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Abstract

Specialized number representations in NLP
have shown improvements on numerical rea-
soning tasks like arithmetic word problems
and masked number prediction. But humans
also use numeracy to make better sense of
world concepts, e.g., you can seat 5 people in
your room but not 500. Does a better grasp
of numbers improve a model’s understanding
of other concepts and words? This paper stud-
ies the effect of using six different number en-
coders on the task of masked word prediction
(MWP), as a proxy for evaluating literacy. To
support this investigation, we develop Wiki-
Convert, a 900,000 sentence dataset annotated
with numbers and units, to avoid conflating
nominal and ordinal number occurrences. We
find a significant improvement in MWP for
sentences containing numbers, that exponent
embeddings are the best number encoders,
yielding over 2 points jump in prediction ac-
curacy over a BERT baseline, and that these
enhanced literacy skills also generalize to con-
texts without annotated numbers. We release
all code at https://git.io/JuZXn.

1 Introduction

Numbers account for 6.15% of all unique tokens
in English Wikipedia (Jiang et al., 2020), yet NLP
systems have traditionally either removed numbers
during preprocessing or replaced them with a sin-
gle uninformative UNK token. Recent models such
as BERT retain them but learn individual token
embeddings for hundreds of numbers. Moreover,
subword tokenization approaches end up segment-
ing numbers into possibly suboptimal splits, e.g.,
4500 is seen as (4, 500) or (45, 00) depending on
the specific tokenizer used.

The human brain, in contrast, automatically
maps numbers to their approximate magnitude
on the number line (Dehaene, 2011). NLP sys-
tems that fail to account for the scalar values that
numbers denote may correspondingly lack in com-

prehension. Recent work has empirically demon-
strated the inefficacy of existing NLP methods in
numeric reasoning tasks (Wallace et al., 2019). Al-
ternative number representations have been pro-
posed, such as projecting the number’s magnitude
into a vector space (Sundararaman et al., 2020)
or switching to a scientific notation (Zhang et al.,
2020; Berg-Kirkpatrick and Spokoyny, 2020).

BERT Exp

The [mask] weighs 100 lbs. statue bomb
The [mask] weighs 10000 lbs. statue car

Table 1: Numerate language models perform better at
masked word prediction. BERT: Default BERT base-
line. Exp: BERT with exponent embeddings (§2).

We observe that this line of work goes from
literacy to numeracy, i.e., helping language mod-
els gain numerate skills such as simple arith-
metic (Geva et al., 2020), measurement estimation
(Zhang et al., 2020), and masked number predic-
tion (Berg-Kirkpatrick and Spokoyny, 2020). Our
work addresses the converse question: Do alterna-
tive number representations enhance the ability of
language models to understand/predict words?

We investigate this question through experiments
with several representative number encoders, pro-
posed in prior work. We develop and release Wiki-
Convert, a large, novel dataset of number-annotated
sentences, which helps us disentangle the nominal
occurrences of numbers. Our experiments show the
positive impact of numeracy on a language model’s
literacy, as illustrated in Table 1. The default BERT
model is unable to update its predictions for an ob-
ject whose weight is switched from 100 to 10,000.
However, our numeracy-aware method is able to
predict that 100 lbs is a typical weight of a bomb,
while 10,000 lbs is that of a car, due to its under-
standing of magnitudes and their association with
words. We also find this improved literacy in con-
texts without numbers.

https://git.io/JuZXn


Figure 1: Different number encoders as described in Section 2. Notes: † 2.517 is log10 329. ‡ 329 collapses to the
130th bin out of 200 log-scaled bins within our range of [1e− 4, 1e+ 6].

We promise the following contributions:

1. We are the first to show the gain from numer-
acy to literacy: specialized number encoders
help language models better predict words.

