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Abstract

Capturing word meaning in context and dis-
tinguishing between correspondences and vari-
ations across languages is key to building
successful multilingual and cross-lingual text
representation models. However, existing
multilingual evaluation datasets that evalu-
ate lexical semantics “in-context” have vari-
ous limitations. In particular, 1) their lan-
guage coverage is restricted to high-resource
languages and skewed in favor of only a
few language families and areas, 2) a design
that makes the task solvable via superficial
cues, which results in artificially inflated (and
sometimes super-human) performances of pre-
trained encoders, and 3) no support for cross-
lingual evaluation. In order to address these
gaps, we present AM2ICO (Adversarial and
Multilingual Meaning in Context), a wide-
coverage cross-lingual and multilingual evalu-
ation set; it aims to faithfully assess the ability
of state-of-the-art (SotA) representation mod-
els to understand the identity of word meaning
in cross-lingual contexts for 14 language pairs.
We conduct a series of experiments in a wide
range of setups and demonstrate the challeng-
ing nature of AM2ICO. The results reveal that
current SotA pretrained encoders substantially
lag behind human performance, and the largest
gaps are observed for low-resource languages
and languages dissimilar to English.

1 Introduction

Pretrained language models (LMs) such as BERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020) offer a natural way to distinguish differ-
ent word meanings in context without performing
explicit sense disambiguation. This property of
“meaning contextualization” is typically evaluated
either via standard entity linking (Rao et al., 2013;
Shen et al., 2014) and Word Sense Disambiguation
(WSD) tasks (Navigli, 2009; Moro et al., 2014;
Raganato et al., 2017) or, recently, via the Word-in-
Context (WiC) evaluation paradigm (Pilehvar and

Camacho-Collados, 2019; Raganato et al., 2020).
Although monolingual evaluation in English is

still predominant, a need has been recognized to
construct similar resources for other languages
to support cross-lingual evaluation and model di-
agnostics. This includes multilingual and cross-
lingual WSD benchmarks (Navigli and Ponzetto,
2012; Navigli et al., 2013; Scarlini et al., 2020;
Barba et al., 2020, inter alia), cross-lingual entity
linking (Tsai and Roth, 2016; Raiman and Raiman,
2018; Upadhyay et al., 2018) and, most recently,
multilingual WiC (termed XL-WiC) spanning 12
languages (Raganato et al., 2020).

This most recent WiC evaluation approach is
particularly attractive as 1) it bypasses the depen-
dence on modeling predefined ontologies (entity
linking) and explicit sense inventories (WSD), and
2) it is framed as a simple binary classification task:
for a target word w appearing in two different con-
texts c1 and c2, the system must decide whether w
conveys the same meaning in both contexts, or not.

However, the current WiC evaluation still allows
ample room for improvement: 1) current language
coverage is limited, and biased towards resource-
rich Indo-European languages; 2) coverage of lex-
ical concepts, due to their paucity in language-
specific WordNets, is also limited; 3) XL-WiC is
a monolingual resource available in different lan-
guages, i.e., it does not support cross-lingual assess-
ments. Further, 4) the current WiC datasets offer
low human upper bounds and inflated (even super-
human) performance for some languages.1 This is
due to superficial cues where 5) many examples in
the current WiC datasets can be resolved relying
either on the target word alone without any context
or on the context alone, which eludes evaluation
honing in on the interplay between target words
and their corresponding contexts.

In order to address these limitations and provide

1In turn, this might give a false impression that some lan-
guages in the task are ’solved’ by the current pretrained LMs.
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a more comprehensive evaluation framework, we
present AM2ICO (Adversarial and Multilingual
Meaning in Context), a novel multilingual and
cross-lingual WiC task and resource. It covers a ty-
pologically diverse set of 15 languages, see Table 2.
Based on Wikipedia in lieu of WordNet, AM2ICO

covers a wider set of ambiguous words which espe-
cially complements WiC on the long tail of entity
names and adds challenges in generalization for a
larger vocabulary than a restricted set of common
words. More importantly, the use of Wikipedia
enables WiC evaluation on low-resource languages
(e.g., Basque, Georgian, Bengali, Kazakh). We
also improve the WiC resource design; it now 1) in-
cludes adversarial examples and careful data extrac-
tion procedures to prevent the models from back-
ing off to superficial clues, 2) results in a more
challenging benchmark with truer and much wider
gaps between current SotA pretrained encoders and
human capability (see §2.3), and 3) enables cross-
lingual evaluation and analysis.

The ample and diverse data in AM2ICO enables
a wide spectrum of experiments and analyses in
different scenarios. We evaluate SotA pretrained
encoders, multilingual BERT and XLM-R, both
off-the-shelf using a metric-based approach (i.e.,
without any task adaptation) and after task-specific
fine-tuning. With fine-tuned models, we investigate
zero-shot cross-lingual transfer as well as transfer
from multiple source languages. In general, our re-
sults across these diverse scenarios firmly indicate a
large gap between human and system performance
across the board, which is even more prominent
when dealing with resource-poor languages and
languages dissimilar to English, holding promise
to guide modeling improvements in the future.

