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Abstract

Learning multilingual and multi-domain trans-
lation model is challenging as the heteroge-
neous and imbalanced data make the model
converge inconsistently over different corpora
in real world. One common practice is to ad-
just the share of each corpus in the training,
so that the learning process is balanced and
low-resource cases can benefit from the high-
resource ones. However, automatic balancing
methods usually depend on the intra- and inter-
dataset characteristics, which is usually agnos-
tic or requires human priors. In this work,
we propose an approach, MULTIUAT, that dy-
namically adjusts the training data usage based
on the model’s uncertainty on a small set of
trusted clean data for multi-corpus machine
translation. We experiment with two classes of
uncertainty measures on multilingual (16 lan-
guages with 4 settings) and multi-domain set-
tings (4 for in-domain and 2 for out-of-domain
on English-German translation) and demon-
strate our approach MULTIUAT substantially
outperforms its baselines, including both static
and dynamic strategies. We analyze the cross-
domain transfer and show the deficiency of
static and similarity based methods.1

1 Introduction

Text corpora are commonly collected from several
different sources in different languages, raising the
problem of learning a NLP system from the hetero-
geneous corpora, such as multilingual models (Wu
and Dredze, 2019; Arivazhagan et al., 2019; Aha-
roni et al., 2019; Freitag and Firat, 2020; Arthur
et al., 2021) and multi-domain models (Daumé III,
2007; Li et al., 2019; Deng et al., 2020; Jiang et al.,
2020). A strong demand is to deploy a unified
model for all the languages and domains, because

∗Work done during the internship at Huawei Noah’s Ark
Lab.

1Code available at https://github.com/
huawei-noah/noah-research/tree/master/
noahnmt/multiuat

a unified model is much more resource-efficient,
and knowledge learned from high-resource lan-
guages/domains (HRLs/HRDs) can be transferred
to low-resource languages/domains (LRLs/LRDs).

One common issue on training models across
corpora is that data from a variety of corpora are
both heterogeneous (different corpora reveal dif-
ferent linguistic properties) and imbalance (the ac-
cessibility of training data varies across corpora).
The standard practice to address this issue is to ad-
just the training data distribution heuristically by
up-sampling the training data from LRLs/LRDs
(Arivazhagan et al., 2019; Conneau et al., 2020).

Arivazhagan et al. (2019) rescale the training
data distribution with a heuristic temperature term
and demonstrate that the ideal temperature can sub-
stantially improve the overall performance. How-
ever, the optimal value for such heuristics is both
hard to find and varies from one experimental set-
ting to another (Wang and Neubig, 2019; Wang
et al., 2020a,b). Wang et al. (2020a) and Wang et al.
(2020b) hypothesize that the training data instances
that are similar to the validation set can be more
beneficial to the evaluation performance and pro-
pose a general reinforcement-learning framework
Differentiable Data Selection (DDS) that automati-
cally adjusts the importance of data points, whose
reward is the cosine similarity of the gradients be-
tween a small set of trusted clean data and training
data. They instantiate this framework on multilin-
gual NMT, known as MULTIDDS, to dynamically
weigh the importance of language pairs. Both the
hypothesis and the proposed approach rely on the
assumption that knowledge learned from one cor-
pus can always be beneficial to the other corpora.

However, their assumption does not always hold.
If the knowledge learned from one corpus is not
able to be transferred easily or is useless to the other
corpora, this approach fails. Unlike cosine similar-
ity, model uncertainty is free from the aforemen-
tioned assumption on cross-corpus transfer. From

https://github.com/huawei-noah/noah-research/tree/master/noahnmt/multiuat
https://github.com/huawei-noah/noah-research/tree/master/noahnmt/multiuat
https://github.com/huawei-noah/noah-research/tree/master/noahnmt/multiuat


7292

a Bayesian viewpoint, the model parameters can
be considered as a random variable that describes
the dataset. If one dataset is well-described by the
model parameters, its corresponding model uncer-
tainty is low, and vice versa. This nature makes
the model uncertainty an ideal option to weigh the
datasets.

In this work, we propose an approach MUL-
TIUAT that leverages the model uncertainty as the
reward to dynamically adjust the sampling probabil-
ity distribution over multiple corpora. We consider
the model parameter as a random variable that de-
scribes the multiple training corpora. If one corpus
is well-described by the model compared with other
corpora, we spare more training efforts to the other
poorly described corpora. We conduct extensive
experiments on multilingual NMT (16 languages
with 4 settings) and multi-domain NMT (4 for in-
domain and 2 for out-of-domain), comparing our
approach with heuristic static strategy and dynamic
strategy. In multilingual NMT, we improve the
overall performance from +0.83 BLEU score to
+1.52 BLEU score among 4 settings, comparing
with the best baseline. In multi-domain NMT, our
approach improves the in-domain overall perfor-
mance by +0.58 BLEU score comparing with the
best baseline and achieves the second best out-of-
domain overall performance. We also empirically
illustrate the vulnerability of cosine similarity as
the reward in the training among multiple corpora.