2. We release Wiki-Convert, a new dataset con-
taining 900k+ number-annotated sentences.

2 Methods

Our hypothesis is that language models will benefit
from specialized encoders which explicitly make
use of the number’s magnitude. In line with both
cognitive science research (Dehaene, 2011) as well
as recent work on numeric representations within
NLP, we propose that numbers and words be en-
coded differently by a language model. Words can
continue to be subword-tokenized and encoded via
lookup embeddings, but number encoding should
consider the magnitude. We consider three rep-
resentative methods from prior work which make
use of a number’s magnitude to encode it in vector
space, as well as three baselines (marked with *),
each of which is depicted pictorially in Figure 1.
1. Value embeddings (Wallace et al., 2019) project
the scalar magnitude of the number to be encoded
into a vector space of same dimensionality as the
lookup word embeddings. We use a 1-hidden layer
feed forward layer as the projection network, with
a configurable number of hidden neurons.
2. LogValue is the log-scaled extension of Value,
wherein the projection of the scalars is preceded by
a log(·) function (Wallace et al., 2019).

3. Exp or Exponent embeddings are lookup ma-
trices for the exponent part of a scientific number
notation, e.g., 2 in 3.29e2 (Berg-Kirkpatrick and
Spokoyny, 2020). Note how this method collapses
numbers into equally spaced bins on the log scale.
Although the authors used a specific implementa-
tion based on decimal scientific notation, we gener-
alize this method to an arbitrary number of bins.
4. Default* is the usual way that BERT (Devlin
et al., 2019) encode numbers: subword tokeniza-
tion (Schuster and Nakajima, 2012) followed by
lookup embeddings.
5. None* removes all numbers from the sentence
during preprocessing. This is analogous to the
baseline implementation in Berg-Kirkpatrick and
Spokoyny (2020), except they mask the numbers
instead of filtering them out.
6. Num* method learns a single lookup embedding
for all numbers, reflecting how traditional NLP re-
placed any number occurrence with a single token
(Graff et al., 2003), such as UNK or NUM. This
method can be seen as exponent embeddings with
a single bin, into which all numbers are collapsed.

3 Wiki-Convert

Existing benchmarks for numeric language mod-
elling have been extracted automatically using reg-
ular expressions (Spithourakis and Riedel, 2018;
Berg-Kirkpatrick and Spokoyny, 2020; Chen et al.,
2019), and hence have no mechanism to filter out
nominal numbers, such as zip codes, phone num-



Sentence Number Unit

U-559 had a displacement of [NUM] [UNIT] while submerged 871.0 tonne
... temperature ranges from . . . in January to [NUM] [UNIT] in July 73.9 °F

Table 2: Examples sentences from Wiki-Convert along with annotated numbers and units.

bers, or proper nouns (e.g., “Boeing 747”). To al-
low for a more meaningful comparison, we propose
Wiki-Convert, a novel benchmark for numeric lan-
guage modeling extracted from English Wikipedia.

Wiki-Convert consists of a curated set of sen-
tences where the numbers are not extracted by
regex matching, but annotated by humans, i.e., the
editors who wrote the Wikipedia article in the first
place. Specifically, we make use of Convert,1 a
template that contributors have used over 3.2 mil-
lion times in Wikipedia to seamlessly convert be-
tween different units of measurement. For example,
{{Convert|50|mi|km}} is parsed in Wikipedia as
50 miles (80 kilometers). Concretely, we extract
over 3 million Convert occurrences in over 1 mil-
lion sentences from the May 2020 dump of English
Wikipedia. We preprocess them, retaining only the
30 most frequent units (e.g., miles, acres, pounds),
and filter out sentences with multiple number anno-
tations. The end result is a dataset of over 900,000
sentences along with an annotated <number-unit>
tuple. We believe Wiki-Convert can be a useful
benchmark not only for numeric language mod-
elling but also for measurement estimation tasks
(Zhang et al., 2020; Zhou et al., 2020). Example
Wiki-Convert annotations are shown in Table 2.

4 Experiments

We operationalize our research question by fine-
tuning the same pretrained masked language model
(BERT-base-uncased) with each of the six encoding
methods (Section 2) on the task of masked word
prediction. Thus when we say numeracy, we refer
to the ability of the three number-specific encoders
to take into account a number’s magnitude and not
its surface form. And when we say literacy, we
refer to the masked word prediction ability of a
language model, assuming it to be a valid proxy for
downstream performance on other literacy tasks.

