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Abstract

We study multi-answer retrieval, an under-
explored problem that requires retrieving pas-
sages to cover multiple distinct answers for a
given question. This task requires joint mod-
eling of retrieved passages, as models should
not repeatedly retrieve passages containing the
same answer at the cost of missing a differ-
ent valid answer. In this paper, we introduce
JPR, the first joint passage retrieval model for
multi-answer retrieval. JPR makes use of an
autoregressive reranker that selects a sequence
of passages, each conditioned on previously se-
lected passages. JPR is trained to select pas-
sages that cover new answers at each timestep
and uses a tree-decoding algorithm to enable
flexibility in the degree of diversity. Com-
pared to prior approaches, JPR achieves signif-
icantly better answer coverage on three multi-
answer datasets. When combined with down-
stream question answering, the improved re-
trieval enables larger answer generation mod-
els since they need to consider fewer passages,
establishing a new state-of-the-art.

1 Introduction

Passage retrieval is the problem of retrieving a set
of passages relevant to a natural language question
from a large text corpus. Most prior work focuses
on single-answer retrieval, which scores passages
independently from each other according to their
relevance to the given question, assuming there is
a single answer (Voorhees et al., 1999; Chen et al.,
2017; Lee et al., 2019). However, questions posed
by humans are often open-ended and ambiguous,
leading to multiple valid answers (Min et al., 2020).
For example, for the question in Figure 1, “What
was Eli Whitney’s job?”, an ideal retrieval system
should provide passages covering all professions of
Eli Whitney. This introduces the problem of multi-
answer retrieval—retrieval of multiple passages

∗Work done while interning at Google.

Retrieval System

Question

Eli Whitney was an American 
inventor, widely known for 
inventing the cotton gin …

Whitney worked as a farm 
laborer and school 
teacher to save money.

What was Eli Whitney’s job?

𝑘

Prediction

Target

Figure 1: The problem of multi-answer retrieval. A re-
trieval system must retrieve a set of k passages (k = 5
in the figure) which has maximal coverage of diverse
answers to the input question: inventor, farm laborer
and school teacher in this example. This requires mod-
eling the joint probability of the passages in the output
set: P (p1...pk|q). Our proposed model JPR achieves
this by employing an autoregressive model.

with maximal coverage of all distinct answers—
which is a challenging yet understudied problem.

Multi-answer retrieval poses two challenges that
are not well represented in single-answer retrieval.
First, the task requires scoring passages jointly
to optimize for retrieving multiple relevant-yet-
complementary passages. Second, the model needs
to balance between two different goals: retrieving
passages dissimilar to each other to increase the re-
call, and keeping passages relevant to the question.

In this work, we introduce Joint Passage Re-
trieval (JPR), a new model that addresses these
challenges. To jointly score passages, JPR em-
ploys an encoder-decoder reranker and autoregres-
sively generates passage references by modeling
the probability of each passage as a function of
previously retrieved passages. Since there is no
ground truth ordering of passages, we employ a
new training method that dynamically forms su-
pervision to drive the model to prefer passages
with answers not already covered by previously se-
lected passages. Furthermore, we introduce a new
tree-decoding algorithm to allow flexibility in the
degree of diversity.
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In a set of experiments on three multi-answer
datasets—WEBQSP (Yih et al., 2016), AM-
BIGQA (Min et al., 2019) and TREC (Baudiš
and Šedivỳ, 2015), JPR achieves significantly im-
proved recall over both a dense retrieval base-
line (Guu et al., 2020; Karpukhin et al., 2020) and a
state-of-the-art reranker that independently scores
each passage (Nogueira et al., 2020). Improve-
ments are particularly significant on questions with
more than one answer, outperforming dense re-
trieval by up to 12% absolute and an independent
reranker by up to 6% absolute.

We also evaluate the impact of JPR in down-
stream question answering, where an answer gen-
eration model takes the retrieved passages as in-
put and generates short answers. Improved rerank-
ing leads to improved answer accuracy because
we can supply fewer, higher-quality passages to
a larger answer generation model that fits on the
same hardware. This practice leads to a new state-
of-the-art on three multi-answer QA datasets and
NQ (Kwiatkowski et al., 2019). To summarize, our
contributions are as follows:

1. We study multi-answer retrieval, an underex-
plored problem that requires the top k pas-
sages to maximally cover the set of distinct
answers to a natural language question.

2. We propose JPR, a joint passage retrieval
model that integrates dependencies among se-
lected passages, along with new training and
decoding algorithms.

3. On three multi-answer QA datasets, JPR sig-
nificantly outperforms a range of baselines
with independent scoring of passages, both in
retrieval recall and answer accuracy.

2 Background

2.1 Review: Single-Answer Retrieval

In a typical single-answer retrieval problem, a
model is given a natural language question q and
retrieves k passages {p1...pk} from a large text cor-
pus C (Voorhees et al., 1999; Ramos et al., 2003;
Robertson and Zaragoza, 2009; Chen et al., 2017;
Lee et al., 2019; Karpukhin et al., 2020; Luan et al.,
2020). The goal is to retrieve at least one pas-
sage that contains the answer to q. During training,
question-answer pairs (q, a) are given to the model.

