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Abstract

Natural Language Generation (NLG) evalua-
tion is a multifaceted task requiring assess-
ment of multiple desirable criteria, e.g., flu-
ency, coherency, coverage, relevance, ade-
quacy, overall quality, efc. Across existing
datasets for 6 NLG tasks, we observe that the
human evaluation scores on these multiple cri-
teria are often not correlated. For example,
there is a very low correlation between human
scores on fluency and data coverage for the
task of structured data to text generation. This
suggests that the current recipe of proposing
new automatic evaluation metrics for NLG by
showing that they correlate well with scores as-
signed by humans for a single criteria (over-
all quality) alone is inadequate. Indeed, our
extensive study involving 25 automatic evalu-
ation metrics across 6 different tasks and 18
different evaluation criteria shows that there is
no single metric which correlates well with hu-
man scores on all desirable criteria, for most
NLG tasks. Given this situation, we propose
CheckLists for better design and evaluation of
automatic metrics. We design templates which
target a specific criteria (e.g., coverage) and
perturb the output such that the quality gets
affected only along this specific criteria (e.g.,
the coverage drops). We show that existing
evaluation metrics are not robust against even
such simple perturbations and disagree with
scores assigned by humans to the perturbed
output. The proposed templates thus allow for
a fine-grained assessment of automatic evalua-
tion metrics exposing their limitations and will
facilitate better design, analysis and evaluation
of such metrics.!

1 Introduction

As the number of tasks and benchmarks for NLG
have increased (Gehrmann et al., 2021), the chal-
lenges in evaluating NLG systems have also con-
tinued to grow (Liu et al., 2016; Nema and Khapra,
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2018; Sai et al., 2019). One reliable way of evalu-
ating NLG systems is to collect human judgements.
However, this is a time consuming and expensive
process (Freitag et al., 2021; Deriu et al., 2019;
Howcroft et al., 2020). Hence, automatic evalua-
tion metrics such as BLEU (Papineni et al., 2002)
which are quicker to compute have become popular,
despite being less reliable (Callison-Burch et al.,
2006; Reiter, 2018).

The survey by Sai et al. (2020b) shows that more
than 35 automatic evaluation metrics have been
proposed for NLG since 2014, however, there is no
careful evaluation of the ability of such metrics to
assess the quality of the output of an NLG system
on multiple desired criteria. For example, con-
sider the task of dialog evaluation, where humans
are asked to score the output on multiple criteria
such as fluency, adequacy, coherence, informative-
ness, engagingness, consistency, etc. Contrast this
with automatic evaluation metrics such as BLEU,
BLEURT (Sellam et al., 2020), DEB (Sai et al.,
2020a), ADEM (Lowe et al., 2017), etc., which
assign a single score to the output. What does this
score indicate? More specifically, does a low DEB
score indicate that the output is not fluent or does it
indicate that the output is fluent but not coherent or
neither fluent nor coherent? Hence, a single overall
score assigned by automatic evaluation metrics is
not very informative in deciding which aspects of
model improvement should one focus on.

The question then is why do current automatic
evaluation metrics produce only a single overall
score? This is simply because of a conscious choice
made while designing automatic evaluation metrics.
In particular, current works only focus on evaluat-
ing whether the scores assigned by the proposed
metric correlate well with the overall quality scores
assigned by humans as opposed to all relevant cri-
teria. In this work, we make a case for shifting the
focus to all relevant criteria while evaluating such
metrics. To this end, we first do a systematic study
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Cameron is the director of Titanic
Kate is the director of Titanic (incorrect)

Original sentence:
Change names:

Table 1: Example of a perturbed output.

involving 6 NLG tasks, 18 different human eval-
uation criteria (fluency, coverage,coherence, con-
sistency, etc) and 25 automatic evaluation metrics.
We take existing English datasets containing human
judgements for various tasks and criteria and make
two important observations. First, for a given task,
human scores for different criteria often have a low
correlation, thereby suggesting that these criteria
cannot be clubbed together and evaluated using a
single score assigned by an automatic evaluation
metric. Second, none of the automatic evaluation
metrics have a high correlation with human scores
for any of the desired criteria for a given task.

The above results highlight a lacunae in the eval-
uation of automatic evaluation metrics wherein
their ability to assess the output on multiple cri-
teria is not evaluated. In this work, we propose a
flexible framework which allows a systematic eval-
uation of the capabilities of an automatic evaluation
metric. In particular, we propose CheckList-style
templates (Ribeiro et al., 2020) which evaluate the
robustness of the metrics to certain perturbations
targeting specific criteria. We illustrate this idea
with an example in Table 1. In row 2 of Table 1
a gold standard output is perturbed by changing
named entities, thereby affecting its factual correct-
ness which is important for data-to-text generation.
If an automatic evaluation metric indeed evaluates
factual correctness then its score should drop when
presented with such a perturbed output.

