
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6871–6883
November 7–11, 2021. c©2021 Association for Computational Linguistics

6871

CLASSIC: Continual and Contrastive Learning of Aspect
Sentiment Classification Tasks

Zixuan Ke1, Bing Liu1, Hu Xu2 and Lei Shu3∗

1Department of Computer Science, University of Illinois at Chicago
2Facebook AI Research

3Amazon AWS AI
1{zke4,liub}@uic.edu

2huxu@fb.com
3shulindt@gmail.com

Abstract
This paper studies continual learning (CL) of
a sequence of aspect sentiment classification
(ASC) tasks in a particular CL setting called
domain incremental learning (DIL). Each task
is from a different domain or product. The
DIL setting is particularly suited to ASC be-
cause in testing the system needs not know the
task/domain to which the test data belongs. To
our knowledge, this setting has not been stud-
ied before for ASC. This paper proposes a
novel model called CLASSIC. The key novelty
is a contrastive continual learning method that
enables both knowledge transfer across tasks
and knowledge distillation from old tasks to
the new task, which eliminates the need for
task ids in testing. Experimental results show
the high effectiveness of CLASSIC.1

1 Introduction

Continual learning (CL) learns a sequence of tasks
incrementally. After learning a task, its training
data is often discarded (Chen and Liu, 2018). The
CL setting is useful when the data privacy is a con-
cern, i.e., the data owners do not want their data
used by others (Ke et al., 2020b; Qin et al., 2020;
Ke et al., 2021). In such cases, if we want to lever-
age the knowledge learned in the past to improve
the new task learning, CL is appropriate as it shares
only the learned model, but not the data. In our
case, a task is a separate aspect sentiment classifi-
cation (ASC) problem of a product or domain (e.g.,
camera or phone) (Liu, 2012). ASC is stated as
follows: Given an aspect term (e.g., sound quality
in a phone review) and a sentence containing the
aspect (e.g., "The sound quality is poor"), ASC
classifies whether the sentence expresses a positive,
negative, or neutral opinion about the aspect.

There are three CL settings (van de Ven
and Tolias, 2019): Class Incremental Learning

∗ Work was done prior to joining Amazon.
1https://github.com/ZixuanKe/

PyContinual

(CIL), Task Incremental Learning (TIL), and Do-
main Incremental Learning (DIL). In CIL, the tasks
contain non-overlapping classes. Only one model
is built for all classes seen so far. In testing, no task
information is provided. This setting is not suitable
for ASC as ASC tasks have the same three classes.
TIL builds one model for each task in a shared net-
work. In testing, the system needs the task (e.g.,
phone domain) that each test instance (e.g., "The
sound quality is great") belongs to and uses only
the model for the task to classify the instance. Re-
quiring the task information (e.g., phone domain)
is a limitation. Ideally, the user should not have to
provide this information for a test sentence. That
is the DIL setting, i.e., all tasks sharing the same
fixed classes (e.g., positive, negative, and neutral).
In testing, no task information is required.

This work uses the DIL setting to learn a se-
quence of ASC tasks in a neural network. The key
objective is to transfer knowledge across tasks to
improve classification compared to learning each
task separately. An important goal of any CL is to
overcome catastrophic forgetting (CF) (McCloskey
and Cohen, 1989), which means that in learning a
new task, the system may change the parameters
learned for previous tasks and cause their perfor-
mance to degrade. We solve the CF problem as
well; otherwise we cannot achieve improved accu-
racy. However, sharing the classification head for
all tasks in DIL makes cross-task interfere/update
inevitable. Without task information provided in
testing makes DIL even more challenging.

Previous research has shown that one of the most
effective approaches for ASC (Xu et al., 2019; Sun
et al., 2019) is to fine-tune the BERT (Devlin et al.,
2019) using the training data. However, our experi-
ments show that this works poorly for DIL because
the fine-tuned BERT on a task captures highly task
specific features that are hard to use by other tasks.