Evaluation Intrinsic evaluation directly evalu-
ates the retrieved passages. The most commonly
used metric is RECALL @ k which considers re-

Task Single-answer
Retrieval

Multi-answer
Retrieval

Train Data (q, a) (q, {a1...an})

Inference q → {p1...pk} q → {p1...pk}

Evaluation RECALL(
a, {p1...pk})

MRECALL(
{a1...an},
{p1...pk})

Appropriate
Model P (pi|q) P (p1...pk|q)

Table 1: A comparison of single-answer and multi-
answer retrieval tasks. Previous work has used indepen-
dent ranking models P (pi|q) for multi-answer retrieval
because the inference-time inputs and outputs are the
same. We propose JPR as an instance of P (p1...pk|q).

trieval successful if the answer a is included in
{p1...pk}. Extrinsic evaluation uses the retrieved
passages as input to an answer generation model
such as the model in Izacard and Grave (2021) and
evaluates final question answering performance.

Reranking Much prior work (Liu, 2011; Asadi
and Lin, 2013; Nogueira et al., 2020) found an ef-
fective strategy in using a two-step approach of (1)
retrieving a set of candidate passages B from the
corpus C (k < |B| � |C|) and (2) using another
model to rerank the passages, obtaining a final top
k. A reranker could be more expressive than the
first-stage model (e.g. by using cross-attention), as
it needs to process much fewer candidates. Most
prior work in reranking, including the current state-
of-the-art (Nogueira et al., 2020), scores each pas-
sage independently, modeling P (p|q).

2.2 Multi-Answer Retrieval

We now formally define the task of multi-answer
retrieval. A model is given a natural language ques-
tion q and needs to find k passages {p1...pk} from
C that contain all distinct answers to q. Unlike
in single-answer retrieval, question-and-answer-set
pairs (q, {a1...an}) are given during training.

Evaluation Similar to single-answer retrieval,
the intrinsic evaluation directly evaluates a set of k
passages. As the problem is underexplored, metrics
for it are less studied. We propose to use MRE-
CALL @ k, a new metric which considers retrieval
to be successful if all answers or at least k an-
swers in the answer set {a1...an} are recovered by
{p1...pk}. Intuitively, MRECALL is an extension
of RECALL that considers the completeness of the
retrieval; the model must retrieve all n answers
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T5

Dense 
retrieval Reranking

𝐵 = 100 𝑘 = {5, 10} Training with dynamic oracle (Section 3.2)

Inference with TREEDECODE (Section 3.3)

T5 Decoder

Prefix Positive passages
not in the prefix

𝐶

Autoregressive generation 
of passage references 

(Section 3.1)

Figure 2: An overview of JPR. We focus on reranking and propose: autoregressive generation of passage refer-
ences (Section 3.1), training with dynamic oracle (Section 3.2), and inferece with TREEDECODE (Section 3.3).

when n ≤ k, or at least k answers when n > k.1

The extrinsic evaluation inputs the retrieved pas-
sages into an answer generation module that is
designed for multiple answers, and measures multi-
answer accuracy using an appropriate metric such
as the one in Min et al. (2020).

Comparing to single-answer retrieval We
compare single-answer retrieval and multi-answer
retrieval in Table 1. Prior work makes no dis-
tinctions between these two problems, since they
share the same interface during inference. How-
ever, while independently scoring each passage
(P (pi|q)) may be sufficient for single-answer re-
trieval, multi-answer retrieval inherently requires
joint passage scoring P (p1...pk|q). For example,
models should not repeatedly retrieve the same an-
swer at the cost of missing other valid answers,
which can only be done by a joint model.

Choice of k for downstream QA Previous state-
of-the-art models typically input a large number
(k ≥ 100) of passages to the answer generation
model. For instance, Izacard and Grave (2021)
claim the importance of using a larger value of k
to improve QA accuracy. In this paper, we argue
that with reranking, using a smaller value of k (5 or
10) and instead employing a larger answer genera-
tion model is advantageous given a fixed hardware
budget.2 We show in Section 5 that, as retrieval
performance improves, memory is better spent on
larger answer generators rather than on more pas-
sages, ultimately leading to higher QA accuracy.

3 JPR: Joint Passage Retrieval

We propose JPR (Joint Passage Retrieval), which
models the joint probability P (p1...pk|q) for multi-

1This is to handle the cases where n is very large (e.g. over
100) and the model covers a reasonable number of answers
given the limit of k passages, therefore deserves credit.

2We care about a fixed type of hardware since it is the
hardest constraint and usually a bottleneck for performance.
We do not control for running time in this comparison.

answer retrieval. JPR uses an approach consisting
of first-stage retrieval followed by reranking: the
first-stage retrieval obtains candidate passages B
from the corpus C, and a reranker processes B to
output {p1...pk} ⊂ B. We refer to Section 4.2 for
the first-stage retrieval, and focus on the reranking
component of the model, which allows (1) effi-
ciently modeling the joint probability P (p1...pk|q),
and (2) processing candidate passages with a more
expressive model.