The methods encode annotated numbers into
768-dimensional vectors. Words, as well as
numbers which are not annotated, are encoded
by the usual subword tokenization followed by

1https:wikipedia.org/wiki/Help:Convert

lookup embeddings. Value and LogValue meth-
ods each have a single hidden layer with 200 neu-
rons, and exponent embeddings have 200 bins.
We manually tuned the hyperparameter N (for
Value, LogValue, and Exp) by optimizing for val-
idation NLL loss over hundreds of runs, N ∈
{25, 50, 75, 100, 200, 400}.

Besides Wiki-Convert, we also train and test our
methods on Numeracy600K (Chen et al., 2019), a
dataset with financial market comments. For both
datasets, we train on 100k samples, test on 10k,
and use another 10k held-out dev set for config-
uring hyperparameters. For every input sentence,
we randomly mask 15% of its non-number tokens
and use a negative log likelihood loss to optimize
the classifier. We measure perplexity and hit@k,
masking one (non-number) word at a time.

Implementation Details We use HuggingFace
Transformers (Wolf et al., 2020) for pretrained
models and PyTorch Lightning (Falcon et al., 2019)
for finetuning. We only train the masked lan-
guage modeling (MLM) classifier (initialized from
scratch) and the number encoder’s parameters, if
any, while keeping the base transformer weights
frozen. The MLM classifier has a dense layer
(768× 768 weights) and a decoder (768× 30522
weights) to learn output embeddings for each vo-
cabulary item, where 768 is the embedding size for
BERT-base-uncased. Value and Log Value methods
with 200 hidden neurons thus consist of 768× 200
(weight) + 200 (bias) + 200× 1 (weight) extra pa-
rameters. Exponent embeddings with 200 bins con-
sist of 768× 200 extra parameters for the lookup
embeddings. The Num model has a single lookup
embedding, i.e., 768 extra parameters. None and
Default methods do not contain extra parameters.

A dropout of 0.2 was applied to the hidden layer
in Value and LogValue. We do not incorporate the
next sentence prediction loss. While evaluating
models that perplexity scores for masked LMs are
lower than those of causal LMs since the former
use bidirectional context while the latter only see
preceding words. Our compute resources include
sets of four GeForce RTX 2080 Ti GPUs, which

https:wikipedia.org/wiki/Help:Convert


Wiki-Convert Numeracy600K
PPL↓ Hit@1 Hit@5 Hit@20 Hit@100 PPL↓ Hit@1 Hit@5 Hit@20 Hit@100

Default 3.11 65.57 83.86 90.97 95.75 5.07 57.94 73.52 82.84 90.53
Num 3.32 64.04 82.83 90.37 95.28 5.29 57.36 73.24 82.18 90.24
None 3.36 63.73 82.58 90.20 95.28 5.18 57.75 73.78 82.76 90.41

Value 3.28 64.54 83.01 90.51 95.37 4.90 58.90 74.37 83.62 90.66
LValue 3.26 64.67 83.07 90.48 95.43 4.90 58.66 74.68 83.54 90.73
Exp 3.05 66.15 84.07 91.16 95.86 4.63 60.03 75.61 84.38 91.06

Table 3: Results on masked word prediction over two datasets and six methods, averaged over two runs with
different random seeds. PPL = Perplexity. LValue = Log Value. Exp = Exponent embeddings.

take less than twenty minutes to train a model for
10 epochs of 10k training samples (batch size 256
with accumulated gradients over 4 batches). We set
batch size as 1024, the largest that we could fit onto
a single GPU, since we find that large batch sizes
consistently help all methods and baselines. We
train all models for 10 epochs over a training set of
100k sentences, i.e.,∼ 1000 updates, since we find
this regime to allow nearly all runs to converge.

5 Results and Discussion

Our experiments help us answer three key ques-
tions about the effect of numeracy on literacy for
language models:

Does numeracy help improve word predic-
tion when numbers are present? Table 3
shows the perplexities and prediction accuracies
as hit@{1, 5, 20, 100} scores over the test splits
of Wiki-Convert and Numeracy600K. We find
that exponent embeddings are the top scorers on
all dataset-metric combinations, achieving statisti-
cally significant improvements (at 99% confidence)
against the default baseline; see Appendix A for
more details. Numeracy600K is sourced from fi-
nancial domain-specific articles and market com-
ments, hence is the more challenging dataset. This
is evident by the consistently higher perplexities
and lower prediction scores. The Value and Log-

Default Exp

PPL 7.30 ± 0.14 7.05 ± 0.06
H@1 51.12 ± 0.35 51.66 ± 0.26
H@5 67.89 ± 0.33 68.36 ± 0.11
H@20 78.09 ± 0.17 78.59 ± 0.15
H@100 86.98 ± 0.17 87.27 ± 0.11

Table 4: Results on masked word prediction in non-
numeric contexts from Wikicorpus, averaged over three
runs. PPL = Perplexity. Exp = Exponent embeddings.