For the 6 NLG tasks mentioned earlier, we cre-
ate 34 such perturbation templates covering 18 dif-
ferent evaluation criteria. We then instantiate these
templates to create large-scale test cases. For every
perturbation, we also collect human judgements
to understand how much would a human change
his/her score when shown such a perturbed output.
We find that for several perturbations, the scores
assigned by automatic evaluation metrics do not
agree with the scores assigned by humans, thereby
indicating that current automatic evaluation metrics
are not robust to such perturbations (i.e., they do
not really evaluate the desired criteria). Overall, we
believe that the proposed templates provide a bet-
ter framework for a more fine-grained evaluation
of automatic evaluation metrics which goes much
beyond computing correlations with human scores.

2 Criteria used in Human Evaluations

The goal of this work is to carefully evaluate au-
tomatic evaluation metrics with a focus on their
ability to capture the diverse set of criteria used by
humans while assessing NLG systems. To begin
with, we describe the criteria that the output of an
NLG system must satisfy for the 6 NLG tasks that
we consider in this work, viz., machine translation
(MT), dialog generation (DG), automatic summari-
sation (AS), question generation(QG), data-to-text
generation (D2T) and image captioning (IC). Over
the years, different works have proposed different
criteria for evaluating NLG systems. In this work,
we consider a popular set of criteria for each task as
summarised in Sai et al. (2020b) and presented in
Table 2. Given the wide variety of criteria used for
each task, one obvious question to ask is whether
we really need so many criteria or is a single over-
all score enough.One could argue that it is obvi-
ous from the definitions of the criteria that each
of them is unique and a good score on one (say,
fluency) may not necessarily imply a good score
on another (say, coverage). However, we provide
a quantitative argument for this by computing the
correlations between human scores for different
criteria as described below.

2.1 Correlations between different criteria

We use existing publicly available datasets contain-
ing human judgement scores on multiple criteria
for each of the 6 tasks described earlier. For ex-
ample, (Castro Ferreira et al., 2020) contains 3025
samples of outputs generated by data-to-text gen-
eration systems that participated in the WebNLG
2020 challenge. For each of these samples, the or-
ganisers asked humans to rate the output based on
5 criteria, viz., fluency, data coverage, relevance,
correctness and text structure. We use these scores
to compute the correlations between the scores of
all the (g) pairs of criteria. We repeat this for the
other tasks using the datasets described in Table
32 3 Using these annotations, we compute the pair-
wise Kendall tau correlations between all criteria

“For AS, we could not find a dataset containing human
judgements for the set of criteria in Sai et al. (2020b). Hence,
we use the dataset provided by Fabbri et al. (2020).

*Note that all of the datasets mentioned in Table 3 were
collected using well established methods to ensure that the
annotations were of high quality. Some of these datasets do
not explicitly report the Inter Annotator Agreement (IAA)
scores whereas others (Fabbri et al., 2020; Castro Ferreira
et al., 2020; Nema and Khapra, 2018) report a good IAA score
ranging from 0.63-0.71.
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Task Criteria

Machine Translation

Adequacy: The generated translation should adequately represent all the information present in the reference.

Question Generation

Relevance: Is the question related to the source material they are based upon.
Answerability: Is the generated question answerable given the context.

within the limited text length.
Abstractive
Summarization and within the scope of the summary.

focal point.

Informativeness: The summary should convey the key points of the text.
Non-redundancy: The summary should not repeat any points, and ideally have maximal information coverage

Referential clarity: Any intra-sentence or cross-sentence references in the summary should be unambiguous
Focus: The summary needs to have a focus and all the sentences need to contain information related to this

Structure and Coherence: The summary should be a well-organized and coherent body of information

Dialogue Generation

Making sense: Does the bot say things that don’t make sense?

Engagingness: Is the dialogue agent enjoyable to talk to?

Interestingness: Did you find the bot interesting to talk to?

Inquisitivenes: Does the bot ask a good amount of questions?

Listening: Does the bot pay attention to what you say?

Avoiding Repetition: Does the bot repeat itself? (either within or across utterances)
Humanness: Is the conversation with a person or a bot?

Image Captioning

Relevance: The caption should be specific and related to the image.
Thoroughness: The caption should adequately describe the image.

Data to Text Generation

Data Coverage: Does the text include descriptions of all predicates presented in the data?

Relevance: Does the text describe only such predicates which are found in the data?

Correctness: When describing predicates which are found in the data, does the text mention correct the objects
and adequately introduces the subject for this specific predicate?

Text Structure: Is the text grammatical, well-structured, written in acceptable English?

All above tasks

Fluency: How fluent is the generated text?

Table 2: Criteria used for human judgements to evaluate NLG systems for each of the 6 tasks

Task ‘ Data collected/ released by
QG Nema and Khapra (2018)

AS Fabbri et al. (2020)

D2T | Castro Ferreira et al. (2020)
DG See et al. (2019)

MT | Callison-Burch et al. (2007)

1C Aditya et al. (2015) (Coco subset)

‘ # Samples (annotators)
1000 (in-house)

1600 (expert, crowdsource)
3025 (crowdsourced)

3316 (crowdsourced)
10,754 (crowdsourced)
2007 (crowdsourced)

Table 3: Datasets with human scores on many criteria.

for each task as seen in Figure 1. (Refer to ap-
pendix A for pearson correlations of the criteria.)
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Figure 1: Correlations between criteria for different
tasks. The darker the shade of the cell, the lower
is the correlation.