2 Preliminaries

Standard NMT A standard NMT model, param-
eterized by θθθ, is commonly trained on one language
pair Do

trn = {(xxx,yyy)i}Mi=1 from one domain. The
objective is to minimize the negative log-likelihood
of the training data with respect to θθθ:

Ls(Do
trn;θθθ) = −

M∑
i=1

log p(yyy|xxx;θθθ) . (1)

Multi-corpus NMT Both multilingual NMT and
multi-domain NMT can be summarized as multi-
corpus NMT that aims to build a unified translation
system to maximize the overall performance across
all the language pairs or domains. Formally, let us
assume we are given a number of datasets Dtrn =
{Dj

trn}Nj=1 from N languages pairs or domains, in

which Dj
trn = {(xxx,yyy)ji}

Mj

i=1, where Mj is size of
j-th language/domain. Similar to Equation 1, a
simple way of training multi-corpus NMT model

is to treat all instances equally:

L(Dtrn;θθθ) =
N∑
j=1

Ls(Dj
trn;θθθ) . (2)

Heuristic strategy for multi-corpus training
In practice, Equation 2 can be reviewed as training
using mini-batch sampling according to the propor-
tion of these corpora, q(n) = Mn∑N

i=1Mi
, and thus

we minimize:

L(Dtrn;θθθ, q(n)) = En∼q(n) [Ls(Dn
trn;θθθ)] . (3)

However, this simple training method does not
work well in real cases, where low-resource tasks
are under-trained.

A heuristic static strategy is to adjust the propor-
tion exponentiated by a temperature term τ (Ari-
vazhagan et al., 2019; Conneau et al., 2020):

qτ (n) =
q(n)1/τ∑N
i=1 q(i)

1/τ
. (4)

And the loss function for multi-corpus training can
be re-formulated as:

L(Dtrn;θθθ, qτ (n)) = En∼qτ (n)[Ls(D
n
trn;θθθ)] . (5)

Specifically, τ = 1 or τ = ∞ is equivalent to
proportional (Equation 2) or uniform sampling re-
spectively.

Differentiable Data Selection (DDS) Wang
et al. (2020a) propose a general framework that
automatically weighs training instances to improve
the performance while relying on an independent
set of held-out data Ddev. Their framework con-
sists of two major components, the model θθθ and the
scorer network ψψψ. The scorer network ψψψ is trained
to assign a sampling probability to each training
instance, denoted as pψψψ(xxx,yyy), based on its contri-
bution to the validation performance. The training
instance that contributes more to the validation per-
formance is assigned a higher probability and more
likely to be used for updating the model θθθ. This
strategy aims to maximize the overall performance
over Ddev and is expected to generalize well on the
unseen Dtst with the assumption of the indepen-
dence and identical distribution between Ddev and
Dtst. Therefore, the objective can formulated as:

ψψψ = argmin
ψψψ
L(Ddev;θθθ(ψψψ))

θθθ(ψψψ) = argmin
θθθ

E(xxx,yyy)∼pψψψ(xxx,yyy)[L(Dtrn;θθθ)] ,
(6)
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and ψψψ and θθθ are updated iteratively using bilevel
optimization (Colson et al., 2007; von Stackelberg
et al., 2011).

3 Methodology

In this work, we leverage the idea of DDS under the
multi-corpus scenarios. We utilize a differentiable
domain/language scorer ψψψ to weigh the training
corpora. To learn ψψψ, we exploit the model uncer-
tainty to measure the model’s ability over the target
corpus. Below, we elaborate on the details of our
method.

3.1 Model Uncertainty

Model uncertainty can be a measure that indicates
whether the model parameters θθθ are able to describe
the data distribution well (Kendall and Gal, 2017;
Dong et al., 2018; Xiao and Wang, 2019). Bayesian
neural networks can be used for quantifying the
model uncertainty (Buntine and Weigend, 1991),
which models the θθθ as a probabilistic distribution
with constant input and output.

From the Bayesian point of view, θθθ is interpreted
as a random variable with the prior p(θθθ). Given
a dataset D, the posterior p(θθθ|D) can be obtained
via Bayes’ rule. However, the exact Bayesian in-
ference is intractable for neural networks, so that
it is common to place the approximation q(θθθ) to
the true posterior p(θθθ|D). Several variational infer-
ence methods have been proposed (Graves, 2011;
Blundell et al., 2015; Gal and Ghahramani, 2016).

In this work, we leverage Monte Carlo Dropout
(Gal and Ghahramani, 2016) to obtain samples
of sentence-level translation probability. To quan-
tify the model uncertainty when the model makes
predictions, we treat the sentence-level translation
probability as random variable. We run K forward
passes with a random subset of model parameters
θθθ deactivated, which is equivalent to drawing sam-
ples from the random variable, and average the
samples as the estimate of the model uncertainty.2

Consider an ensemble of models {pθθθk(yyy|xxx)}Kk=1

sampled from the approximate posterior q(θθθ), the
predictive posterior can be obtained by taking the
expectation over multiple inferences:

p(yyy|xxx,D) ≈ Eθθθ∼q(θθθ)[p(yyy|xxx,θθθ)]

≈ 1

K

K∑
k=1

pθθθk(yyy|xxx) .
(7)

2K is set to 30 in our work.