In this paper, we propose a novel model called
CLASSIC (Continual and contrastive Learning for

https://github.com/ZixuanKe/PyContinual
https://github.com/ZixuanKe/PyContinual


6872

ASpect SentIment Classification) in the DIL set-
ting. Instead of fine-tuning BERT for each task,
which causes serious CF, CLASSIC uses the idea
of Adapter-BERT in (Houlsby et al., 2019) to avoid
changing BERT parameters and yet achieve equally
good results as BERT fine-tuning. A novel contra-
tive continual learning method is proposed (1) to
transfer the shareable knowledge across tasks to
improve the accuracy of all tasks, and (2) to distill
the knowledge (both shareable and not shareable)
from previous tasks to the model of the new task
so that the new/last task model can perform all
tasks, which eliminates the need for task informa-
tion (e.g., task id) in testing. Existing contrastive
learning (Chen et al., 2020) cannot do these.

Task masks are also learned and used to pro-
tect task-specific knowledge to avoid forgetting
(CF). Extensive experiments have been conducted
to show the effectiveness of CLASSIC.

In summary, this paper makes the following con-
tributions: (1) It proposes the problem of domain
continual learning for ASC, which has not been at-
tempted before. (2) It proposes a new model called
CLASSIC that uses adapters to incorporate the pre-
trained BERT into the ASC continual learning, a
novel contrastive continual learning method for
knowledge transfer and distillation, and task masks
to isolate task-specific knowledge to avoid CF.

2 Related Work

Several researchers have studied lifelong or contin-
ual learning for sentiment analysis. Early works
are done under Lifelong Learning (LL) (Silver
et al., 2013; Ruvolo and Eaton, 2013; Chen and Liu,
2014). Two Naive Bayes (NB) approaches were
proposed to improve the new task learning (Chen
et al., 2015; Wang et al., 2019). Xia et al. (2017)
proposed a voting based approach. All these sys-
tems work on document sentiment classification
(DSC). Shu et al. (2017) used LL for aspect extrac-
tion. These works do not use neural networks, and
have no CF problem.

L2PG (Qin et al., 2020) uses a neural network
but improves only the new task learning for DSC.
Wang et al. (2018) worked on ASC, but since they
improve only the new task learning, they did not
deal with CF. Each task uses a separate network.

Existing CL systems SRK (Lv et al., 2019) and
KAN (Ke et al., 2020b) are for DSC in the TIL
setting, not for ASC. B-CL (Ke et al., 2021) is
the first CL system for ASC. It also uses the idea

of Adapter-BERT in (Houlsby et al., 2019) and is
based on Capsule Network. More importantly, B-
CL works in the TIL setting. The proposed CLAS-
SIC system is based on contrastive learning and
works in the DIL setting for ASC, which is a more
realistic setting for practical applications.

General Continual Learning (CL): CL has been
studied extensively in machine learning (Chen and
Liu, 2018; Parisi et al., 2019). Existing work
mainly focuses on dealing with CF. There are sev-
eral main approaches. (1) Regularization-based ap-
proaches such as those in (Kirkpatrick et al., 2016;
Lee et al.) add a regularization in the loss to consol-
idate previous knowledge when learning a new task.
(2) Parameter isolation-based approaches such as
those in (Serrà et al., 2018; Ke et al., 2020a; Abati
et al., 2020) make different subsets of the model
parameters dedicated to different tasks and identify
and mask them out during the training of the new
task. (3) Replay-based approaches such as those
in (Rebuffi et al., 2017; Lopez-Paz and Ranzato,
2017; Chaudhry et al., 2019) retain an exemplar
set of old task training data to help train the new
task. The methods in (Shin et al., 2017; Kamra
et al., 2017; Rostami et al., 2019; He and Jaeger,
2018) build data generators for previous tasks so
that in learning the new task, the generated data for
previous tasks can help avoid CF.

These methods are for overcoming CF in the CIL
or TIL setting of CL. Limited work has been done
on knowledge transfer, which is our goal. There
is little work in the DIL setting except the replay
method DER++ (Buzzega et al., 2020), which saves
some past data. CLASSIC saves no past data.

Contrastive learning (Chen et al., 2020; He et al.,
2020) is the base of our contrastive continual learn-
ing method. However, there is a major difference.
Existing contrastive learning uses various transfor-
mations (e.g., rotation and cropping) of the existing
data (e.g., images) to generate different views of
the data. However, we use the hidden space in-
formation from the previous task models to create
views for explicit knowledge transfer and distilla-
tion. Existing contrastive learning cannot do that.