In the hope that AM2ICO will be a challeng-
ing and valuable diagnostic and evaluation asset
for future work in multilingual and cross-lingual
representation learning, we release the data along
with the full guidelines at https://github.com/
cambridgeltl/AM2iCo.

2 AM2ICO: Cross-Lingual
Word-in-Context Evaluation

Task Definition. AM2ICO is a standard binary
classification task on pairs of word in context
instances. Each pair consists of a target word
with its context in English and a target word with
its context in a target language. Formally, each
dataset of AM2ICO spans a set of N examples x̂i,

i = 1, . . . , N for a language pair. Each example
x̂i is in fact a pair of items x̂i = (xi,src, xi,trg),
where the item xi,src is provided in the source lan-
guage Lsrc and the item xi,trg is in the target lan-
guage Ltrg. The item xi,src in turn is another pair
xi,src = (wi,src, ci,src); it contains a target word
wi,src from Lsrc and its (wider) context ci,src (also
in Lsrc) in which that word appears, see Table 1;
the same is valid for xi,trg. The classification task
is then to judge whether the words wi,src and wi,trg

occurring in the respective contexts ci,src and ci,trg
have the same sense/meaning (i.e., whether they
refer to the same entity/concept), or not.

Final Resource. The full AM2ICO resource com-
prises datasets for 14 language pairs, where English
is paired with 14 target languages. For brevity, in
the rest of the paper we refer to the dataset of each
language pair simply with the Ltrg language code
(e.g., ZH instead of EN-ZH); languages and codes
are provided in Table 2.

As illustrative examples, we show a positive pair
(label ‘T’) and a negative pair (label ‘F’) from the
ZH AM2ICO dataset in Table 1 (Examples 1 and 2).
In the positive example, both target words ‘Apollo’
and ‘阿波罗’ in their contexts refer to the same
concept: the Apollo spaceflight program. In the
negative example, the Chinese target word ‘阿波
罗’ refers to the Apollo aircraft, but the English
target word ‘Apollo’ now refers to the Greek God.

In what follows we describe the creation of
AM2ICO. We also demonstrate the benefits of
AM2ICO and its challenging nature.

2.1 Data Creation

Wikipedia is a rich source of disambiguated con-
texts for multiple languages. The availability of
Wikipedia’s cross-lingual links provides a direct
way to identify cross-lingual concept correspon-
dence. The items xi,src and xi,trg are then extracted
by taking the surrounding (sentential) context of
a hyperlinked word in a Wikipedia article. We
balance the context length by (i) discarding items
longer than 100 words, and (ii) adding preceding
and following sentences to the context for sen-
tences shorter than 30 words. Using the Wikipedia
dumps of our 15 languages (see Table 2), we create
monolingual items x for each language. We select
only ambiguous target words (w-s), that is, words

https://github.com/cambridgeltl/AM2iCo
https://github.com/cambridgeltl/AM2iCo
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no. English xi,src Chinese xi,trg Label

1 Bill Kaysing ( July 31 , 1922 – April 21 , 2005
) was an American writer who claimed that the
six Apollo Moon landings between July 1969
and December 1972 were hoaxes , and so a
founder of the Moon hoax movement .

泰坦系列导弹的发射任务结束后，LC-16被
移交给NASA用做双子座计划的航天员训练
及 阿波罗 中飞船服务舱的静态试车。[...]
(After the launch of the Titan missiles, LC-16 was handed
over to NASA for the training of the astronauts in the Gem-
ini program and the static test run of the service module
of the spacecraft in Apollo [...])

T

2 Nearer the house , screening the service wing
from view , is a Roman triumphal arch , the “
Temple of Apollo ” , also known ( because
of its former use a venue for cock fighting ) as
“ Cockpit Arch ” , which holds a copy of the
famed Apollo Belvedere .

阿波罗-联盟测试计划中，美国的 阿波罗 航天器

和苏联的联盟航天器在地球轨道中对接。...
(In the Apollo-Soyuz test plan, America’s Apollo space-
craft and the Soviet Union’s Soyuz spacecraft are docked
in the Earth orbit [...])

F

3 Bill Kaysing ( July 31 , 1922 – April 21 , 2005
) was an American writer who claimed that the
six Apollo Moon landings between July 1969
and December 1972 were hoax es , and so a
founder of the Moon hoax movement .

泰坦系列导弹的发射任务结束后，LC-16被移交
给 NASA 用做双子座计划的航天员训练及阿波

罗中飞船服务舱的静态试车。[...]
(After the launch of the Titan missiles, LC-16 was handed
over to NASA for the training of the astronauts in the
Gemini program and the static test run of the service mod-
ule of the spacecraft in Apollo [...])

F

Table 1: Positive (1), negative (2) and adversarial negative examples (3) from ZH AM2ICO. Target words are
provided in boldface and with a gray background. Translations of the ZH items are provided in italic.

