mathematical formula
referencing properties of these object variables
(e.g., Div($y.volume, $x.volume)).

To illustrate the process of generating a synthetic
question from such a template, consider the follow-
ing FP: “How many basketballs fit in a schoolbus?".
The broad template for this question is, “How many
$x fit in $y?". Multiple questions that adhere to this
template can be generated by replacing $x and $y
with objects as long as $x.volume and $y.volume
are available. This question generation approach,
in addition to ensuring solvability, also provides
an easy way to generate an executable program re-
specting the grammar discussed earlier (e.g., with

statements such as Div(Q1, Q2), Q1: “Volume of
Y?”, Q2: “Volume of X?”, etc.)). We provide the
full list of 12 templates used to generate the SYN-
THFP dataset in appendix A.

Further, we employ the recursive nature of FPs
(see section 2) to generate more complex solutions
for the templated questions in SYNTHFP. For in-
stance, see the last template in table 1. First, the
question requires halving the area of Indianapolis
and further, in our database, its area is provided in
terms of the area of Nauru island. Therefore solv-
ing this question requires a further decomposition
i.e. “What is the ratio of the area of Indianapo-
lis and that of Nauru?" In our dataset, we decom-
pose the solution w.r.t. another object present in
the database for roughly half of the 10k generated
templated FPs.

At its core, the synthetic dataset uses a knowl-
edge base K, collected via API calls to The Mea-
sure of Things resource.8 K contains ∼500 ob-
jects. For each object, it contains information
(when applicable and available) about eight com-
mon attributes: length, area, volume, weight, den-
sity, speed, time, and information (data). Starting
with K, we generate a dataset whose questions
have an equal representation of all the templates.
In total, SYNTHFP contains 10K FPs with 8K for
training, and the remaining 2K FPs equally divided
for validation and testing.

4.2.3 Challenge Tasks
We introduce three tasks that each build up to the
full complexity of FPs – allowing researchers to
make progress in a measurable and principled man-
ner. For each task, we consider two ways of solving
it: (a) generating an answer A directly, where any
reasoning is implicit in the parameters of the model,
or (b) generating an explanation program P , which
can then be executed to produce an answer PAns .
Note that A and PAns are distinct, reflecting differ-

8https://www.themeasureofthings.com

https://www.themeasureofthings.com
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ent ways of answering, one directly from the model
and one via program synthesis and execution, anal-
ogous to “Thinking, fast and slow" (Kahneman,
2011).

Task 1, perfect-context: Q,F → A | P .9
To help make progress, we define an easier FP task
where all and only the relevant facts F are also
supplied as the input, along with Q. An example
of this I/O is shown in Figure 3. We define two
alternative outputs, namely predicting A directly or
predicting a program P (which is then evaluated to
produce an answer PAns).10

Task 2, distractor-context: Q, {F ∪
Fd} → A | P . This setting extends Task 2 by
adding Fd, a set of distractor facts to the input,
bringing the total number of facts to 20. This re-
quires the model to also identify which facts are
actually useful for the solution. F ∪Fd here is akin
to the “context” in the typical Reading Comprehen-
sion setting studied in the QA literature. It should
be noted that the set of distractor facts Fd are cho-
sen from facts corresponding to similar questions
in the dataset;11 similarity is defined using the ques-
tion embedding as given by a sentence transformer
(Reimers and Gurevych, 2019).

Task 3, full: Q → A | P . When the input
is only the question, we are in the original Fermi
problem setting. Again, we define two subtasks (a)
generate an answer A directly (b) synthesize a pro-
gram P which is then used to compute its implied
answer PAns . Note that when the explanation pro-
gram P needs to be outputted, the model is not pre-
sented with any facts F unlike the previous tasks.
Therefore, the model has the freedom to avail infor-
mation from any other source – e.g. a knowledge
base or via information already part of its param-
eters. Given the unconstrained nature of this task,
there are many possible programs and facts (the
gold program and facts in the dataset represent just
one possible solution), making fully automatic eval-
uation out of reach. Instead, we indirectly evaluate
P by (a) requiring it to be executable (b) scoring
its derived answer PAns wrt. the gold. Even these

9Here, A | P means that the task can either be treated as
that of direct estimation to predict A or as that of synthesis to
predict P which can then by executed to produce PAns .