Algorithm 1: Training with MULTIUAT

Input :Dn = {(xxxnm, yyynm)}
Mn
m=1, N

corpora with the size of Mn for the
n-th corpus; S, update frequency
of ψψψ; J , total training steps;

Output :The converged model θθθ
1 Initialize pψψψ(n;Dtrn) as Equation 4 with

τ = 1;
2 for i=0 to J do
3 ñ ∼ pψψψ(n);
4 sample batch (xxx,yyy) ∼ Dñ

trn;
5 θθθ ← θθθ − α · ∇θθθL(yyy|xxx;θθθ);
6 if i % S == 0 then
7 for n=1 to N do
8 (xxx′, yyy′) ∼ Dn

dev;
9 Compute reward/uncertainty

R(n) for Dn
dev as in

Section 3.3;
10 end
11 ψψψ ←

ψψψ −
∑N

n=1R(n) · ∇ψψψ log pψψψ(n);
12 end
13 end

3.2 Uncertainty-Aware Training

To make the training more efficient and stable,
MULTIUAT leverages the scorer network ψψψ to dy-
namically adjust the sampling probability distribu-
tion of domains/languages.3

We present the pseudo-code for training with
MULTIUAT in Algorithm 1. MULTIUAT firstly
parameterizes the initial sampling probability dis-
tribution for multi-corpus training with ψψψ as Equa-
tion 4 with the warm-up temperature τ = 1. For
the computational efficiency, the scorer network ψψψ
is updated for every S steps. When updating ψψψ, we
randomly draw one mini-batch from each valida-
tion set {Di

dev}Ni=1 and compute the corresponding
uncertainty measure as in Section 3.3 with Monte
Carlo Dropout to approximate the model uncer-
tainty towards this corpus, assuming the validation
set is representative enough for its corresponding
true distribution. The corpus associated with high
uncertainty is considered to be relatively poorly
described by the model θθθ and its sampling proba-
bility will be increased. The model θθθ is updated by
mini-batch gradient descent between two updates

3We parameterize the scorer ψψψ following Wang et al.
(2020b).
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of ψψψ, like common gradient-based optimization,
and hence the objective is formulated as follows:

ψψψ = argmin
ψψψ
L(Ddev;θθθ(ψψψ))

θθθ(ψψψ) = argmin
θθθ

En∼pψψψ(n)[L(D
n
trn;θθθ)] .

(8)

A considerable problem here is Equation 6 is
not directly differentiable w.r.t. the scorer ψψψ. To
tackle this problem, reinforcement learning (RL)
with suitable reward functions is required (Fang
et al., 2017; Wang et al., 2020a):

ψψψ ← ψψψ −
N∑
n=1

R(n) · ∇ψψψ log pψψψ(n) . (9)

Details for the reward functions R(n) are depicted
at Section 3.3 and the update of ψψψ follows the RE-
INFORCE algorithm (Williams, 1992).

3.3 Uncertainty Measures

We explore the utility of two groups of model un-
certainty measures: probability-based and entropy-
based measures at the sentence level (Wang et al.,
2019; Fomicheva et al., 2020; Malinin and Gales,
2021).

Probability-Based Measures We explore four
probability-based uncertainty measures following
the definition of Wang et al. (2019). For the sam-
pled model parameters θθθk, with the teacher-forced
decoding, we note the predicted probability of the
t-th position as:

ŷn,t = argmax
y

p(y|xxxn, yyyn,<t;θθθk) , (10)

where we have used the ground truth prefix yyyn,<t in
the conditioning context. We then define the reward
function as the following uncertainty measures:

• Predicted Translation Probability (PRETP):
The predicted probability of the sentence,

RPRETP(n;θθθk) = 1−
T∏
t=1

p(ŷn,t|xxxn, yyyn,<t;θθθk) .

• Expected Translation Probability (EXPTP):
The expectation of the distribution of maximal
position-wise translation probability,

REXPTP(n;θθθk) = 1−E [p(ŷn,t|xxxn, yyyn,<t;θθθk)] .

• Variance of Translation Probability (VARTP):
The variance of the distribution of maximal
position-wise translation probability,

RVARTP(n;θθθk) = Var[p(ŷn,t|xxxn, yyyn,<t;θθθk)] .

• Combination of Expectation and Variance
(COMEV):

RCOMEV(n;θθθk) =
Var[p(ŷn,t|xxxn, yyyn,<t;θθθk)]
E[p(ŷn,t|xxxn, yyyn,<t;θθθk)]

.

Entropy-Based Measures Malinin and Gales
(2021) consider the uncertainty estimation for auto-
regressive models at the token-level and sequence-
level and treat the entropy of the posterior as the
total uncertainty in the prediction of yyy. Following
their interpretation, we leverage the entropy as the
measure of the model uncertainty.

Drawing a pair of sentence (xxx,yyy) with T target
tokens from the n-th corpus Dn, the reward func-
tion is defined as the averaged entropy over all the
positions:

R(n;θθθ) =
1

T

T∑
t=1

V∑
v=1

p(yn,t,v) log p(yn,t,v) .

(11)
where V is the vocabulary size and p(yn,t,v)
stands for the predicted conditional probability
p(yn,t,v|xxx,yyyn,<t,v;θθθk) on the v-th word in the vo-
cabulary.

In this work, we explore the utility of two
entropy-based uncertainty measures as follows:

• Entropy of the sentence (ENTSENT): The av-
erage entropy of the sentence as defined in
Equation 11.

• Entropy of EOS (ENTEOS): The entropy of
the symbol EOS in the sentence as defined in
Equation 11 where t = T .