DE RU JA ZH AR KO FI TR ID EU KA BN KK UR

train 50,000 28,286 16,142 13,154 9,622 7,070 6,322 3,904 1,598 978 – – – –
dev 500 500 500 500 500 500 500 500 500 500 500 332 276 108
test 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 700 400 400

Table 2: Data sizes for AM2ICO across 14 language pairs. We also provide larger dev and test sets for DE and
RU spanning 5,000 and 10,000 examples, respectively. EN=English; DE=German; RU=Russian; JA=Japanese;
ZH=Chinese; AR=Arabic; KO=Korean; FI=Finnish; TR=Turkish; ID=Indonesian; EU=Basque; KA=Georgian;
BN=Bengali, KK=Kazakh; UR=Urdu.

that link to at least two different Wikipedia pages.2

For each word, we then create monolingual pos-
itive examples by pairing two items (i.e., word-
context pairs) xi and xj in which the same target
word w is linked to the same Wikipedia page, sig-
naling the same meaning. In a similar fashion,
monolingual negative examples are created by pair-
ing two items where the same target word w is
linked to two different Wikipedia pages. We ensure
that there is roughly an equal number of positive
and negative examples for each target word.

Now, each monolingual example (i.e., pair of
items) x̂ contains the same word occurring in two
different contexts. In order to create a cross-lingual
dataset, we leverage the Wikipedia cross-lingual
links; we simply (i) replace one of the two items
from each English pair with an item in the target

2To avoid rare words that are potentially unknown to non-
experts, we retain only words that are among the top 200k
words by frequency in each respective Wikipedia.

language, and (ii) replace one of the two items
from each target language pair with an English
item, where the cross-lingual replacements point
to the same Wikipedia page as indicated by the
cross-lingual Wiki links. Through this procedure,
the final datasets cover a sufficient (and roughly
comparable) number of examples containing am-
biguous words both in English and in Ltrg. We
also rely on data selection heuristics that improve
the final data quality, discussed in §2.2 and §2.3.

Finally, in each cross-lingual dataset we reserve
1,000 examples for testing, 500 examples as dev
data; the rest is used for training. The exception
are 4 resource-poor languages, where all the data
examples are divided between dev and test. All data
portions in all datasets are balanced. We ensure
zero overlap between train, dev, and test portions.
The final AM2ICO statistics are given in Table 2.

Human Validation. We employ human annotators
to assess the quality of AM2ICO. For each dataset,
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we recruit two annotators who each validate a ran-
dom sample of 100 examples, where 50 examples
are shared between the two samples and are used
to compute inter-rater agreement.3

2.2 Data Selection Heuristics

One critical requirement of AM2ICO is ensuring
a high human upper bound. In the initial data cre-
ation phase, we observed several sources of confu-
sion among human raters, typically related to some
negative pairs being frequently labeled as positive;
we identified two causes of this discrepancy and
then mitigated it through data selection heuristics.

First, some common monosemous words still
might get linked to multiple different Wikipedia
pages, thus creating confusing negative pairs. For
instance, some pronouns (e.g., ‘he’, ‘it’) and com-
mon nouns (e.g., ‘daughter’, ‘son’) may link to dif-
ferent entities as a result of coreference resolution.
However, truly ambiguous words are typically di-
rectly defined in Wikipedia Disambiguation pages.
We thus keep only the negative pairs that link to sep-
arate entries found in the Wikipedia Disambigua-
tion pages. The second issue concerns concept
granularity, as Wikipedia sometimes makes too
fine-grained distinctions between concepts: e.g.,
by setting up separate pages for a country’s name
in different time periods.4 We mitigate this issue
by requiring that the negative pairs do not share
common or parent Wikipedia categories.

The application of these heuristics during data
creation (see §2.1) yields a substantial boost in
human performance: e.g., the scores increase from
74% to 88% for ZH, and from 76% to 94% for DE.

2.3 Adversarial Examples

Another requirement is assessing to which extent
models can grasp the meaning of a target word
based on the (complex) interaction with its con-
text. However, recently it was shown that SotA
pretrained LMs exploit superficial cues while solv-
ing language understanding tasks due to spurious
correlations seeping into the datasets (Gururangan
et al., 2018; Niven and Kao, 2019). This hinders
generalizations beyond the particular datasets and
makes the models brittle to minor changes in the

3The annotators were recruited via two crowdsourcing
platforms, Prolific and Proz, depending on target language
coverage. The annotators were native speakers of the target
language, fluent in English, and with an undergraduate degree.

4E.g., ‘China’ can be linked to the page ‘Republic of China
(1912–1949)’ and to the page ‘Empire of China (1915–1916)’.

WiC XL-WiC MCL-WiC AM2ICO

examples (mean) 7,466 14,510 3600 13,074
examples (median) 7,466 1,676 2000 8,570
word types (mean) 4,130 7,255 2766 9,868
word types (median) 4,130 1,201 2072 8,520
context length 17 22.7 26.13 53.5

human accuracy 80 81.8 - 90.6
human agreement 80 - 5 94.2 88.4

languages 1 12 5 15
language families 1 5 3 10

Table 3: Comparison of the most salient data statistics
of AM2ICO versus WiC, XL-WiC and MCL-WiC.

input space (Jia and Liang, 2017; Iyyer et al., 2018).
As verified later in §4, we found this to be the case
also for the existing WiC datasets: just considering
the target word and neglecting the context (or vice
versa) is sufficient to achieve high performance.