The overview of JPR is illustrated in Figure 2.
The reranker of JPR leverages the encoder-decoder
architecture for an autoregressive generation of pas-
sage references (Section 3.1). Unlike typical use
cases of the encoder-decoder, (1) the ordering of
passages to retrieve is not given as supervision, and
(2) it is important to balance between exploring pas-
sages about new answers and finding passages that
may cover previously selected answers. To this end,
we introduce a new training method (Section 3.2)
and a tree-based decoding algorithm (Section 3.3).

3.1 Autoregressive generation of passage
references

JPR makes use of the encoder-decoder architec-
ture, where the encoder processes candidate pas-
sages and the decoder autoregressively generates a
sequence of k passage references (indexes). In-
tuitively, dependencies between passages can be
modeled by the autoregressive architecture.

We extend the architecture from Izacard and
Grave (2021); we reuse the encoder but modify
the decoder. Each candidate passage pi is concate-
nated with the question q and the number i (namely
index). It is fed into the encoder to be transformed
to pi ∈ RL×h, where L is the length of the in-
put text and h is a hidden size. Next, p1...p|B|
are concatenated to form p̄ ∈ RL|B|×h, and then
fed into the decoder. The decoder is trained to au-
toregressively output a sequence of indexes i1...ik,
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Figure 3: An illustration of TREEDECODE, where passages that are chosen and passages that are being considered
are indicated in orange and blue, respectively. See Section 3.3 and Algorithm 1 for details.

representing a sequence of passages p1...pk. As the
generation at step t (1 ≤ t ≤ k) is dependent on
the generation at step 1 . . . t− 1, it can naturally
capture dependencies between selected passages.
As each index occupies one token, the length of the
decoded sequence is k.

3.2 Training with Dynamic Oracle
A standard way of training the encoder-decoder
is teacher forcing which assumes a single correct
sequence. However, in our task, a set of answers
can be retrieved through many possible sequences
of passages, and it is unknown which sequence is
the best. To this end, we dynamically form the
supervision data which pushes the model to assign
high probability to a dynamic oracle—any positive
passage covering a correct answer that is not in the
prefix, i.e., previously selected passages.

We first precompute a set of positive passages
Õ and a prefix p̃1...p̃k. A set of positive passages
Õ includes up to k passages with maximal cover-
age of the distinct answers.3 A prefix p̃1...p̃k is a
simulated prediction of the model, consisting of
Õ and k − |Õ| sampled negatives. At each step t
(1 ≤ t ≤ k) , given a set of positive passages Õ
and a prefix p̃1...p̃t (denoted as Pt), JPR is trained
to assign high probabilities to the dynamic oracle
Õ − Pt. The objective is defined as follows:∑

1≤t≤k

∑
o∈Õ−Pt−1

−logP (o|q,B,Pt−1).

3.3 Inference with TREEDECODE

A typical autoregressive decoder makes the top 1
prediction at each step to decode a sequence of
k (SEQDECODE in Algorithm 1),4 which, based

3|Õ| < k if fewer than k passages are sufficient to cover
all distinct answers; |Õ| = k otherwise.

4We explored beam search decoding but it gives results that
are the same as or marginally different from SEQDECODE.

Algorithm 1 Decoding algorithms for JPR.
1: procedure SEQDECODE(k, P (p|p1...pn))
2: O ← [] // a list of selected passages
3: while i = 1, . . . , k do
4: p̂← argmaxp∈B−O.toSet()logP (p|O)
5: O ← O :: p̂

6: return Set(O)

7: procedure TREEDECODE(k, P (p|p1...pn), l)
8: O ← ∅ // a set of selected passages
9: S ← [Empty] // a tree

10: while |O| < k do
11: P ′(p|s)← P (p|s)I[s :: p /∈ S]
12: (ŝ, p̂)← argmaxp∈B,s∈S l(|s|+ 1)logP ′(p|s)
13: O ← O ∪ {p̂},S ← S.append(ŝ :: p̂)
14: return O

on our training scheme, asks the decoder to find
a new answer at every step. However, when k is
larger than the number of correct answers, it would
be counter-productive to ask for k passages that
each covers a distinct answer. Instead, we want
the flexibility of decoding fewer timesteps and take
multiple predictions from each timestep.

In this context, we introduce a new decoding
algorithm TREEDECODE, which decodes a tree
from an autoregressive model. TREEDECODE it-
eratively chooses between the depth-wise and the
width-wise expansion of the tree—going forward
to the next step and taking the next best passage
within the same step, respectively—until it reaches
k passages (Figure 3). Intuitively, if the model be-
lieves that there are many distinct answers covered
by different passages, it will choose to take the next
step, being closer to SEQDECODE. On the other
hand, if the model believes that there are very few
distinct answers, it will choose to take more pre-
dictions from the same step, resulting in behavior
closer to independent scoring.