Following Equation 7, we have the final reward
by multiple sampled θθθk for each uncertainty reward
respectively:

R(n) =
1

K

K∑
k=1

R{.}(n;θθθk) . (12)

4 Experimental Setup

4.1 Baselines
We compare MULTIUAT with both static and dy-
namic strategies as follows:



7295

Heuristics We run experiments with propor-
tional (PROP., τ = 1), temperature (TEMP., τ = 5)
and uniform (UNI., τ =∞) in Equation 4 follow-
ing Wang et al. (2020b).

MULTIDDS-S We compare with the best model
MULTIDDS-S proposed by Wang et al. (2020b)
over multilingual NMT tasks. Its reward for the
n-th corpus is defined using cosine similarity:

Rcos(n) =
1

N

N∑
i=1

cos(∇θθθL(Di
dev),∇θθθL(Dn

trn)) .

(13)

4.2 Multilingual Setup
We follow the identical setup as Wang et al. (2020b)
in the multilingual NMT. The model is trained on
two sets of language pairs based on the language
diversity.

Related 4 LRLs (Azerbaijani: aze, Belarusian:
bel, Glacian: glg, Slovak: slk) and a related
HRL for each LRL (Turkish: tur, Russian: rus,
Portuguese: por, Czech: ces).

Diverse 8 languages with varying amounts of
data, picked without consideration for relatedness
(Bosnian: bos, Marathi: mar, Hindi: hin, Mace-
donian:mkd, Greek: ell, Bulgarian: bul, French:
fra, Korean: kor).

We run many-to-one (M2O, translating 8 lan-
guages to English) and one-to-many (O2M, trans-
lating English to 8 languages) translations for both
diverse and related setups.4

4.3 Multi-Domain Setup
We run experiments on English-German transla-
tion and collect six corpora from WMT2014 (Bojar
et al., 2014) and the Open Parallel Corpus (Tiede-
mann, 2012), 4 for in-domain and 2 for out-of-
domain:

In-Domain (ID) (i) WMT, from WMT2014 trans-
lation task (Bojar et al., 2014) with the concatena-
tion from newstest2010 to newstest2013
for validation and newstest2014 for testing;
(ii) Tanzil,5 a collection of Quran translations;
(iii) EMEA,6 a parallel corpus from the European
Medicines Agency; (iv) KDE,7 a parallel corpus of
KDE4 localization files.

4Refer to Wang et al. (2020b) for dataset statistics.
5https://opus.nlpl.eu/Tanzil.php
6https://opus.nlpl.eu/EMEA.php
7https://opus.nlpl.eu/KDE4.php

Train Valid Test

ID

WMT 3, 950K 11K 3K
Tanzil 449K 3K 3K
EMEA 277K 3K 3K
KDE 135K 3K 3K

OOD QED - - 3K
TED - - 3K

Table 1: Dataset statistics of multi-domain corpora.

Out-Of-Domain (OOD) (i) QED,8 a collection
of subtitles for educational videos and lectures (Ab-
delali et al., 2014); (ii) TED,9 a parallel corpus of
TED talk subtitles. These two domains are only
used for out-of-domain evaluation.

All these corpora are first tokenized by Moses
(Koehn et al., 2007) and processed into sub-word
units by BPE (Sennrich et al., 2016) with 32K
merge operations. Sentence pairs that are dupli-
cated and violates source-target ratio of 1.5 are
removed. The validation sets and test sets are ran-
domly sampled, except for WMT. The dataset statis-
tics are listed in Table 1.

4.4 Model Architecture

We believe all the approaches involved in this work,
including the baseline approaches and MULTIUAT,
are model-agnostic. To validate this idea, we exper-
iment two variants of transformer (Vaswani et al.,
2017). For multilingual NMT, the model architec-
ture is a transformer with 4 attention heads and 6
layers.10 And for multi-domain NMT models, we
use the standard transformer-base with 8 attention
heads and 6 layers.11 All the models in this work
are implemented by fairseq (Ott et al., 2019).

4.5 Evaluation

We report detokenized BLEU (Papineni et al.,
2002) using SacreBLEU (Post, 2018) with statisti-
cal significance given by Koehn (2004).12 µBLEU is
the macro average of BLEU scores within the same
setting, with the assumption that all the language
pairs/domains are equally important.

8https://opus.nlpl.eu/QED.php
9https://opus.nlpl.eu/TED2013.php

10Signature:
multilingual_transformer_iwslt_de_en

11Signature: transformer
12Signature: BLEU+case.mixed+numrefs.1

+smooth.exp+tok.13a+version.1.4.14

https://opus.nlpl.eu/Tanzil.php
https://opus.nlpl.eu/EMEA.php
https://opus.nlpl.eu/KDE4.php
https://opus.nlpl.eu/QED.php
https://opus.nlpl.eu/TED2013.php
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Multilingual Multi-Domain

Related Diverse ID OOD
Average M2O O2M M2O O2M

PROP. (τ = 1) 22.58 24.88 15.49 26.68 16.79 35.69 25.15
TEMP. (τ = 5) 22.80 24.00 16.61 26.01 17.94 36.92 23.46
UNI. (τ = ∞) 21.86 22.63 15.54 24.81 16.86 36.85 22.22
MULTIDDS-S 23.58 25.52 17.32 27.00 18.24 36.42 22.74

MULTIUAT
+ PRETP 24.57† 26.30† 18.36† 27.82† 19.57† 37.50† 23.77
+ EXPTP 24.62† 26.36† 18.64† 27.74† 19.59† 37.29 23.89
+ VARTP 24.44† 26.39† 18.58† 27.83† 19.62† 35.49 23.75
+ COMEV 24.57† 26.26† 18.58† 27.75† 19.67† 37.25 23.36
+ ENTSENT 24.62† 26.34† 18.63† 27.71† 19.68† 37.27 23.86
+ ENTEOS 24.65† 26.28† 18.56† 27.82† 19.76† 37.44† 23.80

Table 2: µBLEU for the settings on multilingual and multi-domain NMT. “Average” is the macro average of all
the BLEU scores for both multilingual and multi-domain settings at Appendix A. Best results are highlighted
in bold and second best results are highlighted in underline. † indicates the improvement for the corresponding
MULTIUAT result against MULTIDDS-S result is statistically significant at p < 0.05 using paired Student’s t-test.