We see that, across tasks, for most pairs of cri-

teria, the correlation is moderate (between 0.3 and
0.5) to low (< 0.3). The highest correlation of 0.76
is observed between interestingness and enjoyabil-
ity for dialogue generation. However other criteria
such as avoiding repetition, inquisitiveness, and
making sense have low correlations with most of
the other criteria. We make similar observations
for the correlations between the criteria for other
tasks. Even for IC the correlation between the 2
criteria of thoroughness and correctness is 0.41.
For MT, the commonly used criteria of fluency and
adequacy were found to be highly correlated with
Pearson correlation co-efficient of 0.69 (Banchs
et al., 2015). This justifies why WMT evaluations
now ask humans to give to only a single score in-
dicating overall quality. However, given the low
to moderate correlations between criteria for other
tasks, a similar strategy is not prudent for these
tasks.
Takeaway: For tasks whose linguistic criteria
show a low or at-best moderate correlation with
each other, a single score assigned by a automatic
metric is inadequate for a comprehensive assess-
ment.

3 Perturbation Checklists

So far we have established that if automatic evalua-
tion metrics are to be used as a substitute for human
evaluations as a whole, then they should be capable
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Task  Criteria Perturbation Unmodified sentence Perturbed sentence
Jumbling word order We play badminton every evening. We badminton every evening play.
Fluency Subject-verb disagreement He doesn’t know how to bake. He don’t know how to bake.
Spelling errors Make the most of every opportunity presented to you. Make the most of evry opportunity presented to you.
::11]“ Replace with synonyms The mangoes are delicious . The mangoes are fasty .
Invariance Contractions We are going to embark on an adventure. We’re going to embark on an adventure.
Numerals to words The flight will be delayed by 2 hours. The flight will be delayed by two hours.
Dropping out words or phrases 1 was being followed. 1 followed.
MT Adequacy Add extra text This book is so inspiring. This book is so inspiring, I forgot .
Negation/antonyms It will rain on Monday. It will not rain on Monday.
Informativeness U§5_ hyponyx_ns to create The girl my brother Andy met through MySpace turned The girl my friend Andy met through MySpace turned out
misinformation out to be completely made up . to be completely made up.

AS Flow / Reorder sentences The pandemic was spreading uncontrollably. Vaccines are Vaccines are !Jeing develo?ed and tested rapidly.
coherence being developed and tested rapidly. The pandemic was spreading uncontrollably.
Rete_:remlal RS TS by The plandemlc was spr‘eadlng uncontrollably. Vaccines It was sprea(llmg uncontrollably. They are being
clarity are being developed rapidly. developed rapidly.

- Drop question word When was he born ? ‘Was he born?

Answerability Change question to assertive

QG statemgenqt Who is the director of Titanic? The director of Titanic is James Cameron.
' Mask a few words and predict How could Tesla run the experiments ? How could Tesla run to the beach ?
R
clevance Perturb nouns Why did Mary go to the school ? Why did Raj go to the market ?
. Negate a previous statement by ~ Bot: I enjoy having your daughter in my class. User: I'm 5 . . .

Making same speaker glad to hear that. I don’t enjoy having your daughter in my class.

sense Add extra non-sensible text Do you know where Dr. XYZ lives? Yes, my father is my grandmother’s father

DG  Avoid Repeat previous utterances Do you know Dr.XYZ? Do you know where Dr. XYZ lives?
repetition -~ o 9

Repeat phrases I like ice creams I like ice creams, ice creams
Listening Replace with "Can you repeat?” I need to book a taxi I'm sorry, can you repeat?
Relevance Map random responses Tam new to coding . Tam scared of snakes .

Change gender Two girls are playing with a doll Two boys are playing with a doll
C t .

1 orrectness Change attributes A small boy playing with a red ball A tall boy playing with a green ball

Drop objects/noun A small boy playing with ared ball A small playing with a red
Thoroughness Repeat (append) object A lady riding a horse. A lady riding a horse and a lady .
Correctness Use hyponyms Beethoven was a German musician Beethoven was a German architect

? Change numbers The cricketer was born in 1990 . The cricketer was born in 1950 .

por Data Drop phrases A small boy playing with a red ball A small boy playing with a
Coverage Repeat phrases Beethoven was a German musician Beethoven was a German musician and German musician .
Relevance Perturb names Phillips was a child prodigy. James was a child prodigy.

Table 4: Perturbation templates targeting various criteria with examples. The blue highlights indicate the portions
of the original sentence affected by the perturbation template. The red highlights indicate the changes in the

modified sentence.

of evaluating the output on multiple desired criteria.
However, the current recipe of proposing and eval-
uating evaluation metrics does not take this into
account. To enable such a systematic evaluation of
automatic evaluation metrics, we propose pertur-
bation checklists. Similar to the original Checklist
paper (Ribeiro et al., 2020), the idea is to evaluate
the performance of the evaluation metric in detect-
ing criteria-specific changes in the output.