10These could be solved using two different models, or one
model with two different outputs.

11We find that adding random distractors does not make
the task harder and systems perform as good as the
perfect-context setting; indicating no difficulty in iden-
tifying the correct facts.

are a high bar due to the challenging nature of FPs.
Human-in-the-loop evaluation tools, such as GE-
NIE (Khashabi et al., 2021), could also be used
to directly assess P and F when performance on
other metrics reaches a non-trivial level.

4.3 Metrics
Answer Evaluation: FPs do not have precise
answers, because of the underlying ambiguity in
terminology and context of both the original FP
and sub-questions which may need to be answered.
Therefore, in Fermi Science Olympiads, partici-
pants are awarded full points for obtaining an an-
swer in the same order of magnitude as a reference
gold answer, and 1/3 points less for each order of
magnitude they are off by. In line with this eval-
uation scheme, we use the following continuous
scoring metric:

fp_score = max

{
0, 1− 1

3

∣∣∣∣log10 A′A
∣∣∣∣} (1)

where A′ and A are the predicted and the reference
gold answers in SI units, respectively. During eval-
uation, we convert the output A′ of all models to
SI units before comparing with A and therefore,
the model is free to output units that are most nat-
ural for the question. The score thus ranges from
1 when producing precisely the gold reference an-
swer, to 0 when the prediction is off by three or
more orders of magnitude.

Program Evaluation: When we operate in the
synthesis setting i.e. care about outputting an expla-
nation program P that executes to a numerical esti-
mate PAns , we evaluate explanations (programs)
along three axes: Validity: Is the program syntacti-
cally valid? This is assessed by seeing whether it
successfully evaluates to a number. For this, we use
a program executor, written in python, that evalu-
ates FP programs as described earlier and returns a
numerical result, or throws an error. If execution is
successful (independent of the result), validity=1,
else 0.

Evaluated Answer accuracy: If the program suc-
cessfully evaluates, how accurate is the resulting
evaluated answer? We use the same answer evalua-
tion metric described earlier. Note that the evalu-
ated program’s answer may (and likely will) differ
from the model’s direct answer A. However, if
the program is not valid, the model gets a credit
of 0. Further, it is important to note that this met-
ric assigns credit to outputs that do not necessarily
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Dataset Model
Task 1: perfect-context Task 2: distractor-context Task 3: full

Ans Program P Ans Program P Ans Program P
A Valid? PAns Facts A Valid? PAns Facts A Valid? PAns

SYNTHFP T5 (FT synth) 1.00 1.00 1.00 1.00 0.56 0.97 0.87 0.84 0.02 0.33 0.08

REALFP
T5 (FT synth) 0.14 0.27 0.14 0.85 0.06 0.33 0.04 0.6 0.12 0.33 0.02
T5 (FT real) 0.18 0.71 0.36 0.95 0.17 0.89 0.21 0.75 0.11 0.57 0.06
T5 (FT both) 0.16 0.76 0.36 0.98 0.16 0.85 0.23 0.82 0.13 0.54 0.08

Table 2: Results on FPs with explanations (programs), for T5 fine-tuned on the synthetic FPs (train), the real FPs
(train), or both. Ans A is the model’s direct answer. Explanation (program) P is evaluated on whether it executes
(Valid?), and if so, whether that execution produces a correct answer (PAns) and whether it uses the needed (gold)
facts F included in the input for Tasks 1 and 2 (measured as F1 score).

correspond to the explanation program present in
the collected dataset. As FPs can be solved via
multiple possible explanation programs, if a model
arrives at the correct answer by such an alternative
approach, the evaluated answer accuracy still pro-
vides a noisy estimate of the effectiveness of the
outputted program.