3 Proposed CLASSIC Method

State-of-the-art ASC systems all use BERT (De-
vlin et al., 2019) or other language models as the
base. The proposed technique CLASSIC adopts
the BERT-based ASC formulation in (Xu et al.,
2019), where the aspect term (e.g., sound quality)



6873

Figure 1: CLASSIC adopts Adapter-BERT (Houlsby
et al., 2019) and its adapters (yellow boxes) in a trans-
former (Vaswani et al., 2017) layer (above (CSC)). An
adapter is a 2-layer fully connected network with a skip-
connection. It is added twice to each Transformer layer.
Only the adapters and layer norm (green boxes) layers
are trainable. The other modules (grey boxes) of BERT
are frozen. (CSC): CSC loss is computed based on the
current task model (details in Sec. 3.4). (CED): CED
loss is computed based on all previous tasks from 1 to
t − 1 (details in Sec. 3.2). (CKS): CKS loss is com-
puted based on previous and current tasks and a task-
based self-attention. Details are given in Sec. 3.3.

and review sentence (e.g., "The sound quality is
great") are concatenated via [SEP]. The sentiment
polarity is predicted on top of the [CLS] token.
As indicated earlier, although BERT can achieve
state-of-the-art performance on a single task, its
architecture and fine-tuning are unsuitable for CL
(see Sec. 1) and perform very poorly (Sec. 4.4). We
found that the BERT adapter idea in (Houlsby et al.,
2019) is a better fit for CL.

BERT Adapter. The idea was given in Adapter-
BERT (Houlsby et al., 2019), which inserts two 2-
layer fully-connected networks (adapters) in each
transformer layer of BERT (Figure 1(CSC)). Dur-
ing training for the end-task, only the adapters and
normalization layers are updated. All the other
BERT parameters are frozen. This is good for CL
as fine-tuning the BERT causes serious forgetting.
Adapter-BERT achieves similar accuracy to the
fine-tuned BERT (Houlsby et al., 2019).

3.1 Overview of CLASSIC

The architecture of CLASSIC is given in Figure 1,
which works in the DIL setting for ASC. It uses
Adapter-BERT to avoid fine-tuning BERT. CLAS-
SIC takes two inputs in training: (1) hidden states
h(t) from the feed-forward layer of a transformer
layer of BERT and (2) task id t (no task id is needed
in testing, see Sec. 3.2.3). The outputs are hidden

states with features for task t to build a classifier.
CLASSIC uses three sub-systems to achieve

its objectives (see Sec. 1): (1) contrastive ensem-
ble distillation (CED) for mitigating CF by dis-
tilling the knowledge of previous tasks to the cur-
rent task model; (2) contrastive knowledge sharing
(CKS) to encourage knowledge transfer; and (3)
contrastive supervised learning on the current task
model (CSC) to improve the current task model
accuracy. We call this framework contrastive con-
tinual learning, inspired by contrastive learning.

Contrastive learning uses multiple views of the
existing data for representation learning to group
similar data together and push dissimilar data far
away, which makes it easier to learn a more accu-
rate classifier. It uses various transformations of the
existing data to create useful views. Given a mini-
batch of N training examples, if we create another
view for each example, the batch will have 2N ex-
amples. We assume that i and j are two views of
the training example. If we use i as the anchor,
(i, j) is called a positive pair. All other pairs (i, k)
for k 6= i are negative pairs. The contrastive loss
for this positive pair is (Chen et al., 2020),

Li,j = − log
exp((hi · hj)/τ)∑2N

k=1 1k 6=j exp((hi · hk)/τ)
, (1)

where the dot product hi · hj is regarded as a sim-
ilarity function in the hidden space and τ is tem-
perature. The final loss for the batch is calculated
across all positive pairs. Eq. 1 is for unsupervised
contrastive learning. It can also be used for su-
pervised contrastive learning, where any two in-
stances/views from the same class form a positive
pair, and any instance of a class and any instance
from other classes form a negative pair.

3.2 Overcoming Forgetting via Contrastive
Ensemable Distillation (CED)

The CED objective is to deal with CF. We first
introduce task masks that CED relies on to preserve
the previous task knowledge/models to be distilled
to the new task model to avoid CF.