The formal algorithm is as follows. We represent
a tree S as a list of ordered lists [s1...sT ] where s1
is an empty list and si is one element appended
to any of s1...si−1. The corresponding set O is
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Dataset # questions % # answers

Train Dev Test Avg. Median

WEBQSP 2,756 241 1,582 12.4 2.0
AMBIGQA 10,036 2,002 2,004 2.2 2.0
TREC 1,250 119 654 4.1 2.0

Table 2: Number of questions and an average & median
number of the answers on the development data. Data
we use for TREC is a subset of the data from Baudiš
and Šedivỳ (2015) as described in Appendix B.1.

∪s∈SSet(s). We define a score of a tree S as

f(S) =
∑

p1...pti∈S
logP (pti |p1...pti−1).

We form S andO through an iterative process by
(1) starting from O = ∅ and S = [null], and (2)
updating O and S by finding the best addition of
an element that maximizes the gain in f(S), until
|O| = k, as described in Algorithm 1.

4 Experimental Setup

We compare JPR with multiple baselines in a range
of multi-answer QA datasets. We first present an in-
trinsic evaluation of passage retrieval by reporting
MRECALL based on answer coverage in the re-
trieved passages (Section 5.1). We then present an
extrinsic evaluation through experiments in down-
stream question answering (Section 5.2).

4.1 Datasets
We train and evaluate on three datasets that pro-
vide a set of distinct answers for each question.
Statistics of each dataset are provided in Table 2.
WEBQSP (Yih et al., 2016) consists of questions
from Google Suggest API, originally from Berant
et al. (2013). The answer is a set of distinct enti-
ties in Freebase; we recast this problem as textual
question answering based on Wikipedia.
AMBIGQA (Min et al., 2020) consists of questions
mined from Google search queries, originally from
NQ (Kwiatkowski et al., 2019). Each question is
paired with an annotated set of distinct answers
that are equally valid based on Wikipedia.
TREC (Baudiš and Šedivỳ, 2015) contains ques-
tions curated from TREC QA tracks, along with
regular expressions as answers. Prior work uses
this data as a task of finding a single answer (where
retrieving any of the correct answers is sufficient),
but we recast the problem as a task of finding all
answers, and approximate a set of distinct answers.
Details are described in Appendix B.1.

4.2 First-stage Retrieval
JPR can obtain candidate passages B from any first-
stage retrieval model. In this paper, we use DPR+,
our own improved version of DPR (Karpukhin
et al., 2020) combined with REALM (Guu et al.,
2020). DPR and REALM are dual encoders with
a supervised objective and an unsupervised, lan-
guage modeling objective, respectively. We initial-
ize the dual encoder with REALM and train on
supervised datasets using the objective from DPR.
More details are provided in Appendix A.

4.3 Baselines
We compare JPR with three baselines, all of which
are published models or enhanced versions of them.
All baselines independently score each passage.

DPR+ only uses DPR+ without a reranker.

DPR++Nogueira et al. (2020) uses DPR+ fol-
lowed by Nogueira et al. (2020), the state-of-the-
art document ranker. It processes each passage pi
in B independently and is trained to output yes
if pi contains any valid answer to q, otherwise no.
At inference, the probability for each pi is com-
puted by taking a softmax over the logit of yes
and no. The top k passages are chosen based on
the probabilities assigned to yes.

INDEPPR is our own baseline that is a strict non-
autoregressive version of JPR in which prediction
of a passage is independent from other passages in
the retrieved set. It obtains candidate passages B
through DPR+ and the encoder of the reranker pro-
cesses q and B, as JPR does. Different from JPR,
the decoder is trained to output a single token i
(1 ≤ i ≤ |B|) rather than a sequence. The objective
is the sum of−logP (p|q,B) of the passages includ-
ing any valid answer to q. At inference, INDEPPR
outputs the top k passages based the logit values
of the passage indices. We compare mainly to IN-
DEPPR because it is the strict non-autoregressive
version of JPR, and is empirically better than or
comparable to Nogueira et al. (2020) (Section 5.1).

4.4 Implementation Details
We use the English Wikipedia from 12/20/2018
as the retrieval corpus C, where each article is
split into passages with up to 288 wordpieces, All
rerankers are based on T5 (Raffel et al., 2020),
a pretrained encoder-decoder model; T5-base is
used unless otherwise specified. We use |B| =
100, k = {5, 10}. Models are first trained on
NQ (Kwiatkowski et al., 2019) and then finetuned
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k Models WEBQSP AMBIGQA TREC

Dev Test Dev Dev Test

5

DPR+ only 56.4/37.8 57.0/38.9 55.2/36.3 53.8/29.9 57.8/36.6
DPR++Nogueira et al. (2020) 60.2/40.9 60.2/39.9 63.4/43.1 53.8/28.4 61.0/39.5
INDEPPR 60.6/40.2 62.9/45.2 63.7/43.7 53.8/28.4 62.4/41.1
JPR 68.5/56.7 64.9/50.6 64.8/45.2 55.5/29.9 62.4/41.1