5 Main Results

The summarized results for both multilingual and
multi-domain NMT are presented in Table 2.13 The
complete results with statistical significance can be
found in Appendix A.

Multilingual NMT Overall, dynamic strategies
(MULTIDDS-S and MULTIUAT) demonstrate
their superiority against heuristic static strategies.
As shown in Table 2, the optimal τ of heuris-
tic static strategies varies as the combination of
corpora changes. For example, proportional sam-
pling yields best performance on M2O settings, yet
achieves the worst performance on O2M settings
among heuristic static strategies. Dynamic strate-
gies are free from adjusting the data usage by tun-
ing the τ . MULTIDDS-S marginally outperforms
heuristic static strategies. MULTIUAT with various
uncertainty measures reaches the best performance
in all four settings. Based on the detailed results
in Appendix A, we can observe that MULTIUAT
appears to be more favorable to HRLs.

Multi-domain NMT MULTIUAT outperforms
all its baselines on in-domain evaluation and
achieves the second best performance on out-of-
domain evaluation. MULTIUAT with PRETP
achieves the optimal balance on in-domain eval-
uation and the one with EXPTP achieves the sec-
ond best performance on out-of-domain evaluation.
However, MULTIDDS-S performs poorly on multi-

13We report the multilingual results of the heuristic ap-
proach and MULTIDDS-S from Wang et al. (2020b) in Ta-
ble 2.

domain NMT and is even outperformed by some
heuristic static strategies.

Based on the detailed results in Appendix A,
we can observe that the higher sampling proba-
bility for certain domain is commonly but not al-
ways positively correlated to the corresponding in-
domain performance. Uniformly sampling mini-
batches from domains does not result in the best
performance on LRDs, because the LRDs with too
much up-sampling are not able to fully leverage
the knowledge from the HRDs.

6 Analysis

Wang et al. (2020b) conduct exhaustive analyses
on multilingual NMT and most of our observations
are consistent with theirs.14 Hence, we focus more
on analyzing the results on multi-domain NMT.

6.1 Comparison of Uncertainty Measures

We explore the utility of different uncertainty mea-
sures and display the summarized results in Ta-
ble 2. Different uncertainty measures deliver dif-
ferent results. We do not observe one uncertainty
measure that consistently outperforms others. The
probability-based uncertainty measures seem to be
more sensitive to the intra- and inter-dataset char-
acteristics, and perform well on either multilingual
NMT or multi-domain NMT. MULTIUAT with
the uncertainty measure of VARTP performs sub-
stantially worse than other uncertainty measures in

14The multilingual results of MULTIDDS-S used for analy-
sis are provided by our own implementation with the hyperpa-
rameters provided by Wang et al. (2020b).
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Figure 1: Iteration (Iter.)-sampling probability of
MULTIDDS-S and MULTIUAT under the multilingual
O2M-diverse setting.
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Figure 2: Iteration (Iter.)-sampling probability of
MULTIDDS-S and MULTIUAT over multi-domain
NMT training sets.

multi-domain NMT. In contrast to the probability-
based uncertainty measures, the entropy-based un-
certainty measures are more robust to the change
of datasets and deliver relatively stable improve-
ments. We also find out that MULTIUAT with
the uncertainty measures demonstrate better out-of-
domain generalization in the multi-domain NMT,
compared with its baselines.

Based on the detailed results in Appendix A,
MULTIUAT with the entropy-based uncertainty
measures demonstrates better robustness against
the change of datasets. Therefore, we mainly com-
pare MULTIUAT with the uncertainty measure of
ENTEOS against the baselines in the following
analyses, based on the macro-average results on
both multilingual and multi-domain NMT.

6.2 Learned Distribution for Language
Pairs/Domains

We visualize the change of sampling distribu-
tion, w.r.t. the training iterations, of the multilin-
gual O2M-diverse (Figure 1) and multi-domain
(Figure 2) setting. In both figures, MULTIDDS-
S and MULTIUAT gradually increase the us-
age of LRLs/LRDs and decrease the usage of
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Figure 3: Averaged cosine similarity matrix between
train and validation mini-batch during the optimization
of MULTIDDS-S.

HRLs/HRDs. In the multilingual NMT, we observe
that the learned distributions by both MULTIDDS-
S and MULTIUAT converge from proportional sam-
pling to uniform sampling with a mild trend to di-
vergence in the one given by MULTIDDS-S. In
the multi-domain NMT, MULTIUAT illustrates the
consistent adjustment as the trend illustrated in mul-
tilingual O2M-diverse setting, but the learned dis-
tribution given by MULTIDDS-S is overwhelmed
by Tanzil.