We design such perturbation templates for each
relevant criteria for each of the 6 tasks as shown in
Table 4. For example, consider the criteria fluency
which is relevant for all the tasks. Now consider a
perturbation template for this criteria which simply
drops the stop words in the output. Such a pertur-
bation would definitely affect the fluency of the
output. If an automatic evaluation metric is capable
of assessing fluency, then this drop in the fluency
of the output should get reflected in the score as-
signed by the metric. More formally, let p be the
original output and p’ be the output obtained by ap-
plying the perturbation template ¢ for the criteria c.
Further, let f(p) be the score assigned by a given

evaluation metric e to the output p, normalised to
be in the range [0, 1]. If the metric e is capable
of assessing fluency then we would expect f.(p’)
to be lower than f.(p). Now, further let h(p) and
h(pL) be the scores (also normalised to have range
[0, 1]) assigned to the original and perturbed out-
puts by human annotators. We then define a metric
st (e) which captures the ability of the metric e to

(&
detect the perturbation ¢ for the desired criteria c.

se(e) = (h(pe) — h(p)) — (fe(be) — fe(p)) (D)

The score st (e) as defined above thus captures the

deviation between a human’s perception about the
drop in the quality and the metric e’s perception
about the drop in the quality.

We design a total of 34 such perturbation tem-
plates across all the criteria and all the tasks. Each
template is manually created by us and targets a spe-
cific criteria. We also present invariant templates
that do not affect any criteria although they mod-
ify the sentences. For perturbations resulting from
such invariant templates the score of the metric
should not drop. The invariant and fluency-based
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(Lin, 2004) Dumais, 1997) (Zhang (Lee et al.,
TER (Snover Vector Extrema et al., 2020) 2020)
et al., 2006) (Forgues and
CIDEr Pineau, 2014)
(Vedantam SMS (Clark
et al., 2015) et al., 2019)
‘WMDo (Chow
et al., 2019)

Figure 2: Metrics analysed in this study

templates are common for all the tasks considered
in this work. Table 4 shows sample perturbations
generated by each of the templates. (Please refer
to appendix C for a more comprehensive list of
the proposed perturbations with examples for each
task). These perturbed sentences are generated au-
tomatically using the checklist framework (Ribeiro
et al., 2020). This framework contains modules
for performing simple string manipulations such
as dropping stop words, replacing/dropping named
entities, masking words or replacing them by other
words/phrases. We also extend the framework
with additional modules for jumbling words, chang-
ing numbers to words, subject-verb disagreement,
changing gender, reordering sentences, adding spu-
rious text, and adding redundancy at the word/
phrase /sentence-level.

4 Experimental setup

We first do a coarse grained evaluation of several
metrics by computing their correlations with the
scores assigned by humans for multiple criteria.
Note that unlike existing studies which study such
correlations for a small number of metrics (typi-
cally, n-gram based metrics) for a specific task (say,
MT) and a single criteria (typically, overall qual-
ity), we do a more comprehensive study involving
a combination of 6 tasks, 25 metrics and multiple
criteria. Apart from this coarse grained evaluation
which simply looks at correlations, we also do a
more fine-grained evaluation of the robustness of
these metrics to different criteria-specific perturba-
tions as summarised in Table 4. This fine-grained
evaluation augments the coarse-grained evaluation
and helps us understand the evaluation capabilities
of these metrics. Below, we describe the datasets
and evaluation metrics used in our work.

Datasets. For the coarse-grained evaluation, we
use the datasets containing human judgements as
described earlier in Table 3 in Section 2. For the
fine-grained evaluation, we use datasets containing
multiple ground truth references which can then
be perturbed using our templates. For M T, we use
the expanded version of newstest2017 Chinese to
English dataset (Hassan et al., 2018) which con-
tains two references for each sentence. For QG,
we use the SQuAD dataset (Rajpurkar et al., 2016)
which contains multiple questions for each pas-
sage. For AS, we use the curated personal narrative
corpus (Ouyang et al., 2017). For DG, we use
DailyDialog++ (Sai et al., 2020a) which contains
two-speaker conversations on generic topics. For
IC, we use the COCO component of the Composite
dataset containing 5 reference captions for each
image (Aditya et al., 2015). Lastly, for D2T, we
use the Triples-to-Text data of the WebNLG 2020
challenge dataset (Castro Ferreira et al., 2020).

Applying perturbations. We take the reference
sentences from the above task-specific datasets and
apply perturbations using the Checklist framework
described earlier in section 3. We first preprocess
the sentences by performing tokenization, part-of-
speech tagging, named entity recognition, etc. The
targeted part of the sentence is then modified ei-
ther by leveraging simple string manipulation func-
tions or by masking and generating the words/
phrases using the predictions by RoOBERTa (Liu
et al., 2019). We provide more implementation
details in appendix B.