10

DPR+ only 61.4/42.5 59.0/38.6 59.3/39.6 55.5/28.4 60.1/38.4
DPR++Nogueira et al. (2020) 64.7/45.7 62.9/41.5 65.8/46.4 55.5/28.4 64.8/43.0
INDEPPR 65.6/47.2 63.3/43.1 65.5/46.2 53.8/26.9 63.8/42.2
JPR 68.9/55.1 65.7/48.9 67.1/48.2 56.3/29.9 64.5/43.3

Table 3: Results on passage retrieval in MRECALL. The two numbers in each cell indicate performance on all
questions and on questions with more than one answer, respectively. Test-set metrics on AMBIGQA are not
available as its test set is hidden, but we report the test results on question answering in Section 5.2.
Note: it is possible to have higher MRECALL @ 5 than MRECALL @ 10 based on our definition of MRECALL (Section 2.2).

Training method MRECALL

Dynamic oracle 67.6/56.7
Dynamic oracle w/o negatives 65.1/52.0
Teacher forcing 66.4/51.2

Table 4: Ablations in training methods
for JPR. Results on WEBQSP (k = 5).
All rows use SEQDECODE (instead of
TREEDECODE).

k Decoding WEBQSP AMBIGQA

d MRECALL d MRECALL

5
SEQDECODE 5.0 67.6/56.7 5.0 63.1/42.5
TREEDECODE 3.0 68.5/56.7 2.1 64.8/45.2

10
SEQDECODE 10.0 68.0/54.3 10.0 65.0/45.9
TREEDECODE 5.4 68.9/55.1 2.9 67.1/48.2

Table 5: Ablations in decoding methods for JPR. d refers to the
average depth of the tree (maxs∈S |s| in Algorithm 1).

on multi-answer datasets, which we find helpful
since all multi-answer datasets are relatively small.
During dynamic oracle training, k − |Õ| negatives
are sampled from B − Õ based on s(pi) + γgi,
where s(pi) is a prior logit value from INDEPPR,
gi ∼ Gumbel(0, 1) and γ is a hyperparameter. In
TREEDECODE, to control the trade-off between the
depth and the width of the tree, we use a length

penalty function l(y) =
(
5+y
5+1

)β
, where β is a hy-

perparameter, following Wu et al. (2016). More
details are in Appendix B.2.

5 Experimental Results

5.1 Retrieval Experiments
Table 3 reports MRECALL on all questions and on
questions with more than one answer.

No reranking vs. reranking Models with
reranking (DPR++Nogueira et al. (2020), IN-
DEPPR or JPR) are always better than DPR+ only,
demonstrating the importance of reranking.

Independent vs. joint ranking JPR consis-
tently outperforms both DPR++Nogueira et al.
(2020) and INDEPPR on all datasets and all val-
ues of k. Gains are especially significant on ques-
tions with more than one answer, outperforming
two reranking baselines by up to 11% absolute and

up to 6% absolute, respectively. WEBQSP sees
the largest gains out of the three datasets, likely be-
cause the average number of answers is the largest.

5.1.1 Ablations & Analysis

Training methods Table 4 compares dynamic
oracle training with alternatives. ‘Dynamic ora-
cle w/o negatives’ is the same as dynamic oracle
training except the prefix only has positive pas-
sages. ‘Teacher forcing’ is a standard method in
training an autoregressive model: given a target
sequence o1...ok, the model is trained to maxi-
mize Π1≤t≤kP (ot|o1...ot−1). We form a target se-
quence using a set of positive passages Õ, where
the order is determined by following the ranking
from INDEPPR. Table 4 shows that our dynamic
oracle training, which uses both positives and nega-
tives, significantly outperforms the other methods.

Impact of TREEDECODE Table 5 compares
JPR with SEQDECODE and with TREEDECODE.
We find that TREEDECODE consistently improves
the performance on both WEBQSP and AM-
BIGQA, with both k = 5 and 10. Gains are espe-
cially significant on AMBIGQA, since the choice
of whether to increase diversity is more challenging
on AMBIGQA where questions are more specific
and have fewer distinct answers, which TREEDE-
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Q: Who play Mark on the TV show Roseanne?

INDEPPR JPR
#1 Glenn Quinn ... He was best known for his portrayal of #1 Glenn Quinn ... He was best known for his portrayal of
Mark Healy on the popular ’90s family sitcom Roseanne. Mark Healy on the popular ’90s family sitcom Roseanne.
#2 Glenn Quinn, who played Becky’s husband, Mark, died #2 Becky begins dating Mark Healy (Glenn Quinn) ...
in December 2002 of a heroin overdose at the age of 32 ... #3 Glenn Quinn, who played Becky’s husband, Mark, died
#3 Becky begins dating Mark Healy (Glenn Quinn) ... in December 2002 of a heroin overdose at the age of 32 ...
#4 Johnny Galecki ... on the hit ABC sitcom Roseanne as #4 Roseanne (season 10) ... In September 2017, Ames
the younger brother of Mark Healy (Glenn Quinn) ... McNamara was announced to be cast as Mark Conner-Healy.