The model uncertainty focuses on how well the
dataset is described by the model θθθ, instead of the
interference among datasets, so that MULTIUAT
is free from the assumption on the cross-corpus
transference and not affected by Tanzil.

6.3 Why Cosine Similarity Fails?15

A natural question is raised after seeing Figure 2:
why does Tanzil overwhelm the sampling distribu-
tion by MULTIDDS-S in multi-domain NMT?

As in Equation 13, MULTIDDS-S computes
pairwise cosine similarities for all the language
pairs/domains using sampled mini-batches between
Dtrn and Ddev to update the sampling probability.
We average all the cosine similarity matrices dur-
ing the training and visualize the averaged matrix
in Figure 3. As visualized, Tanzil is a highly
self-correlated domain whose cosine similarity is
about at least two times larger than the other values
in the matrix. This leads to a very high reward on
Tanzil, and the sampling probability of Tanzil
in MULTIDDS-S keeps increasing to more than
40% in Figure 2.

15In our preliminary study, we investigate various similarity-
based rewards, such as dot product, but we do not observe
significant difference.
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ID OOD

τ µBLEU WMT Tanzil EMEA KDE µBLEU QED TED

MULTIDDS-S 1 36.42 21.76 37.41 51.92 34.60 22.74 20.30 25.18
5 36.16 19.50 37.55 52.04 35.56 21.60 19.59 23.61
∞ 36.03 18.90 37.45 51.91 35.85 21.47 19.37 23.57

MULTIUAT 1 37.44 22.14 38.38† 52.81† 36.44† 23.80 21.34† 26.26†
5 37.04 20.34 39.40† 52.68 35.73 22.46 19.97 24.95
∞ 36.93 20.09 39.84† 52.03 35.74 22.14 19.79 24.48

Table 3: Effects of sampling priors (τ ) for MULTIDDS-S and MULTIUAT in multi-domain NMT. Best results
are highlighted in bold and second best results are highlighted in underline. † indicates the improvement for the
corresponding result against best MULTIDDS-S result is statistically significant at p < 0.05 given by Koehn
(2004).

WMT Tanzil EMEA KDE

WMT 25.09 12.76 23.60 24.95
Tanzil 0.22 40.66 0.07 0.14
EMEA 4.78 1.39 54.25 7.01
KDE 4.19 1.74 9.54 30.71

Table 4: The cross-domain evaluation for the single-
domain NMT models. BLEU scores in each row are
produced by the corresponding single-domain NMT
model. Best results are highlighted in bold.

However, is Tanzil highly beneficial to the
overall performance? To probe the cross-domain
generalization, we train four single-domain NMT
models on each in-domain corpus and evaluate
these models on all the in-domain test sets, and
the results are presented in Table 4. We can ob-
serve that the knowledge learned from WMT can be
generalized to other domains, but the knowledge
learned from Tanzil is almost not beneficial to
other domains.

Therefore, MULTIDDS-S with the data-
dependent cosine similarity reward is vulnerable
to the change of datasets and can be possibly over-
whelmed by a special dataset like Tanzil, since
the cross-corpus transfer is intractable.

6.4 Effects of Sampling Priors
Both MULTIDDS-S and MULTIUAT initialize the
sampling probability distribution to proportional
distribution (line 1 in Algorithm 1). We investi-
gate how the prior sampling distribution affects
the performance and present the results in Table 3.
We can observe that the prior sampling distribu-
tion can affect the overall performance. For both
MULTIDDS-S and MULTIUAT, the overall results
on both in-domain and out-of-domain evaluation
are negatively correlated with the prior τ .

We also visualize the change of sampling prob-
ability of KDE given by MULTIDDS-S and MUL-
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.
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0 50 100 150
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Figure 4: Iteration (Iter.)-sampling probability over
KDE of MULTIDDS-S and MULTIUAT with different
temperature priors.

TIUAT with different prior sampling distributions
in Figure 4. The learned sampling distribution by
MULTIUAT always converges to uniform distri-
bution, regardless of the change of prior sampling
distribution. However, the change of priors signifi-
cantly affects the learned sampling distribution of
MULTIDDS-S.

7 Related Work

Multi-corpus NLP Multilingual training has
been particularly prominent in recent advances
driven by the demand of training a unified model
for all the languages (Dong et al., 2015; Plank et al.,
2016; Johnson et al., 2017; Arivazhagan et al.,
2019). Freitag and Firat (2020) extend current
English-centric training to a many-to-many setup
without sacrificing the performance on English-
centric language pairs. Wang et al. (2021) im-
prove the multilingual training by adjusting gra-
dient directions based on gradient similarity. Ex-
isting works on multi-domain training commonly
attempt to leverage architectural domain-specific
components or auxiliary loss (Sajjad et al., 2017;
Tars and Fishel, 2018; Zeng et al., 2018; Li et al.,
2018; Deng et al., 2020; Jiang et al., 2020). These
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approaches commonly do not explore much on the
training proportion across domains and are limited
to in-domain prediction and less generalizable to
unseen domains. Zaremoodi and Haffari (2019) dy-
namically balance the importance of tasks in multi-
task NMT to improve the low-resource NMT per-
formance. Vu et al. (2021) leverage a pre-trained
language model to select useful monolingual data
from either source language or target language to
perform unsupervised domain adaptation for NMT
models. Our work is directly related to Wang et al.
(2020a) and Wang et al. (2020b) that leverage co-
sine similarity of gradients as a reward to dynami-
cally adjust the data usage in the multilingual train-
ing.