3.2.1 Task Masks (TMs)
Given the input hidden states h(t) from the feed-
forward layer of a transformer layer, the adapter
maps them into input k(t)l via a fully-connected
network, where l is the l-th layer of the adapter. A
TM (a “soft” binary mask) m(t)

l is trained for each
task t at each layer l in the adapter during training



6874

Figure 2: Illustration of task masking: a (learnable)
task mask is applied after the activation function to se-
lectively activate a neuron (or feature). The four rows
of each task corresponds to the two fully-connected lay-
ers and their corresponding task masks. In the neurons
before training, those with 0’s are the neurons to be pro-
tected (masked) and those neurons without a number
are free neurons (not used). In the neurons after train-
ing, those with 1’s show neurons that are important for
the current task, which are used as masks for the fu-
ture. Those neurons with more than one color indicate
that they are shared by more than one task. Those 0
neurons without a color are not used by any task.

task t’s classifier, indicating the neurons that are
important for the task in the layer. Here we borrow
the hard attention idea in (Serrà et al., 2018) and
leverage the task id embedding to train the TMs.

For a task id t, its embedding e(t)l consists of dif-
ferentiable parameters that can be learned together
with other parts of the network and it is trained for
each layer in the adapter. To generate the TM m(t)

l

from e
(t)
l , Sigmoid is used as a pseudo-gate and

a positive scaling hyper-parameter s is applied to
help training. The m(t)

l is computed as follows:

m
(t)
l = σ(se

(t)
l ). (2)

Note that the neurons in m(t)
l may overlap with

those in otherm(iprev)
l s from previous tasks showing

some shared knowledge. Given the output of each
layer in the adapter, k(t)l , we element-wise multiply
k
(t)
l ⊗ m

(t)
l . The masked output of the last layer

k(t) is fed to the next layer of the BERT with a skip-
connection (see Figure 2) After learning task t, the
final m(t)

l is saved and added to the set {m(t)
l }.

3.2.2 Training Task Masks (TMs)
For each previous task iprev ∈ Tprev, its TM m

(iprev)
l

indicates which neurons are used by that task and
need to be protected. In learning task t, m(iprev)

l is
used to set the gradient g(t)l on all used neurons of
the layer l to 0. Before modifying the gradient, we
first accumulate all used neurons by all previous
tasks TMs. Since m(iprev)

l is binary, we use max-
pooling to achieve the accumulation:

m
(tac)
l = MaxPool({m(iprev)

l }). (3)

The term m
(tac)
l is applied to the gradient:

g
′(t)
l = g

(t)
l ⊗ (1−m(tac)

l ). (4)

Those gradients corresponding to the 1 entries in
m

(tac)
l are set to 0 while the others remain un-

changed. In this way, neurons in an old task are
protected. Note that we expand (copy) the vector
m

(tac)
l to match the dimensions of g(t)l .
Though the idea is intuitive, e(t)l is not easy to

train. To make the learning of e(t)l easier and more
stable, an annealing strategy is applied (Serrà et al.,
2018). That is, s is annealed during training, in-
ducing a gradient flow and set s = smax during
testing. Eq. 2 approximates a unit step function as
the mask, with m(t)

l → {0, 1} when s → ∞. A
training epoch starts with all neurons being equally
active, which are progressively polarized within the
epoch. Specifically, s is annealed as follows:

s =
1

smax
+ (smax −

1

smax
)
b− 1

B − 1
, (5)

where b is the batch index andB is the total number
of batches in an epoch.

Illustration. In Figure 2, after learning Task
1, we obtain its useful neurons marked in orange
with a “1” in each neuron, which serves as a mask
in learning future tasks. In learning Task 2, those
useful neurons for Task 1 are masked (with “0” in
those orange neurons on the left). The process
also learns the useful neurons for Task 2 marked in
green with “1”s. When Task 3 arrives, all neurons
for Tasks 1 and 2 are masked, i.e., its TM entries are
set to 0 (orange and green before training). After
training Task 3, we see that Task 3 and Task 2
have a shared neuron that is important to both. The
shared neuron is marked in both red and green.

3.2.3 Contrastive Ensemble Distillation
(CED)

The TMs mechanism isolates different parameters
for different tasks. This seems to be perfect for



6875

overcoming forgetting since the previous task pa-
rameters are fixed and cannot be updated by future
tasks. However, since DIL setting does not have
task id in testing, we cannot directly take the ad-
vantage of the TMs. To address this issue, we
propose the CED objective to help distill all pre-
vious knowledge to the current task model so that
we can simply use the last model as the final model
without requiring the task id in testing.