To remedy this issue, we already ensured that
models could not rely solely on target words in
§2.1 by including both positive and negative exam-
ples for each ambiguous word in different contexts.
Further, we now introduce adversarial negative ex-
amples in AM2ICO to penalize models that rely
only on context without considering target words.
To create such negative examples, we sample a pos-
itive pair xi and instead of the original target word
wi, we take another related word w̃i in the same
context ci as the new target word wi.

We define the related word as a hyperlinked men-
tion sharing the same parent Wiki category as the
original target word: e.g., in Table 1 we change
the target word ‘ 阿波罗’ (Apollo) from Exam-
ple 1 into the related word ‘NASA’, resulting in
Example 3. Both words share a common Wiki par-
ent category,美国国家航空航天局 (NASA). The
contexts of both examples deal with spaceships;
hence, only a fine-grained understanding of lexical
differences between the target words warrants the
ability to recognize Apollo as identical to ‘阿波
罗’ but different from ‘NASA’. Overall, adversarial
examples amount to roughly 1/4 of our dataset.

2.4 Data Statistics and Language Coverage
We summarize the main properties of AM2ICO

while comparing against previous word-in-context
datasets WiC, XL-WiC and MCL-WiC in Table 3.
More detailed per-language scores are listed in Ta-
ble 4. First, we emphasize the accrued reliability
of AM2ICO, as both human accuracy and inter-
annotator agreement are substantially higher than
with WiC and XL-WiC (i.e., rising by ~10 points).

5There is only one annotator for most languages in XL-
WiC. Therefore no agreement score can be computed.
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Second, for a comparable overall dataset size we
increase the number of examples and word types
in resource-poor languages. If we consider their
median across languages, AM2ICO has 8,570 and
8,520, respectively, around four times more than
XL-WiC (1,676 and 1,201) and MCL-WiC (2000
and 2072). XL-WiC are heavily skewed towards a
small number of languages, namely German and
French, and provides large datasets in those lan-
guages. MCL-WiC only offers training data for
English. In contrast, AM2ICO provides a more
balanced representation of its languages. Third,
in AM2ICO we deliberately include longer con-
texts. While the data in WiC, XL-WiC and MCL-
WiC are derived from concise dictionary examples,
AM2ICO data reflect natural text where key infor-
mation may be spread across a much wider context.

Our selection of languages is guided by the re-
cent initiatives to cover a typologically diverse lan-
guage sample (Ponti et al., 2020). In particular,
AM2ICO covers 15 languages, more than XL-WiC
(12 languages) and MCL-WiC (5 languages). Di-
versity can be measured along multiple axes, such
as family, geographic areas, and scripts (Ponti et al.,
2019). AM2ICO includes 10 language families,
namely: Afro-Asiatic (1 language), Austronesian
(1), Basque (1), Indo-European (5), Japonic (1),
Kartvelian (1), Koreanic (1), Sino-Tibetan (1), Tur-
kic (2), Uralic (1). This provides a more balanced
sample of the cross-lingual variation compared to
XL-WiC (5 families) and MCL-WiC (3 families).
Regarding geography, in addition to the areas cov-
ered by XL-WiC and MCL-WiC (mostly Europe
and Eastern Asia), we also represent South-East
Asia (with ID), the Middle East (TR), the Cauca-
sus (KA), the Indian subcontinent (UR and BN),
as well as central Asia (KK). Finally, AM2ICO

also introduces scripts that were absent in other
datasets, namely the Georgian alphabet and the
Bengali script (a Northern Indian abugida), for a
total of 8 distinct scripts.

3 Experimental Setup

We now establish a series of baselines on AM2ICO

to measure the gap between current SotA models
and human performance.

Pretrained Encoders. Multilingual contextual-
ized representations ei ∈ Rd for each target word
are obtained via BASE variants of cased multilin-
gual BERT (MBERT, Devlin et al., 2019) and

XLM-R6 (Conneau et al., 2020), available in the
HuggingFace repository (Wolf et al., 2020).

Classification. Given two contextualized represen-
tations ei,src and ei,trg for a pair of target words,
two setups to make prediction are considered:
the first, metric-based, is a non-parametric setup.
In particular, we follow Pilehvar and Camacho-
Collados (2019) and score the distance δ between
the representations via cosine similarity. A thresh-
old t from the development set is set via grid search
across 0.02 intervals in the [0, 1] interval. There-
fore, if δ(ei,src, ei,trg) ≥ t the pair is classified
as negative, and positive otherwise. On the other
hand, the fine-tuning setup is parametric: follow-
ing Raganato et al. (2020), we train a logistic re-
gression classifier that takes the concatenation of
the contextualized representations [ei,src ⊕ ei,trg]
as input.7 The entire model (both the encoder and
the classifier) is then fine-tuned to minimize the
cross-entropy loss of the training set examples with
Adam (Kingma and Ba, 2015). We perform grid
search for the learning rate in [5e−6, 1e−5, 3e−5],
and train for 20 epochs selecting the checkpoint
with the best performance on the dev set.