Value methods also manage to outperform the de-
fault baseline for Numeracy600K but they score
below this baseline for Wiki-Convert. However,
the latter dataset was sourced from Wikipedia,
over which BERT was pretrained using the default
scheme, hence this makes for an unfair comparison.

Does numeracy lead to better literacy, even
in contexts without numbers? We compare expo-
nent embeddings (the best performer) against the
default baseline on 1000 sampled sentences from
the 2006 English dump of Wikicorpus (Reese et al.,
2010) which do not have any annotated numbers.
Table 4 shows that exponent embeddings continue
to show much better results over the baseline.

Where exactly does numeracy help in im-
proving literacy? We analyse examples where pre-
dictions from the default baseline erred while those
from exponent embeddings were correct. Table 5
shows two representative kinds of such cases. The
first three rows are examples of where we expect
number encoders to help. The last row highlights a
much more subtle semantic distinction (elevation
vs altitude) between the two predictions. Our qual-
itative analysis suggests that most errors made by
the default LMs are due to semantic subtleties.

Quantitatively, we further stratify our results by
the kind of masked token: is it a unit (e.g., third row
in Table 5) or not? Table 6 compares exponent em-
beddings against the default baseline, stratified over
two categories of masked tokens: units and others.
We find exponent embeddings to consistently out-
perform the default baseline over both categories.
The majority of gains stem from non-unit tokens
since they are more abundant than units.

The consistency of results over different corpora,
configurations, and random seeds, suggest that spe-
cialized encoders do improve literacy. Such results
warrant experiments on a larger scale, such as pre-
training numerate language models from scratch.



Case Sentence Exp* Default

Intuitive The four petals are about 2 [mask] long and slightly hairy. mm meters
Intuitive ... once [mask] along the hard shoulder of the M11 at 140 mph to avoid traffic? drove walked
Intuitive With its solar panels fully extended it spanned 20 [mask] . meters kilometers
Subtle The Grimsel Pass is a mountain pass in Switzerland ... at an [mask] of 2164 meters. elevation altitude

Table 5: Qualitative error analysis over Wiki-Convert, showing examples where the Default baseline fails and the
Exponent embeddings correctly predict the masked word. Asterisk* indicates: same as ground truth.

Exp Default

Others Units Others Units

N 7187 717 7167 716

PPL 5.22 1.76 5.38 1.95
H@1 52.80 71.06 51.60 72.28
H@5 74.55 98.44 73.85 96.88
H@20 84.98 99.87 84.74 99.09
H@100 92.78 100.00 92.45 99.87

Table 6: Results over a sample of Wiki-Convert test set,
stratified by the kind of token masked.

6 Related Work

Recent NLP work has addressed several aspects of
numeracy (see Thawani et al. (2021) for a recent
survey). Here we review relevant prior work only
on number encoders, as opposed to decoders.

Spithourakis and Riedel (2018) train a language
model to predict both masked words and numbers,
where the masked word prediction is the same
setup as ours, while masked number prediction is
modeled as a regression-penalized task of approx-
imately estimating the number. They experiment
with several number decoders, such as Digit-RNN
and Gaussian Mixture Models, yet always encode
numbers using a Digit-RNN, whereas we experi-
ment with six different number encoders to evaluate
their relative performance on predicting words.

Berg-Kirkpatrick and Spokoyny (2020), akin to
us, employ different number encoders, but for the
task of masked number prediction. Given a sen-
tence with two numbers, they mask one number
and study the effects of different number encoders
for representing the unmasked number, on the task
of approximately estimating the masked number.