Model uncertainty Estimating the sequence and
word-level uncertainty via Monta Carlo Dropout
(Gal and Ghahramani, 2016) has been investigated
for NMT (Xiao et al., 2020; Wang et al., 2019;
Fomicheva et al., 2020; Malinin and Gales, 2021).
Wang et al. (2019) exploit model uncertainty on
back-translation to reduce the noise in the back-
translated corpus. Xiao et al. (2020) and Malinin
and Gales (2021) investigate to leverage model un-
certainty to detect out-of-distribution translations.
Fomicheva et al. (2020) summarize several mea-
sures to estimate quality of translated sentences,
including the model uncertainty. Our work exploits
the uncertainty measures as suggested by Wang
et al. (2019) and Malinin and Gales (2021).

8 Conclusion

In this work, we propose MULTIUAT, a general
model-agnostic framework that learns to automat-
ically balance the data usage to achieve better
overall performance on multiple corpora based on
model uncertainty. We run extensive experiments
on both multilingual and multi-domain NMT, and
empirically demonstrate the effectiveness of our
approach. Our approach substantially outperforms
other baseline approaches. We empirically point
out the vulnerability of a comparable approach
MULTIDDS-S (Wang et al., 2020b).

We focus on the problem that dynamically bal-
ances text corpora collected from heterogeneous
sources in this paper. However, the heterogeneity
of text corpora is far beyond the languages and
domains which are discussed in this work. For ex-
ample, the quality of datasets is not covered. We
leave the study on the quality of datasets to the
future work.
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A Complete Results

We present the complete results of our own imple-
mentation in Table 5, Table 6, Table 7, Table 8 and
Table 9. The multilingual results for heuristic static
strategies and MULTIDDS-S are obtained with the
hyperparameters provided by Wang et al. (2020b).

B Hyperparameters for Optimization

Multilingual NMT For MULTIUAT, the NMT
model is optimized with Adam (Kingma and Ba,
2015) with β1 = 0.9 and β2 = 0.98. The model
is optimized for 40 epochs with the learning rate
α = 5 × 10−4 and the batch size of 9600 tokens.
The learning rate increases linearly in the first 4K
steps to the peak and then declines proportionally
to the inverse square root of the number of steps.
ψψψ is updated for every 2K steps with the learning
rate 1× 10−4.

Multi-domain NMT The NMT model is opti-
mized with Adam (Kingma and Ba, 2015) with
β1 = 0.9 and β2 = 0.98. The model is optimized
for 20 epochs with the learning rate α = 7× 10−4

and the batch size of 32K tokens. The learning
rate increases linearly in the first 4K steps to the
peak and then declines proportionally to the in-
verse square root of the number of steps. ψψψ for
both MULTIDDS-S and MULTIUAT is updated
for every 1K steps with the learning rate 1× 10−4.
All the hyperparameters are identical among all the
approaches in multi-domain setup.
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µBLEU aze bel glg slk tur rus por ces

PROP. (τ = 1) 24.78 10.76 16.75 28.24 28.61 22.89 22.93 41.53 26.54
TEMP. (τ = 5) 23.57 9.49 15.58 26.81 27.86 21.09 21.77 40.10 25.88
UNI. (τ = ∞) 22.41 8.03 14.26 24.82 27.38 19.99 20.93 38.78 25.08
MULTIDDS-S 24.68 11.35 17.70 28.36 29.08 21.62 22.15 40.68 26.50

MULTIUAT
+ PRETP 26.30 12.67† 19.28† 29.31† 30.57† 24.10† 23.75† 42.85† 27.89†
+ EXPTP 26.36 12.61† 18.81† 28.97 30.98† 24.56† 23.92† 42.83† 28.22†
+ VARTP 26.39 12.84† 19.79† 29.43† 30.63† 24.12† 23.68† 42.88† 27.77†
+ COMEV 26.26 13.06† 19.40† 29.31† 30.47† 23.81† 23.57† 42.77† 27.71†
+ ENTSENT 26.34 12.38† 19.75† 29.53† 30.40† 24.16† 23.86† 42.91† 27.69†
+ ENTEOS 26.28 12.72† 19.22† 29.40† 30.43† 24.02† 23.77† 42.68† 28.03†

Table 5: The complete results for M2O-related setting in multilingual NMT. Best results are highlighted in bold.
† indicates the improvement for the corresponding MULTIUAT result against MULTIDDS-S result is statistically
significant at p < 0.05 given by Koehn (2004).