Automatic Evaluation Metrics. We study a to-
tal of 25 evaluation metrics belonging to different
classes as shown in Figure 2. For BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), ROUGE-L (Lin, 2004), CIDEr (Vedantam
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(e) Dialogue Generation

Figure 3: Correlations of metrics with different criteria (Note: For MT, we refer to the results of the WMT 2020
shared metrics task (Mathur et al., 2020b). For DG, we only present the reference-less metrics since the dataset
does not contain references to compute the task-agnostic metric scores.) (Refer appendix D for full plots)

etal., 2015), Embedding Averaging (EAvg) (Lan-
dauer and Dumais, 1997), Greedy Matching (GM)
(Rus and Lintean, 2012), and Vector Extrema (VE)
(Forgues and Pineau, 2014), we use the imple-
mentation provided by Sharma et al. (2017). For
chrF++ (Popovic, 2017), TER (Snover et al., 20006),
BERTScore (Zhang et al., 2020), and BLEURT
(Sellam et al., 2020) we use the repository of Cas-
tro Ferreira et al. (2020). For SMS (Clark et al.,
2019), WMDo (Chow et al., 2019), and Mover-
Score (Zhao et al., 2019), we use the implementa-
tion provided by Fabbri et al. (2020). For all the
task-specific metrics in Figure 2, we use the official
codes from the respective papers.

Collecting human judgements. For eq 1, we need
human judgement scores. We collect these with the
help of 15 annotators who were computer science
graduates with a background in the field of Natural
Language Processing (NLP) and are also proficient
in English language. For each task and criteria,
the annotators were provided with the correspond-
ing perturbation templates and asked to provide a
penalty score indicating by how much a perturba-
tion would alter the meaning/essence of a sentence
on a scale of 0-10. A score of 0 indicates that there
is no difference between the original and modi-
fied sentences upon application of the perturbation
whereas a score of 10 indicates that the perturbation
drastically alters sentences. These scores are nor-

malised to be in the range [0, 1]. The term h(p.) in
eq 1 for perturbation ¢ is computed by subtracting
the mean of all normalised human penalty scores
from 1.

The standard deviation of the normalised anno-
tator scores for each perturbation lies between 0.03
to 0.2. We also measure the inter annotator agree-
ment by splitting annotators randomly into 2 groups
and computing the kendall tau correlation score be-
tween the average scores of the 2 groups following
Liu et al. (2016). This process was run 5 times
with different seeds and the final inter-annotator
correlation score was found to be 0.79.

5 Results and Discussion

We now discuss the results of our experiments.

5.1 Insights from coarse-grained evaluation

Figure 3 shows the correlations of different auto-
matic evaluation metrics with multiple evaluation
criteria, across 6 different NLG tasks. Our main
observations from the figure are:

Mostly poor correlations of metrics across cri-
teria. We observed that across all tasks and all
criteria, most of the metrics have poor correlations.
In particular, out of the 271 correlation values re-
ported in Figure 3, 228 are poor (<0.3), 35 are
moderate (between 0.3 and 0.5) and only 2 are
high (>0.5). Surprisingly even some very recently
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Remove punctuation- 0.11 - 0.39 -0.03 -0.02 0.02 0.14 -0.02 0.02
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(f) Image Captioning

Figure 4: Heatmap of deviation of metric scores from human averages. The darker the cell, the more the absolute

deviation from human scores.

proposed metrics such as DEB (Sai et al., 2020a),
BLANC (Vasilyev et al., 2020) and MaUde (Sinha
etal., 2020) do not correlate well with human judge-
ments on other criteria. This is despite the fact that
these are task-specific metrics which use the mod-
ern machinery of pre-trained BERT-based models
and are fine-tuned on human judgements for over-
all quality. This vindicates our stand that simply
tuning for overall quality does not lead to good

correlations with other criteria. We do observe a
few decently correlated metrics for some of the
tasks along a few criteria. Specifically, the moder-
ate correlations are found (i) in D2T for BLEURT
along the dimensions of fluency, correctness and
text structure, (ii) in IC for all of the task-specific
metrics, majority of the embedding-based metrics
and for METEOR, (iii) in QG for most metrics (ex-
cept SMS) along fluency, for BERTScore, Mover-
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score, SMS and BLEURT along answerability, as
well as along completeness, on which we find some
of the highest correlations.

Pre-training and/or training often helps. While
almost all the metrics have poor correlations with
different criteria across tasks, we observe that the
ones which use a pre-trained component such as
static or contextualised word/sentence embeddings
and/or use task-specific training data perform better.
For example, BLEURT which uses a pre-trained
BERT and is fine-tuned using human judgements
for MT, is among the top performing metrics across
all the tasks. These findings are also consistent
with those reported in the WMT20 shared task on
evaluation metrics for MT (Mathur et al., 2020b).
Task-agnostic metrics versus task-specific met-
rics. For the tasks of QG, AS, IC and D2T we
find that task-agnostic metrics such as BERTScore,
Moverscore and BLEURT are consistently among
the top performing metrics (i.e., their correlation
scores are either the best or close to the best scores
for a given task and criteria) along with the task-
specific metrics. This is interesting as these task-
agnostic metrics were not fine-tuned on any task
specific human judgements and were originally pro-
posed for a different task (MT). Among the task-
specific metrics, SUPERT for AS has a relatively
better correlation with consistency than all other
metrics. Overall, there seems to be scope for more
work/improvements on task-specific metrics to cap-
ture the criteria peculiar to each task.