Fact Identification: For tasks that include the
gold facts F as input (possibly with distractor
facts), did the program P include all and only the
gold facts F ? We compute an F1 measure by com-
paring the gold fact IDs with the fact IDs used.

5 Experiments

We describe some baseline approaches to solve the
FP Challenge tasks, and report their performance
on the test sets of the two datasets.

5.1 Baselines

These FP Challenge tasks require predicting both
the final answer A, and the reasoning involved
P . We fine-tune a pre-trained T5 model (Raffel
et al., 2020)12 as a seq2seq model that, for each FP
challenge task, takes in the corresponding inputs
(Q and possibly F ) to produce the corresponding
outputs (A, P , and possibly F ). For each of
these tasks, we evaluate the performance on RE-
ALFP after (1) finetuning on the SYNTHFP-train
set, (2) finetuning on the REALFP train set, and (3)
finetuning on the SYNTHFP train set in addition to
the REALFP-train set.

Results. Based on predicted answer (A),
we find that the T5 model finetuned only on
REALFP performs slightly better than other
variants. However, the best score is achieved
when the explanation program is evaluated –

12from the Huggingface library.

highlighting the utility of outputting the chain of
reasoning as opposed to directly predicting an
estimate. Further, when predicting the program,
we observe that fine-tuning on the SYNTHFP is
useful as it improves other metrics associated
with outputting an accurate program (i.e. validty
and fact f1-measure). Not surprisingly, the
full setting of the FP challenge is significantly
challenging and overall performs very poorly
compared to other settings where relevant facts are
provided to the model.

A few interesting failure modes of
the T5 (FT both) when trained on the
distractor-context task, are discussed in
table 3. These examples illustrate the importance
of evaluating both the explanation (P ) and the final
estimate (A).

6 Discussion

6.1 Regression baselines on full task.

We try out some trivial baselines i.e. constant pre-
diction and regression to model the full setting
of the FP challenge. We find interesting trends
where even such trivial baselines outperform exist-
ing large-scale language-models like T5 on the FP
challenge.
Constant Prediction. This is a trivial baseline that
predicts a constant value irrespective of the ques-
tion. By performing a logarithmic sweep between
10−10 − 1010, we find that the constant prediction
of 1000 (for every FP) achieves an average score of
0.22, indicating that this prediction is, on average,
two to three orders of magnitude off.
Regression. This baseline uses a 3-layer MLP,
which regresses to a number, given an encoding of
the question (obtained using a pre-trained BERT
model (Devlin et al., 2019)). We train this model in
three settings: (1) on SYNTHFP, (2) on REALFP,
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Q: Imagine the earth is at one end of the school oval and the moon is at the other end. How far away is the sun?
Predicted P : Mul(Distance of earth-sun? 2e+11 km, Distance of earth-moon? 2e+11 km)
Target P : Mul(Length of school oval? 0.1 km, Div(Distance from earth-sun? 151e+6 km , Distance from earth-moon? 384400 km))
Scores: Valid?: Yes, Ans: 0 Facts: 0.67

Q: How many punctuation marks are in a book?
Predicted P : Div(Number of sentences in a book? 5000, Avg. number of punctuation in a book? 0.005)
Target P : Mul(Number of sentences in a book? 5000, Avg. number of punctuation in a sentence? 3)
Scores: Valid?: Yes, Ans: 0.392 Facts: 1

Table 3: Some interesting failure modes of the T5 model (FT both) trained on the distractor-context task
(format changed for presentation purposes). The first example highlights gaps in the model’s reasoning ability:
itu is not able to identify the relevant facts from the set of presented facts. The second example, on the other
hand, identifies the relevant facts but performs the wrong operation (division instead of multiplication) and fails to
generate one of the sub-questions and its estimate.