Cross-lingual Transfer. In addition to supervised
learning, we also carry out cross-lingual transfer ex-
periments where data splits may belong to different
language pairs. The goal is transferring knowledge
from a source language pair `s to a target lan-
guage pair `t. To simulate different scenarios of
data paucity, in the fine-tuning setup we consider:
1) zero-shot transfer, where train and development
sets belong to `s and the test set to `t; 2) zero-shot
+ TLD8 transfer, which is similar except for the
dev set given in `t; 3) on top of zero-shot + TLD,
we provide a small amount of training examples in
`t, which we denote as few-shot transfer; 4) finally,
in the joint multilingual setup, we train a single
model on the concatenation of the train sets for all
language pairs and select the hyper-parameters on
the development set of `t.

4 Results and Discussion

Metric-based vs Fine-tuning. We report the re-
sults for the supervised learning setting (where all
data splits belong to the same language pair) in Ta-

6Due to limited resources, we leave experiments with large
variants of the models for future research.

7The first WordPiece is always used if a word is segmented
into multiple WordPieces.

8TLD stands for “Target Language Development (set)”
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DE RU JA ZH AR KO FI TR ID EU KA BN KK UR
M

T
R MBERT 67.1 65.0 62.3 65.8 63.9 62.1 61.7 57.1 66.3 64.1 60.4 60.0 59.2 58.8

XLM-R 65.0 63.1 56.7 56.7 58.4 57.5 64.1 62.4 65.7 62.9 58.3 56.2 58.0 55.5

F
T MBERT 80.0 77.4 73.9 71.0 67.4 68.2 71.6 69.3 64.6 62.2 – – – –

XLM-R 77.4 76.1 75.9 68.9 65.9 65.3 68.4 64.4 54.6 55.8 – – – –

H
M accuracy 93.5 89.5 93.0 87.5 93.5 93.5 90.5 90.5 91.5 92.5 90.0 89.5 85.5 88.0

agreement 90.0 78.0 90.0 94.0 100.0 92.0 88.0 96.0 92.0 84.0 94.0 80.0 80.0 80.0

Table 4: Accuracy of MBERT and XLM-R on AM2ICO in a supervised learning setting. We report metric-based
classification (MTR) results, as well as the scores in the fine-tuning setup (FT). The third group of rows (HM)
displays human performance, in terms of both accuracy and inter-rater agreement. Results for the larger test sets
for DE and RU are reported in Table 9 in the Appendix.

ble 4. The metric-based approach achieves consis-
tent scores across all languages, fluctuating within
the range [57.1, 67.1] for MBERT and [55.5, 65.0]
for XLM-R. This indicates that the pretrained en-
coder alone already contains some relevant linguis-
tic knowledge, to a certain degree. In comparison,
fine-tuning yields more unequal results, being more
data-hungry. In particular, it performs worse than
the metric-based approach on languages with small
training data size (e.g., ID and EU in Table 4),
whereas it surpasses the metric-based approach on
languages with abundant examples (e.g., DE, RU).

XLM-R vs MBERT. Table 4 also reveals that
XLM-R is more sensitive to train data size
than MBERT, often falling behind in both the
metric-based and fine-tuning setups, especially for
resource-poorer languages. These findings are in
line with what Vulić et al. (2020) report for Multi-
SimLex, which are grounded on lexical semantics
similarly to AM2ICO. However, they contradict the
received wisdom from experiments in other mul-
tilingual sentence-level tasks (Ponti et al., 2020;
Conneau et al., 2020), where XLM-R outperforms
MBERT in cross-lingual transfer. While the exact
causes go beyond the scope of this work, we specu-
late that the two encoders excel in separate aspects
of semantics, the lexical and the sentence level.

Effect of Data Size on Fine-Tuning. To further in-
vestigate the effect of train data size on fine-tuning,
we perform an in-depth analysis on some selected
languages (DE, RU and JA). Note that we use the
larger dev and test sets for DE and RU for this ex-
periment. We study how performance changes as
we vary the number of training examples from 500
to the full set. The results in Figure 1 indicate that,
while fine-tuning starts lower than the metric-based
baseline, it grows steadily and begins to take the
lead from around 2,500 train examples.

Zero-shot Transfer. The results are presented in
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Figure 1: Impact of train data size (for fine-tuning) on
performance in DE, RU (larger test sets used), and JA
from AM2ICO. X axis is in the log scale.

Table 5. We select the training data of each of
the five languages with most data (DE, RU, JA,
ZH, AR) in turn for source-language fine-tuning.
Subsequently, we report the average prediction per-
formance across all remaining 9 target languages.