5.2 Insights from fine-grained evaluation

We now complement the above analysis with a
more fine-grained analysis using perturbation tem-
plates. To do so, we use the perturbation templates
described in Section 3 and plot the deviation be-
tween metric scores and human scores using the
formula in Equation 1. These results are presented
in Figure 4 and summarised below.

Correlations do not reveal everything. In the pre-
vious section we observed that BERT-based metrics
such as BERTScore, BLEURT and MoverScore are
among the top performing metrics across tasks and
criteria. However, our anslysis with perturbation
templates reveals that even these metrics are not
robust to very simple perturbations. For example,
for the task of MT consider the perturbations of
adding negations, changing names, changing nu-
meric values or replacing by antonyms in the out-
put which can significantly alter the meaning of

the sentence and thereby affect adequacy. How-
ever, BERTScore, BLEURT and MoverScore are
not able to perceive this drop in quality and have a
substantial deviation from human scores. We make
similar observations across tasks that such metrics
are not able to detect these simple perturbations.
Task-specific nuances are not captured. Our
analysis also shows that existing metrics are not
capable of addressing well known task specific
grievances. For example, for the task of DG, it
is known that many NLG systems generate generic
responses which leads to poor engagement with
the users. However, none of the metrics are
sensitive to perturbations producing ‘generic re-
sponses’ such as ok, thanks or back-off responses
such as I‘m sorry, can you repeat?* Similarly,
for the task of QG, Nema and Khapra (2018)
show that the answerability of a question is af-
fected if we drop/replace question words or change
named entities in the question. However, we
find that most metrics (including the task specific
QBLEU4/QROUGE) are not sensitive to such per-
turbations with very high deviation from human
scores. On similar lines, VILBERTScore which
is a state of the art evaluation metric for IC is not
sensitive to perturbations in gender, order of ob-
jects or attributes used for describing objects. This
is of concern as many IC systems are known to
produce generic captions containing genders, at-
tributes and objects which are most prevalent in
the training data. Similarly, for the task of D2T,
where coverage and factual correctness are impor-
tant we observe that most metrics are unable to
detect perturbations which add extra/random text
to the output or drop named entities (which often
contain the most important information). Lastly,
for AS it is important that an evaluation metric
should penalise summaries which are not coher-
ent or contain redundant sentences or do not have
referential clarity. However, we observe that most
metrics are not sensitive to perturbations which re-
order the sentences or repeat sentences/phrases or
replace nouns with pronouns (affecting referential
clarity).

Different metrics have different skills. While no
single metric is capable of detecting all types of
perturbations, we observe that some metrics are

*A model that frequently produces generic responses is
undesirable. Hence, the expert human annotators assigned a
high penalty to this perturbation. Most of the task-specific met-
rics do use the context as an input whereas, the task-agnostic
metrics do not.
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more robust to certain perturbations. BLEURT and
Moverscore are robust to jumbling of words, but
BERTScore is not, revealing their differences in
detecting fluency. Moverscore, BERTScore and the
embedding-based metrics like Greedy Matching
and Embedding Average are quite robust to simple
transformations of converting numbers to corre-
sponding words, which is an important criteria for
the task of D2T, while BLEURT is relatively less
robust to it. Similarly, while BERTScore performs
poorly for many perturbations, it is able to respect
alternative references, i.e., similar to humans, it
does not drop its score when presented with alter-
native correct references from the dataset (last row
in Figure 4a to 4f). An interesting observation from
the IC task is that SOTA metrics like SPICE and
ViLBERTScore show a complementary behaviour
on our set of perturbation criteria (third to last and
last column in Figure 4f). This opens up interesting
avenues for future research where different auto-
matic metrics could be combined to take advantage
of their relative strengths.

6 Related Work

Some of the related work, particularly the relevant
datasets, human evaluation criteria, and automatic
metrics were already discussed earlier and hence
not covered again here. We refer the readers to
two recent surveys (Sai et al., 2020b; Celikyilmaz
et al., 2020) for a detailed overview of automatic
evaluation metrics as well as related work on criti-
cising the use of automatic evaluation metrics. We
mention a few such important works here. BLEU
is one of the most widely analysed metric with
several studies showing that it does not correlate
well with human judgements for machine trans-
lation (Callison-Burch et al., 2006). This issue
of poor correlations of metrics with human judge-
ments has been reported on not just BLEU, but
also on various other metrics, across several NLG
tasks including Question Generation (Nema and
Khapra, 2018), Data-to-Text generation (Dhingra
et al., 2019), Dialogue generation (Liu et al., 2016),
and Summarisation (Kryscinski et al., 2019). Apart
from poor correlations, Kryscinski et al. (2019) crit-
icize the automatic metrics for abstractive summa-
rization since they don’t check for factual inconsis-
tencies in the summaries. Similarly Wiseman et al.
(2017) discuss the lack of a reliable measurement
of faithfulness in the context of Data-to-Text Gen-
eration. In case of dialogue, several n-gram-based

and embedding-based metrics have been shown to
fall short in capturing the diversity of the valid re-
sponses (Liu et al., 2016; Sai et al., 2020a). The
alternative of trained metrics, such as ADEM have
been shown to be susceptible to adversarial attacks
(Sai et al., 2019).