Table 6: An example prediction from INDEPPR and JPR; answers to the input question highlighted. While IN-
DEPPR repeatedly retrieves passages supporting the same answer Glenn Quinn and fails to cover other answers,
JPR successfully retrieves a passage covering a novel answer Ames McNamara.

CODE better handles compared to SEQDECODE.
The average depth of the tree is larger on WEBQSP,
likely because its average number of distinct an-
swers is larger and thus requires more diversity.

An example prediction Table 6 shows predic-
tions from INDEPPR and JPR given an example
question from AMBIGQA, “Who plays Mark on
the TV show Roseanne?” One answer Glenn Quinn
is easy to retrieve because there are many passages
in Wikipedia providing evidence, while the other
answer Ames McNamara is harder to find. While
INDEPPR repeatedly retrieves passages that men-
tion Glenn Quinn and fails to cover Ames McNa-
mara, JPR successfully retrieves both answers.

More analysis can be found in Appendix C.

5.2 QA Experiments

This section discusses experiments on downstream
question answering: given a question and a set of
passages from retrieval, the model outputs all valid
answers to the question. We aim to answer two re-
search questions: (1) whether the improvements in
passage retrieval are transferred to improvements in
downstream question answering, and (2) whether
using a smaller number of passages through rerank-
ing is better than using the largest possible number
of passages given fixed hardware memory.

We use an answer generation model based
on Izacard and Grave (2021) which we train to gen-
erate a sequence of answers, separated by a [SEP]
token, given a set of retrieved passages. Our main
model uses JPR to obtain passages fed into the
answer generation model. The baselines obtain
passages from either DPR+ only or INDEPPR,
described in Section 4.3.

We compare different models that fit on the same
hardware by varying the sizes of T5 (base, large,
3B) and use the maximum number of passages

(k).5 This results in three settings: {k = 140,
base}, {k = 40, large} and {k = 10, 3B}.

5.2.1 Main Result
Table 7 reports the performance on three multi-
answer datasets in F1, following Min et al. (2020).

Impact of reranking With {k = 10, 3B}, JPR
outperforms both baselines, indicating that the im-
provements in retrieval are successfully transferred
to improvements in QA performance. We however
find that our sequence-to-sequence answer gener-
ation model tends to undergenerate answers, pre-
sumably due to high variance in the length of the
output sequence. This indicates the model is not
fully benefiting from retrieval of many answers,
and we expect more improvements when combined
with an answer generation model that is capable of
generating many answers.

More passages vs. bigger model With fixed
memory during training, using fewer passages
equipped with a larger answer generation model
outperforms using more passages. This is only
true when reranking is used; otherwise, using more
passages is often better or comparable. This demon-
strates that, as retrieval improves, memory is better
spent on larger answer generators rather than more
passages, leading to the best performance.

Finally, JPR establishes a new state-of-the-art,
outperforming the previous state-of-the-art on AM-
BIGQA (Gao et al., 2021) with extensive reranking
and the answer generation model trained using x3
more resources than ours.6

5.2.2 Single-answer QA result
While our main contributions are in multi-answer
retrieval, we experiment on NQ to demonstrate

5The memory requirement is O(k × T5 size).
6Gao et al. (2021) reranks 1000 passages through indepen-

dent scoring as in Nogueira et al. (2020); it is not a directly
comparable baseline and serves as a point of reference.
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Retrieval QA Model k Mem WEBQSP AMBIGQA TREC

Dev Test Dev Test Dev Test

DPR+ only T5-3B 10 x1 50.7/45.3 51.9/45.0 43.5/34.6 39.6/31.4 46.2/32.2 44.7/32.1
INDEPPR T5-3B 10 x1 51.8/46.9 51.8/45.0 47.6/36.2 42.3/32.0 44.6/32.8 45.9/31.8
JPR T5-3B 10 x1 53.6/49.5 53.1/47.2 48.5/37.6 43.5/34.2 48.6/32.8 46.8/33.3

DPR+ only T5-large 40 x1 51.4/47.0 52.4/45.8 45.5/34.9 41.1/30.9 40.1/32.8 42.5/32.2

Gao et al. (2021) BART-large 100 x3 - - 48.3/37.3 42.1/33.3 - -

Table 7: Question Answering results on multi-answer datasets. The two values in each cell indicate F1 on all
questions and F1 on questions with multiple answers only, respectively. Mem compares the required hardware
memory during training. Note that Gao et al. (2021) reranks 1000 passages instead of 100, and trains an answer
generation model using x3 more memory than ours. Better retrieval enables using larger answer generation
models on fewer retrieved passages.