Jiang et al. (2020) train numeral embeddings
along with word vectors in a skip-gram setup, us-
ing multiple number encoders. They show that
the simultaneously learned word embeddings score
competitively on intrinsic word similarity tasks.
Our work focuses on this literacy evaluation, re-

vealing that some number encoders not only help
language models perform at par with the default
baseline, but also exceed it in terms of perplexity.

Lastly, Zhang et al. (2020) pretrain BERT-base
with a modified training corpus where all numbers
are converted to scientific notation. This variant
of BERT, called NumBERT, converges to a similar
loss on masked language modeling and next sen-
tence prediction objectives as BERT-base. On lan-
guage understanding tasks like NLI, NumBERT is
only a little worse than BERT-base. They also em-
ploy a LogValue decoder (which they call RGR) to
probe NumBERT embeddings on the task of mea-
surement estimation. Our work instead focuses on
word prediction, but our results converge in show-
ing that better numeric representations do not harm
(instead improve) language modelling abilities.

7 Conclusion

Our work studies the effect of number encoders
on the task of masked word prediction, as a proxy
for the ability of understanding text. We show
that specialized number encoders are helpful in im-
proving the word prediction ability of a language
model, evaluated by perplexity and hit@k scores.
We demonstrate these gains not only over sentences
with annotated numbers but also more generally on
text without numbers. We find exponent embed-
dings to be the best number encoders for masked
word prediction. We see our work as preliminary
evidence that numeracy enhances the literacy of lan-
guage models. To facilitate subsequent work, we
develop and release Wiki-Convert: a novel resource
for number-related NLP with the added advantage
of not conflating nominal with ordinal numbers.

Future Work: We observe that the best perform-
ing number encoder (Exp) is not merely magnitude-
aware (so are Value and LogValue) but is also learnt
by lookup embeddings over collapsed numbers
ranges. So far we explicitly define these ranges
as those on the log scale but we intend to explore
data-driven methods of identifying ranges from raw
text, e.g., 1939-45 as the range of years of WW2.
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9 Ethical Considerations

Our work exclusively revolves around the En-
glish language and the Hindu-Arabic Numeral sys-
tem, which are by no means the only language
/ number systems in use today. We encourage
follow-up work to take other systems into con-
sideration, on the lines of Johnson et al. (2020)
and Nefedov (2020). Wiki-Convert, our dataset
has been extracted from Wikipedia dumps, which
are licensed under the GNU Free Documenta-
tion License (GFDL) and the Creative Commons
Attribution-Share-Alike 3.0 License. The authors
were in no way involved in the annotation pro-
cess, which is contributed to by volunteer Wiki edi-
tors making use of the Convert template. We note,
however, that the units of measurement we filter
out (due to rare occurrences) will cause a cultural
bias towards European and American units, such as
pounds or miles, since they are over-represented in
English Wikipedia. As a remedy, we shall release
extraction scripts to enable researchers in creating
other versions of Wiki-Convert, perhaps even sup-
porting multiple languages.
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A Significance Tests

We attempted multiple kinds of significance tests
for our experiments comparing exponent embed-
dings with the default baseline over Wiki-Convert
test set, each with a different set of assumptions:
Unpaired Student’s T-test: We assume each
masked token prediction to be a binary sample,
marked as 1 if correct, else 0. Exponent embed-
dings accuracy scores are significantly better than
default baseline with p value approximately 2−6.
Note that we do not use a paired t-test since the
total number of available samples or masked tokens
differ slightly (163942 for exponent and 163873 for
default) due to the subword tokenization followed
by the default baseline.
Binomial Distribution: Here we assume each
masked word prediction as a binomial draw, with
base probability equal to the overall accuracy of
the default baseline. We find that the probability
of a method merely as good as the default baseline
obtaining the overall accuracy obtained by expo-
nent embeddings (or more) is below 1−11, or the
p-value is 1−13, thereby demonstrating statistical
significance.
Bootstrapping: This is the least presumptive of
statistical tests. Over 10K bootstrapped runs, we
find that the default and exponent Hit@1 scores
translate to 99% confidence intervals of [65.22,
65.79] and [65.96, 66.62] respectively, which are
non-overlapping, hence the difference is statisti-
cally significant.