Similar to the main message of our work, some
recent works have also called for a more robust eval-
uation of automatic evaluation metrics (Choshen
and Abend, 2018; Mathur et al., 2020a). Etha-
yarajh and Jurafsky (2020) also critically examine
the current approaches towards NLP leaderboards
and point towards having multiple metrics along
different dimensions such as fairness, efficiency,
robustness, etc.

7 Conclusion

We conduct a large-scale study involving 6 tasks,
25 automatic evaluation metrics and 18 human eval-
uation criteria and observe that (i) different criteria
such as fluency, coverage, etc are often not corre-
lated and (ii) existing metrics have a low correla-
tion with most criteria across different tasks. Based
on these observations, we suggest an alternative
framework for evaluating evaluation metrics which
goes beyond computing correlations with the hu-
man scores for overall quality. More specifically,
we propose perturbation templates which allow a
more fine-grained evaluation of such metrics and
help in understanding their strengths and more im-
portantly their limitations. We hope that future
work on designing evaluation metrics will use our
perturbation checklist for evaluating the effective-
ness of the proposed metric in assessing different
relevant criteria.
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A Criteria correlations

The pearson correlations among the criteria are pre-
sented in Figure 6. Most of the correlation ranges
are similar for pearson correlation and kendall tau
correlation, except for D2T task. We refer the stud-
ies on such correlations (Mathur et al., 2020a), dis-
cussing various points such as the influence of out-
liers and noisy points on the correlations. Addition-
ally, we observe that the expertise of the annotators
also influences the criteria-criteria correlations. In
particular, we were able to study this in case of AS
using the data released by Fabbri et al. (2020) con-
taining both expert and crowdsourced annotations.
From Figure 5, we observe that the scores by ex-
pert annotators have far lesser correlations amidst
various criteria than the crowdsourced annotations.

Coherence

Consistency

(a) Expert annotations

Coherence

Consistency

(b) Crowdsourced annotations

Figure 5: Expert v/s Crowsourced annotations

B Detailed examples to illustrate the
implementation of the perturbation
templates

Our perturbation templates mainly draw from the
official github repository> of the checklist paper
and are also publicly available®. The implementa-
tion involves preprocessing with the help of tok-
enization, POS tagging, NER recognition, etc. Syn-
onyms, antonyms, etc., are obtained with the help
of WordNet framework. Additionally, the masked
language model of RoBERTa is used to mask and
predict replacements for the targeted words. For
example, the application of the template for ‘drop-
ping stop words’ involves the tokenization of the
sentence using the NLTK word tokenizer as the
first step. The list of tokens is compared with the
set of stopwords provided by NLTK to filter out the
stop words from the list of tokens. The modified
sentence is then reconstructed using the string join
function by iterating over the tokens in the modified
list. Similarly, for the template of ‘changing the at-

>https://github.com/marcotcr/checklist
®https://github.com/iitmnlp/EvalEval
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Figure 6: Correlations between criteria for 6 different tasks (MT, DG, AS, QG, D2T and IC)

tributes’ in case of image captioning, the sentence
is first tokenized, then the adjectives are identified
using part-of-speech tagging (again a functional-
ity provided by NLTK). The list of ‘related words’
(i.e., hyponyms of hypernyms or ‘sibling words”)
are obtained using WordNet framework. Unless
the list returns empty, one of the entries in the list
is used to replace the original adjective. In order
to ‘change question to an assertive statement’, the
question words (such as who, what, why, when,
etc) are replaced with a ‘mask’ token and the ‘7’
character at the end is replaced with .’ using string
replace function. This modified sentence is then
fed to ROBERTa model which generates different
predictions to be used in place of the ‘mask’ token.
One of the suggested words is used to form the
modified assertive sentence. In case of perturba-
tions involving dropping words, we additionally
decide if we’re dropping stop words, adjectives,
question words, etc in the particular perturbation
and estimate the extent of effect it’ll have on each
criteria. The perturbations of adding text, appends
random words / phrases / sentences to a given text
to account for not just the cases where there is
missing information, but also cases where there is
spurious wrong information, even if it accompanies

/ follows the correct version. The complete imple-
mentations / details of our perturbation templates
are hosted publicly’.

Note that some of the perturbations cannot be
applied to every sentence in the dataset. For exam-
ple, the template of “changing names” cannot be
applied if there are no named entities in a particular
sentence. We hence shortlist only the successfully
modified samples from the dataset for analysing
the metrics’ performance on each perturbation.