Model T5 k dev test

DPR+ only base 140 46.4 -
DPR+ only large 40 47.3 -
DPR+ only 3B 10 46.5 -

INDEPPR large 40 49.4 -
INDEPPR 3B 10 50.4 54.5

Izacard and Grave (2021) - 51.4

Table 8: Question Answering results on NQ. We re-
port Exact Match (EM) accuracy. The first five rows
are from our own experiments, which all use the same
hardware resources for training. The last row is the pre-
vious state-of-the-art which requires x5 more resources
than ours to train the model.

that the value of good reranking extends to the
single-answer scenario. Table 8 indicates two ob-
servations consistent to the findings from multi-
answer retrieval: (1) when compared within the
same setting (same T5 and k), INDEPPR always
outperforms DPR+ only, and (2) with reranking,
{k = 10, 3B} outperforms {k = 40, large}. Fi-
nally, our best model outperforms the previous
state-of-the-art (Izacard and Grave, 2021) which
uses x5 more training resources. Altogether, this
result (1) justifies our choice of focusing on rerank-
ing, and (2) shows that INDEPPR is very compet-
itive and thus our JPR results in multi-answer re-
trieval are very strong.

6 Related Work

We refer to Section 2 for related work focusing on
single-answer retrieval.

Diverse retrieval Studies on diverse retrieval in
the context of information retrieval (IR) requires
finding documents covering many different sub-
topics to a query topic (Zhai et al., 2003; Clarke

et al., 2008). Questions are typically underspeci-
fied, and many documents (e.g. up to 56 in Zhai
et al. (2003)) are considered relevant. In their prob-
lem space, effective models post-hoc increase the
distances between output passages during infer-
ence (Zhai et al., 2003; Abdool et al., 2020).

Our problem is closely related to diverse re-
trieval in IR, with two important differences. First,
since questions represent more specific informa-
tion needs, controlling the trade-off between rele-
vance and diversity is harder, and simply increasing
the distances between retrieved passages does not
help.7 Second, multi-answer retrieval uses a clear
notion of “answers”; “sub-topics” in diverse IR are
more subjective and hard to enumerate fully.

Multi-hop passage retrieval Recent work stud-
ies multi-hop passage retrieval, where a passage
containing the answer is the destination of a chain
of multiple hops (Asai et al., 2020; Xiong et al.,
2021; Khattab et al., 2021). This is a difficult prob-
lem as passages in a chain are dissimilar to each
other, but existing datasets often suffer from anno-
tation artifacts (Chen and Durrett, 2019; Min et al.,
2019), resulting in strong lexical cues for each hop.
We study an orthogonal problem of finding multi-
ple answers, where the challenge is in controlling
the trade-off between relevance and diversity.

7 Conclusion

We introduce JPR, an autoregressive passage
reranker designed to address the multi-answer re-
trieval problem. On three multi-answer datasets,
JPR significantly outperforms a range of baselines

7In our preliminary experiment, we tried increasing diver-
sity based on Maximal Marginal Relevance (Carbonell and
Goldstein, 1998) following Zhai et al. (2003); Abdool et al.
(2020); it improves diversity but significantly hurts the rele-
vance to the input question, dropping the overall performance.
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in both retrieval recall and downstream QA accu-
racy, establishing a new state-of-the-art. Future
work could extend the scope of the problem to
other tasks that exhibit specific information need
while requiring diversity.
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A Details of DPR+

We use a pretrained dual encoder model from
REALM (Guu et al., 2020) and further finetune
it on the QA datasets using the objective from
DPR (Karpukhin et al., 2020):

L = −log
fq(q)

T fp(p
+)∑

p∈{p+}∪B− fq(q)
T fp(p)

,

where fq and fp are trainable encoders for the ques-
tions and passages, respectively, p+ is a positive
passage (i.e., a passage containing the answer), and
B− is a set of negative passages (i.e., passages
without the answer). As shown in Karpukhin et al.
(2020), a choice of B− is significant for the perfor-
mance. We explore two methods:
Distant negatives follows DPR (Karpukhin et al.,
2020) in using distantly obtained negative passages
as B−. We obtain two distant negative passages
per question: one hard negative, a top prediction
from REALM without finetuning, and one random
negative, drawn from a uniform distribution, both
not containing the answer.
Full negatives considers all passages in Wikipedia
expect p+ as B−, and instead freezes the passage
encoder fp and only finetunes the question encoder
fq. This is appealing because (a) the number and
the quality of the negatives, which both are the sig-
nificant factors for training, are the strict maximum,
and (b) fp from REALM is already good, produc-
ing high quality passage representations without
finetuning. Implementation of this method is feasi-
ble by exploiting extensive model parallelism.

We use distant negatives for multi-answer
datasets and full negatives for NQ as this com-
bination gave the best result.

B Experiment Details

B.1 Data processing for TREC
TREC from Baudiš and Šedivỳ (2015) contains
regular expressions as the answers. We approx-
imate a set of semantically distinct answers as
follows. We first run regular expressions over
Wikipedia to detect valid answer text. If there is
no valid answer found from Wikipedia, or there are
more than 100 valid answers8, we discard the ques-
tion. We then only keep the answers with up to five
tokens, following the notion of short answers from
Lee et al. (2019). Finally, we group the answers

8In most of such cases, the regular expressions are ex-
tremely permissive.

k B # train
steps

γ β

WEBQSP 5 256 10k 1.5 3.0
10 224 1.5 1.5

AMBIGQA 5 256 6k 1.0 2.5
10 224 1.0 2.0

TREC 5 64 3k 1.5 1.5
10 56 1.5 2.0

Table 9: Full hyperparamters for training JPR.

that are the same after normalization and white
space removal. We find that this gives a reasonable
approximation of a set of semantically distinct an-
swers. Note that the data we use is the subset of the
original data because we discarded a few questions.
Statistics are reported in Section 4.1.