First, we note that the TLD variant for hyperpa-
rameter selection does not yield gains. Second, the
best choice of a source language appears to be Ger-
man across the board, achieving an average score
of 71.2 with MBERT and 72.0 with XLM-R. Nev-
ertheless, this is simply due to its ample number
of examples (50k). In fact, when controlling for
this variable by equalizing the total size of each
train split to 10k, see the bottom half of Table 5, all
source languages perform comparably.

Breaking down the average results into individ-
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Zero-shot +TLD
`s MBERT XLM-R MBERT XLM-R

DE (all) 71.2 72.0 71.5 71.7
RU (all) 71.1 69.8 71.0 69.9
JA (all) 68.1 61.9 68.6 63.2

ZH (all) 66.2 60.3 66.6 62.1
AR (all) 67.7 61.8 67.1 62.1

DE (10k) 65.4 62.4 65.9 62.5
RU (10k) 66.4 64.7 66.1 64.6
JA (10k) 67.5 61.3 67.2 61.7

ZH (10k) 66.0 62.8 65.8 62.1
AR (10k) 67.7 61.8 67.1 62.1

Table 5: Zero-shot transfer from 5 high-resource source
languages to the remaining 9 languages in AM2ICO.
The parentheses contain (approximate) train data sizes.

ual languages in Table 6 (top section), however,
reveals an even more intricate picture. In particular,
the best source language for KK is RU and for JA
is ZH, rather than DE. This can be explained by
the fact that these pairs share their scripts, Cyril-
lic and Kanji / Hanzi, respectively, at least in part.
This indicates that a resource-leaner but related lan-
guage might sometimes be a more effective option
as source language than a resource-rich one. It is
also noteworthy that zero-shot transfer from DE
outperforms supervised learning in most languages,
except for those both resource-rich and distant (JA,
ZH and AR).

Few-shot Transfer. To study the differences be-
tween training on `s and `t with controlled train
data size, we plot the model performance on two
target languages (RU and JA) as a function of the
amount of available examples across different trans-
fer conditions in Figure 2. Comparing supervised
learning (based on target language data) with zero-
shot learning (based on DE data), it emerges how
the former is always superior if the number of ex-
amples is the same. However, zero-shot learning
may eventually surpass the peak performance of
supervised learning by taking advantage of a larger
pool of examples: this is the case in RU, but not
in JA. This illustrates a trade-off between quality
(in-domain but possibly scarce data) and quantity
(abundant but possibly out-of-domain data).

Few-shot learning combines the desirable proper-
ties of both approaches. After pre-training a model
on DE, it can be adapted on a small amount of
target-language examples. Performance continues
to grow with more shots; with as few as 1k JA exam-
ples it is comparable to supervised learning on 15k
examples. Few-shot learning thus not only achieves
the highest scores, but also leverages costly target-
language data in a sample-efficient fashion.
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Figure 2: MBERT performance in two target lan-
guages, RU (larger test set) and JA, across different
amounts of training examples under different settings:
supervised learning (examples directly from Ltrg) few-
shot transfer (examples from DE Lsrc plus Ltrg exam-
ples), and zero-shot transfer (+TLD) from DE.

Joint Multilingual Learning. The results are
shown in Table 6. We observe a substantial boost
in performance across all the languages compared
to both zero-shot transfer from any individual lan-
guage and supervised learning (cf. Table 4), includ-
ing high-resource languages such as DE and RU.
Low-resource languages enjoy the most copious
gains: with MBERT as the encoder, UR improves
by 4.8 points, KK by 4.3, BN by 5.7, and KA by
6.3. However, this is still insufficient to equalize
performances across the board, as the latter group
of languages continues to lag behind: between DE
and UR remains a gap of 7.2 points. We speculate
that the reason behind this asymmetry is the fact
that in addition to being resource-poor, UR, KK,
BN, and KA are also typologically distant from
languages where most of the examples are concen-
trated. Overall, these findings suggest that lever-
aging multiple sources is better than a single one
by virtue of the transfer capabilities of massively
multilingual encoders, as previously demonstrated
(Wu and Dredze, 2019; Ponti et al., 2021).

Adversarial Examples. Finally, we investigate
whether the inclusion of adversarial examples (see
§2.3) makes AM2ICO less likely to be solved by
relying on superficial clues. In Table 7, we com-
pare the performance of MBERT trained on the
full input (which we label FULL) with two adver-
sarial baselines. We implement the TGT variant by
inputting only the target word to the classification
model and the CTX variant by replacing the target
word with a ‘[MASK]’ token. We perform analysis
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`s model DE RU JA ZH AR KO FI TR ID EU KA BN KK UR

Zero-shot Transfer (+TLD)
DE MBERT - 75.1 71.1 68.9 64.8 71.1 78 75.7 75.4 74.2 70.2 68 62.8 68.5

XLM-R - 77.5 70.1 67.7 67.4 70.2 77.2 76.6 74.8 70.7 71.9 70.6 66.5 67
RU MBERT 74.4 - 71.7 68.4 65.1 71 74.8 72.6 74.5 71.2 69.3 70.3 67 67.8