µBLEU bos mar hin mkd ell bul fra kor

PROP. (τ = 1) 26.28 21.87 9.92 21.51 31.12 35.21 36.02 37.75 16.83
TEMP. (τ = 5) 25.77 23.18 9.72 21.01 30.61 34.29 34.98 36.49 15.90
UNI. (τ = ∞) 24.97 21.48 9.27 20.25 30.08 33.70 34.11 35.54 15.30
MULTIDDS-S 26.67 24.64 10.45 22.09 32.31 35.13 35.50 37.06 16.16

MULTIUAT
+ PRETP 27.82 26.05† 11.08 23.72† 32.39 35.92† 37.30† 38.71† 17.37†
+ EXPTP 27.74 24.96 11.28 23.60† 32.84 35.92† 37.08† 38.77† 17.47†
+ VARTP 27.83 25.45† 10.84 23.42† 32.89 36.28† 37.38† 38.89† 17.47†
+ COMEV 27.75 25.25 11.04 23.54† 33.00† 35.97† 37.21† 38.53† 17.42†
+ ENTSENT 27.71 24.95 11.25 23.30† 32.84 36.02† 37.22† 38.70† 17.42†
+ ENTEOS 27.82 25.90† 11.18 23.06† 33.36† 35.90† 37.26† 38.50† 17.38†

Table 6: The complete results for M2O-diverse setting in multilingual NMT. Best results are highlighted in bold.
† indicates the improvement for the corresponding MULTIUAT result against MULTIDDS-S result is statistically
significant at p < 0.05 given by Koehn (2004).

µBLEU aze bel glg slk tur rus por ces

PROP. (τ = 1) 15.32 4.07 4.29 16.26 17.17 12.37 16.70 35.25 16.41
TEMP. (τ = 5) 16.44 6.66 11.12 21.56 18.51 10.67 14.57 32.24 16.18
UNI. (τ = ∞) 15.26 5.91 10.02 20.64 17.55 9.45 13.11 30.32 15.07
MULTIDDS-S 16.64 6.93 12.01 22.51 18.47 10.69 14.58 32.04 15.85

MULTIUAT
+ PRETP 18.36 6.37 11.23 22.60 21.56† 13.41† 17.15† 35.88† 18.66†
+ EXPTP 18.64 6.95 12.25 23.50† 21.51† 13.37† 17.34† 35.86† 18.30†
+ VARTP 18.58 6.80 12.08 23.69† 21.08† 13.64† 17.31† 35.95† 18.06†
+ COMEV 18.58 7.10 12.04 23.43† 21.20† 13.32† 17.17† 35.90† 18.49†
+ ENTSENT 18.63 6.80 12.39 23.52† 21.37† 13.54† 17.31† 35.86† 18.22†
+ ENTEOS 18.56 6.41 11.95 23.05 21.70† 13.39† 17.17† 36.09† 18.68†

Table 7: The complete results for O2M-related setting in multilingual NMT. Best results are highlighted in bold.
† indicates the improvement for the corresponding MULTIUAT result against MULTIDDS-S result is statistically
significant at p < 0.05 given by Koehn (2004).
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µBLEU bos mar hin mkd ell bul fra kor

PROP. (τ = 1) 16.79 6.48 3.58 10.67 15.09 26.73 29.05 33.32 9.39
TEMP. (τ = 5) 18.18 14.61 4.94 14.65 20.56 24.66 27.39 29.92 8.69
UNI. (τ = ∞) 17.25 14.62 4.88 13.99 20.31 23.61 25.05 27.48 8.03
MULTIDDS-S 18.04 15.43 4.85 14.36 20.80 24.63 26.77 29.93 7.57

MULTIUAT
+ PRETP 19.57 14.88 4.71 14.66 22.36† 27.21† 30.04† 33.89† 8.83†
+ EXPTP 19.59 15.11 4.86 14.64 22.06† 26.87† 30.22† 34.16† 8.81†
+ VARTP 19.62 15.35 4.67 14.52 22.13† 26.45† 30.43† 34.36† 9.01†
+ COMEV 19.67 14.68 4.72 14.73 23.12† 27.10† 30.23† 34.14† 8.62†
+ ENTSENT 19.68 14.51 4.69 14.74 22.70† 26.72† 30.52† 34.45† 9.09†
+ ENTEOS 19.76 14.59 4.83 14.63 23.08† 27.05† 30.64† 34.61† 8.68†

Table 8: The complete results for O2M-diverse setting in multilingual NMT. Best results are highlighted in bold.
† indicates the improvement for the corresponding MULTIUAT result against MULTIDDS-S result is statistically
significant at p < 0.05 given by Koehn (2004).

ID OOD

µBLEU WMT Tanzil EMEA KDE µBLEU QED TED

PROP. (τ = 1) 35.69 24.76 40.23 45.56 32.19 25.15 22.71 27.59
TEMP. (τ = 5) 36.92 21.63 38.49 51.53 36.03 23.46 21.13 25.78
UNI. (τ = ∞) 36.85 20.17 38.89 52.17 36.16 22.22 19.85 24.58
MULTIDDS-S 36.42 21.76 37.41 51.92 34.60 22.74 20.30 25.18

MULTIUAT
+ PRETP 37.50 22.21 39.61† 52.66 35.53† 23.78 21.20† 26.35†
+ EXPTP 37.29 22.22 39.37† 51.62† 35.94† 23.89 21.31† 26.46†
+ VARTP 35.48 23.08† 39.11† 46.91 32.80 23.75 21.21† 26.29†
+ COMBTP 37.25 21.73 38.51† 52.83† 35.91† 23.36 20.98† 25.74
+ ENTSENT 37.27 22.64† 38.64† 51.65 36.14† 23.86 21.29† 26.42†
+ ENTEOS 37.44 22.14 38.38† 52.81† 36.44† 23.80 21.34† 26.26†

Table 9: The complete results for multi-domain NMT. Best results are highlighted in bold. † indicates the improve-
ment for the corresponding MULTIUAT result against MULTIDDS-S result is statistically significant at p < 0.05
given by Koehn (2004).