C Perturbation Templates for various
criteria

Table 5 contains the comprehensive list of pertur-
bation templates used in our work.

D Correlations of Metrics with various
Criteria (complete plots)

Figure 7 is a more comprehensive version of Figure
3. It shows the correlations of the complete set
of metrics considered in this study with various
criteria across different tasks.

"https://github.com/iitmnlp/EvalEval
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Task Criteria Perturbation Unmodified sentence Perturbed sentence
Misplaced/missing Could you let me know if I can meet him now or  Could you let me know , if I can meet him now
punctuation later ? or later .
Jumbling word order We play badminton every evening. ‘We badminton every evening play.
Subject-verb
All u Ject-ver He doesn’t know how to bake. He don’t know how to bake.
tasks Fluency disagreement
Dropping words (such as . o . R .
prepositions/articles, etc) The bank is willing to approve the loan. Bank willing to approve the loan.
STy s Make the most of every opportunity presented to  Make the most of evry opportunity presented to
you. you.
Dropping out words or . N
I was being followed. I followed.
phrases
; Addi t . . L . . L
MT Adequacy i ne e'x rawrong This book is so inspiring. This book is so inspiring, I forgot .
information
Negation / antonyms It will rain on Monday. It will not rain on Monday.
Repeat phrases My relatives are in town. My relatives are in town, my relatives .
Dropping words Here is the no parking sign. Here is the sign.
I-nforma— Negation and antonyms This book is so inspiring . This book is so uninspiring .
t
fveness Use hyponyms to create The girl my brother Andy met through The girl my friend Andy met through MySpace
misinformation MySpace turned out to be completely made up .  turned out to be completely made up.
Flow / The pandemic was spreading uncontrollably. Vaccines are being developed and tested rapidly.
AS Reorder sentences X . . . .
coherence Vaccines are being developed and tested rapidly. ~ The pandemic was spreading uncontrollably.
Non- . . . . L
Redundancy Repeat sentences My relatives are in town. My relatives are in town. My relatives in town.
Referential ~ Replace nouns by The pandemic was spreading uncontrollably. It was spreading uncontrollably. They are
clarity pronouns Vaccines are being developed rapidly. being developed rapidly.
Change question word When was he born? What was he born?
Drop question word When was he born ? Was he born?
Answera- Change question to
bility BE ques Who is the director of Titanic? The director of Titanic is James Cameron.
QG assertive statement
Drop NLTK stop words ‘Who was nota world leader Who world leader?
Mask a fi ds and
ask a few words an How could Tesla run the experiments ? How could Tesla run to the beach ?
Relevance predict
Perturb named entities, . . .
Why did Mary go to the school ? Why did Raj go to the market ?
nouns, verbs
Negate a previous statement by ~ Bot: I enjoy having your daughter in my class. s . . .
Making same speaker User: I’'m glad to hear that. I'don’t enjoy having your daughter in my class.
sense 23? extra non-sensible Do you know where Dr. XYZ lives? Yes, my father is my grandmother’s father
Repeat i
DG Avoid epffa prj:v1ous Do you know Dr.XYZ? Do you know where Dr. XYZ lives?
repetition utterances
Repeat phrases I like ice creams I like ice creams, ice creams
Listening Rep lac?, with "Can you I need to book a taxi I’'m sorry, can you repeat?
repeat?
Relevance Map random responses Tam new to coding . Tam scared of snakes .
Stt}ig%: the order of The man is standing in front of a tree The tree is standing in front of man
Correctness Change gender Two girls are playing with a doll Two boys are playing with a doll
IC Change attributes A small boy playing with a red ball A tall boy playing with a green ball
Drop objects/noun A small boy playing with ared ball A small playing with a red
Thoroughness . L L
Repeat (append) object A lady riding a horse. A lady riding a horse and a lady .
Use hyponyms Beethoven was a German musician Beethoven was a German architect
Correctness ~ Change numbers The cricketer was born in 1990 . The cricketer was born in 1950 .
Negation / antonyms The author of Harry Potter is J.K Rowling The author of Harry Potter is not J.K Rowling.
D2T "paa Drop phrases A small boy playing with a red ball A small boy playing with a
Coverage .. Beethoven was a German musician
Repeat phrases Beethoven was a German musician ..
and German musician .
Random text Beethoven was a German musician The cricketer was born in 1990.
Relevance Perturb names Phillips was a child prodigy. James was a child prodigy.
Replace with synonyms The mangoes are delicious . The mangoes are tasty .
All . Contractions We are going to embark on an adventure. We’re going to embark on an adventure.
Invariance . . .
tasks Expansions There weren’t any clear winners of the contest ~ There were not any clear winners of the contest.

Numerals to words

Aron Ralston who was trapped for 127 hours.

Aron Ralston who was trapped for
one hundred twenty seven hours.

Table 5: Perturbation templates targeting various criteria with examples. The blue highlights indicate the portions
of the original sentence affected by the perturbation template. The red highlights indicate the changes in the

modified sentence.
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