XLM-R 72.4 - 68.2 64.4 69.5 72.3 73.7 71.2 69.7 68.8 69.6 68.3 69 66.7

JA MBERT 70.9 70.7 - 68.9 63.2 72.5 70.9 72.5 70.1 67.7 65.3 67.9 65.8 65
XLM-R 64.7 65.7 - 70.4 63.2 67.1 66.5 64.9 62.5 62.5 61.7 66.7 57.8 59.3

ZH MBERT 71.5 69.2 68.7 - 61.6 70.6 68.6 70.8 66.9 68 64.9 65.6 61.5 62.8
XLM-R 66.5 67.1 72.1 - 62.6 62.9 66.2 63.8 63.4 61.6 59.8 61.1 59.8 60.3

AR MBERT 69.2 67.6 68.5 66.3 - 67.1 68.6 69.5 68.2 67.6 66.9 68.1 63.8 63.8
XLM-R 62 63 62.2 62.0 - 61.9 62.2 63.6 63.9 61.3 62.1 64.9 60.8 58.3

Joint Multilingual Learning
all MBERT 80.4 82.1 78.2 75.2 73.3 75.8 81.2 80.6 78.4 75.9 76.5 76 71.3 73.3

XLM-R 79.4 80.9 79.4 76.1 73.6 76 81.2 80.5 77.9 74.2 77.7 73 74.5 72.5

Table 6: Results for zero-shot transfer from a single source (top section) and joint transfer from multiple sources
(bottom section) in AM2ICO. The best scores for each setup are in bold. Results for the larger testsets of DE an
RU are reported in Table 10.

Dataset ` Full Ctx Tgt Hm

WiC EN 67.1 65.1 55.2 80.0
XL-WiC DE 81.0 75.0 80.0 74.0
MCL-WiC EN 83.3 82.6 53.4 96.8

AM2ICO-A DE 84.2 83.6 50.0 93.0
AM2ICO +A DE 80.0 73.6 66.9 93.5
AM2ICO-A ZH 79.8 78.2 49.0 86.0
AM2ICO +A ZH 71.0 66.0 61.6 87.5

Table 7: The impact of adversarial examples on
MBERT performance. +A indicates the presence of ad-
versarial examples, -A their absence. CTX represents
training a model on the context only, TGT on the target
word only, and FULL on the whole input. HM stands
for human accuracy.

across AM2ICO, WiC, XL-WiC and MCL-WiC.9

In previous datasets, at least one of the adver-
sarial baselines reaches performance close to the
FULL model: in WiC (EN), CTX has a gap of only
2 points. In XL-WiC (DE), TGT is only 1 point
away from FULL. In MCL-WiC (EN), the gap be-
tween CTX and FULL is even below 1 point. This
would also be the case in AM2ICO were it not for
the extra adversarial examples (rows +A): by virtue
of this change, the distance between FULL and the
best adversarial baseline is 6.4 points in DE and
5.0 in ZH. Therefore, it is safe to conclude that a
higher score on AM2ICO better reflects a deep se-
mantic understanding by the model. Moreover, the
last column of Table 7 also includes reference hu-
man accuracy. While the best baseline in XL-WiC
even surpasses the human upper bound, the addi-
tion of adversarial examples in AM2ICO combined

9We select languages with sufficient and comparable train-
ing data: ZH for AM2ICO, DE for AM2ICO and XL-WiC
and EN for MCL-WiC.

DE RU JA ZH AR

Adversarial 73.7 66.5 65.3 64.7 55.0
Non-adversarial 83.1 77.9 76.5 75.5 70.5

Table 8: MBERT performance on adversarial and non-
adversarial examples across five datasets in AM2ICO.

with higher human accuracy drastically increases
the gap between the two: 13.5 points in DE and
16.5 in ZH. Overall, this results in a much more
challenging evaluation benchmark.

In addition, we report separate results on these
adversarial examples, and compare with model per-
formance on non-adversarial examples for DE, RU,
JA, ZH and AR, within the supervised setting (Ta-
ble 8). It is clear that the adversarial examples
pose a much greater challenge for the model with
overall much lower scores. This is expected as
for adversarial examples the models must have a
finer-grained and more accurate understanding of
both the target word semantics and the surrounding
(sentential) context.

5 Related Work

Cross-Lingual Evaluation of Word Meaning in
Context. Going beyond readily available sense in-
ventories required for WSD-style evaluations, the
comprehensive benchmarks for evaluating word
meaning in context cross-lingually are still few and
far between. XL-WiC (Raganato et al., 2020) ex-
tends the original English WiC framework of Pile-
hvar and Camacho-Collados (2019) to 12 other lan-
guages, but supports only monolingual evaluation,
and suffers from issues such as small gaps between
human and system performance. The SemEval-
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2021 shared task MCL-WiC does focus on cross-
lingual WiC, but covers only five high-resource
languages from three language families (English,
French, Chinese, Arabic, Russian). Both XL-WiC
and MCL-WiC mainly focus on common words
and do not include less frequent concepts (e.g.,
named entities). Further, their language coverage
and data availability are heavily skewed towards
Indo-European languages.