Here is an example: a regular ex-
pression from the original data is Long
Island|New\s?York|Roosevelt Field.
All matching answers over Wikipedia in-
clude roosevelt field, new york,
new\xa0york, new\nyork, newyork,
long island. Once the grouping is
done, we have three semantically distinct
answers: (1) roosevelt field, (2) new
york|new\xa0york|new\nyork|newyork,
and (3) long island.

B.2 Details of reranker training

All implementations are based on Tensor-
flow (Abadi et al., 2015) and Mesh Tensor-
flow (Shazeer et al., 2018). All experiments are
done in Google Cloud TPU. We use batch size that
is the maximum that fits one instance of TPU v3-
32 (for WEBQSP and AMBIGQA) or TPU v3-8
(TREC). We use the same batch size for INDEPPR;
for Nogueira et al. (2020), we use the batch size
of 1024. We use the encoder length of 360 and the
decoder length of k (JPR) or 1 (all others). We use
k = {5, 10} for all experiments. We train JPR with
γ = {0, 0.5, 1.0, 1.5} and choose the one with the
best accuracy on the development data. We use a
flat learning rate of 1× 10−3 with warm-up for the
first 500 steps. Full hyperparameters are reported
in Table 9.

For training INDEPPR and JPR, instead of using
all of |B| passages, we use |B|/4 passages by sam-
pling k positive passages and |B|/4 − k negative
passages. We find that this trick allows larger batch
size when using the same hardware, ultimately lead-
ing to substantial performance gains. We also find



7008

k Models WEBQSP AMBIGQA TREC

Dev Test Dev Dev Test

5
INDEPPR 62.4/59.0 65.1/60.9 73.6/69.5 70.7/61.1 74.9/66.4
JPR 69.5/67.9 69.1/65.8 73.7/70.0 69.8/61.4 74.7/66.8

10
INDEPPR 60.1/57.2 61.0/57.4 73.6/69.5 66.4/60.3 68.9/61.5
JPR 70.3/67.2 68.9/65.4 73.7/69.4 70.1/62.6 74.3/66.2

Table 10: Results on passage retrieval in α-NDCG.
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Figure 4: INDEPPR vs. JPR on the development data of three datasets. MRECALL @ 5 is reported. Lines indicate
% of questions in the data. JPR benefits more on questions with 2+ distinct answers.

Algorithm 2 An algorithm to obtain Õ from the
answer set and B.

1: procedure PREPROC(k, {a1...an},B)
2: Õ ← // a set of positive passages
3: Aleft ← {a1...an}
4: for b in B do
5: if b covers any of Aleft then
6: Õ ← Õ.add(b)
7: Aleft ← Aleft− answers in b
8: if |Õ| == k then
9: break

10: return O.toSet()

that assigning indexes of the passages based on a
prior, e.g., ranking from dense retrieval, leads to
significant bias, e.g., in 50% of the cases, the top-1
passage from dense retrieval contains a correct an-
swer. We therefore randomly assign the indexes,
and find this gives significantly better performance.

Algorithm 2 describes how a set of positive pas-
sages Õ used in Section 3.2 is computed during
preprocessing.

B.3 Details of answer generation training

We train the models using a batch size of 32. We
use a decoder length of 20 and 40 for NQ and
multi-answer datasets, respectively. We decode
answers only when they appear in the retrieved
passages, as we want the generated answers to be
grounded by Wikipedia passages. Answers in the
output sequence follow the order they appear in
the passages, except on WEBQSP, where shuffling

the order of the answers improves the accuracy.
All other training details are the same as details of
reranker training.

C Additional Results

We additionally report retrieval performance in α-
NDCG @ k, one of the metrics for diverse retrieval
in IR (Clarke et al., 2008; Sakai and Zeng, 2019).
It is a variant of NDCG (Järvelin and Kekäläinen,
2002), but penalizes retrieval of the same answer.
We refer to Clarke et al. (2008) for a complete
definition. We use α = 0.9.

Results are reported in Table 10. JPR consis-
tently outperforms INDEPPR across all datasets, al-
though the gains are less significant than the gains
in MRECALL. We note that we report α-NDCG fol-
lowing IR literatures, but we think of MRECALL

as a priority, because α-NDCG does not use an
explicit notion of completeness of retrieval of all
answers. It is also a less strict measure than recall
because it gives partial credits to retrieving a subset
of the answers.

Gains with respect to the number of answers
Figure 4 shows gains over INDEPPR on three
datasets with respect to the number of answers.
Overall, gains are larger when the number of an-
swers is larger, especially for WEBQSP and TREC.
For AMBIGQA, the largest gains are when the num-
ber of answers is 2, which is responsible for over
half of multi-answer questions.