Task 3: full

Model Ans

Constant Prediction 0.22
Regression (FT synth) 0.29
Regression (FT real) 0.13
Regression (FT both) 0.32

Table 4: Performance of the MLP-based regression
models for the full task of our FP challenge with re-
sults reported on the REALFP test set.

and (3) on both training sets. From table 4, we can
see that this model performs best when trained on
both datasets (achieving a score of 0.32). However,
this is only slightly better than predicting a constant
and on average is still off by roughly two orders of
magnitude from the correct estimate.

6.2 Limitations of REALFP.

Our REALFP dataset includes only one explanation
program to a given FP whereas in practice, there
can be multiple creative decompositions that lead
to the correct answer. To encourage models that
are capable of capturing this diversity in the output
space, it would be interesting to (a) collect alter-
native solutions similar to say, image captioning
datasets where it is the norm to train and evaluate
against multiple ground truth candidates and (b) in-
creasing the number of templates in the SYNTHFP
dataset, thereby biasing the model towards explor-
ing multiple solutions by pre-training on a richer
synthetic dataset.

Further, the work doesn’t include other variants
of FPs – e.g. binary yes/no questions, comparisons,
or FPs involving probability and risk quantification.
Finally, note that our real-world dataset, by virtue
of how it is collected, has a high US-centric bias,
both in terms of cultural context and vocabulary.

6.3 Modeling Improvements.

In terms of modeling, we establish baselines by
finetuning existing large-scale language models.
However, it might be interesting to incorporate
them as part of a bigger framework that is de-
veloped specially to solve FPs – for instance, a
neuro-symbolic system that intelligently seaches
the space of FP decompositions by interleaving
question decomposition and the estimation (pre-
dicting the numerical answer for sub-questions)
phases. Further, both the estimation phase and the
decomposition phase can be improved by giving the
model with the ability to access a knowledge base
that contains various numerical, commonsense or
science facts.

7 Conclusion

In this work, we propose Fermi Problems (FPs) as
a reasoning challenge for AI systems. Apart from
introducing abstraction as a crucial reasoning skill,
our work requires the combined application of var-
ious reasoning skills including creative decomposi-
tion of problems, commonsense reasoning, math-
ematical reasoning, etc. We collect two datasets –
REALFP with ∼1k real-world questions and SYN-
THFP with 10k templated questions. Based on
these datasets, we propose three concrete tasks of
increasing difficulty that encompass the FP chal-
lenge. The baseline models we provide, despite
being based on state-of-the-art language models
and even with substantial fine-tuning, struggle on
our challenge tasks. They are, on average, off by
two orders of magnitude from the correct estimate
and perform only slightly better than predicting a
constant number. We thus hope to establish Fermi
problems as a hard reasoning challenge that moti-
vates further advances in AI reasoning systems.
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Appendix

A Templates for SYNTHFP

Program Templated Question

Div($y.volume, $x.volume) How many $x fit in $y?
Div($y.length, $x.length) How many $x have the same length as $y?
Div($y.area, $x.area) ’How many $x fit on $y
Mul($k, Div($x.data, $y.data) How many $y put together contain the same information as $k of $x?
Div($y.length, $x.speed) How long does it take for $x to travel across $y?
Div($y.volume, Div($x.volume, 2)) Assume $yś volume is half its value. How many $x fit in $y?
Div($y.length, Div($x.length, 2)) Assume $yś length is half its value. How many $x have the same length as $y?
Div($y.area, Div($x.area, 2)) Assume $yś area is half its value. How many $x fit on $y?
Div($k, $x.mass) How many $x make up $k kgs?
Mul($y.cost, Div($k, $x.cost)) How many $x can $k of $y buy?
Mul($k, Div($x.calories / 65)) How long to digest $k grams of $x?
Mul($k, Mul($y.density, $x.volume)) If $k of $x were to have the same density as $y, how much would it weigh

Table 5: The templates used to construct SYNTHFP dataset.