There are several other ‘non-WiC’ datasets de-
signed to evaluate cross-lingual context-aware lex-
ical representations. Bilingual Contextual Word
Similarity (BCWS) (Chi and Chen, 2018) chal-
lenges a model to predict graded similarity of cross-
lingual word pairs given sentential context, one in
each language. In the Bilingual Token-level Sense
Retrieval (BTSR) task (Liu et al., 2019), given a
query word in a source language context, a system
must retrieve a meaning-equivalent target language
word within a target language context.10 However,
both BCWS and BTSR are again very restricted in
terms of language coverage: BCWS covers only
one language pair (EN-ZH), while BTSR contains
two pairs (EN-ZH/ES). Further, they provide only
test data: as such, they can merely be used as
general intrinsic probes for pretrained models, but
cannot support fine-tuning experiments and cannot
fully expose the relevance of information available
in pretrained models for downstream applications.
This is problematic as intrinsic tasks in general do
not necessarily correlate well with downstream per-
formance (Chiu et al., 2016; Glavaš et al., 2019).

AM2ICO vs. Entity Linking. Our work is related
to the entity linking (EL) task (Rao et al., 2013;
Cornolti et al., 2013; Shen et al., 2014) similarly to
how the original WiC (based on WordNet knowl-
edge) is related to WSD. EL systems must map enti-
ties in context to a predefined knowledge base (KB).
While WSD relies on the WordNet sense inventory,
the EL task focuses on KBs such as Wikipedia and
DBPedia. When each entity mention is mapped
to a unique Wiki page, this procedure is termed
wikification (Mihalcea and Csomai, 2007). The
cross-lingual wikification task (Ji et al., 2015; Tsai
and Roth, 2016) grounds multilingual mentions to
English Wikipedia pages. Similar to WSD, EL
evaluation is tied to a specific KB. It thus faces
similar limitations of WSD in terms of restricting

10BTSR could be seen as a contextualized version of the
standard bilingual lexicon induction task (Mikolov et al., 2013;
Søgaard et al., 2018; Ruder et al., 2019, inter alia).

meanings and their distinctions to those predefined
in the inventory. In comparison, AM2ICO lever-
ages Wikipedia only as a convenient resource for
extracting the examples, similar to how the original
WiC work leverages WordNet. AM2ICO itself is
then framed on natural text, without requiring the
modeling of the KBs. Also, in comparison with EL,
AM2ICO provides higher data quality and a more
challenging evaluation of complex word-context
interactions, achieved by a carefully designed data
extraction and filtering procedure.

6 Conclusion

We presented AM2ICO, a large-scale and chal-
lenging multilingual benchmark for evaluating
word meaning in context (WiC) across languages.
AM2ICO is constructed by leveraging multilingual
Wikipedias, and subsequently validated by humans.
It covers 15 typologically diverse languages and
a vocabulary substantially larger than all previous
WiC datasets. As such, it provides more compre-
hensive and reliable quality estimates for multi-
lingual encoders. Moreover, AM2ICO includes
adversarial examples: resolving such examples re-
quires genuine lexical understanding, as opposed to
relying on spurious correlations from partial input.
Finally, AM2ICO offers the possibility to perform
cross-lingual evaluation, pairing context between
different languages. Moreover, we explored the im-
pact of language relatedness on model performance
by transferring knowledge from multiple source
languages. We established a series of baselines on
AM2ICO, based on SotA multilingual models, re-
vealing that the task is far from being ‘solved’ even
with abundant training data. All models struggle es-
pecially when transferring to distant and resource-
lean target languages. We hope that AM2ICO will
guide and foster further research on effective repre-
sentation learning across different languages.
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A Results on the larger test set in DE and
RU

Table 9 and Table 10 list results for the larger test
sets of DE and RU in AM2ICO.

DE large RU large

M
T

R MBERT 66.1 65.3
XLM-R 64.5 63.2

F
T MBERT 80.7 75.7

XLM-R 77.7 75.5

Table 9: Accuracy of MBERT and XLM-R on larger
test sets of DE and RU in AM2ICO in a supervised
learning setting. We report metric-based classification
(MTR) results, as well as the scores in the fine-tuning
setup (FT).

`s model DE large RU large

Zero-shot Transfer (+TLD)

DE MBERT - 77.1
XLM-R - 76.4

RU MBERT 76.1 -
XLM-R 72.5 -

JA MBERT 72.3 72.2
XLM-R 65.5 66.0

ZH MBERT 70.8 70.0
XLM-R 64.7 64.4

AR MBERT 69.1 68.9
XLM-R 62.9 63.7

Joint Multilingual Learning

all MBERT 81.9 81.2
XLM-R 80.5 80.7

Table 10: AM2ICO transfer results for the larger test
sets of DE and RU. Performance from zero-shot trans-
fer from a single source is in the top section; joint trans-
fer from multiple sources is in the bottom section.