Representation of Previous Tasks. Recall that
we know which neurons/units are for which task i
by reading {m(i)

l }. For each previous task i of the
current task t, we can compute its masked output of
Adapter-BERT h(i)m (the layer before the classifica-
tion head) by applying m(i)

l to the Adapter-BERT.

Ensemble Distillation Loss. We distill the
knowledge of the ensemble of previous tasks into
the single current task model. As we have a shared
classification head for all tasks in DIL, which is ex-
posed to forgetting, the distillation should be based
on the output of the classification head. Specifi-
cally, given a previous task’s Adapter-BERT out-
put h(i)m , we compute the output of the classifica-
tion head using h(i)m , which gives us the logit (un-
normalized prediction) value z(i)m . We then distill
the knowledge using z(i)m and the current task clas-
sification head output z(t)m based on contrastive loss,
inspired by (Tian et al., 2020a),

L(i)

CED =

2N∑
n=1

− log
exp((z

(i)
m:2n−1 · z

(t)
m:2n)/τ)∑2N

j=1 1n 6=j exp((z
(i)
m:n · z(t)m:j)/τ)

,

(6)

where N is the batch size and τ > 0 is an ad-
justable temperature parameter controlling the sep-
aration of classes. The index n is the anchor and
the notation z(i)m:n refers to the n-th sample in z(i)m .
z
(i)
m:2n−1 and z(t)m:2n are the logits of previous and

current task models for the same input sample, a
positive pair in contrastive learning. All the other
possible pairs are negative pairs. Note that for each
anchor i, there is 1 positive pair and 2N − 2 nega-
tive pairs. The denominator has a total of 2N − 1
terms (both the positives and negatives). Note that
the previous task models are fixed and thus can
serve as teacher networks. As we have i ≥ 1 previ-
ous tasks, hence i ≥ 1 teacher networks but only
one current task student network. We adopt the con-
trastive framework by defining multiple pair-wise
contrastive losses between z

(i)
m and z

(t)
m . These

losses are summed up to give the final CED loss,

LCED =

t−1∑
i=1

L(i)CED. (7)

3.3 Transferring Knowledge via Contrastive
Knowledge Sharing (CKS)

CKS aims to capture the shared knowledge among
tasks and help the new task learn a better represen-
tation and better classifier. The intuition of CKS
is as follows: Contrasive learning has the ability
to capture the shared knowledge between differ-
ent views (Tian et al., 2020b; van den Oord et al.,
2018). This is achieved by seeking representation
that are invariant cross similar views. If we can
generate a view from previous tasks that is similar
to the current task, the contrastive loss can capture
the shared knowledge and learn a representation
for knowledge transfer to the new task learning.
Below, we first introduce how to construct such a
view and use it in the CKS objective.

3.3.1 Task-based Self-Attention
Intuitively, the more similar the two tasks are, the
more shared knowledge they have. To achieve our
goal, we should combine all similar tasks as the
shared knowledge view. In order to focus on the
similar tasks, we propose to use task-based self-
attention mechanism to attend to them. Inspired
by (Zhang et al., 2018), given the concatenation
of the output of Adapter-BERT for all previous
and current tasks, h(≤t)m = cat({h(i)m }ti=1), and task
i ≤ t, we first transform it into two feature spaces
via f(h(i)m ) = Wfh

(i)
m , g(h(i)m ) = Wgh

(i)
m (see Fig-

ure 1(CKS)).
To compare the similarity between tasks i ≤ t

and j ≤ t, we calculate similarity sij via

sij = f(h(i)m )T g(h(j)m ). (8)

We then compute the attention score αj,i to indicate
which similar tasks (similar to the current task t)
should be attended to based on the current task data,

αj,i =
exp(sij)∑t
i=1 exp(sij)

. (9)

The attention score is applied to each task in h(≤t)m

to get the attention output oj using weighted sum:

oj = v(
t∑

i=1

αj,iq(h
(i)
m )), (10)



6876

where v(·) and q(·) are two functions for trans-
forming feature spaces: v(h

(i)
m ) = Wvh

(i)
m and

q(h
(i)
m ) =Wqh

(i)
m .

Lastly, we multiply the output of the attention
layer by a scale parameter and add back to the input
feature h(≤t)m . The final output of the h(≤t)CKS is the
sum over all considered tasks,

h
(≤t)
CKS =

t∑
i=1

(γoi + h(i)m ), (11)

where γ is a learnable scalar and it is initialized
to 0. This allows the model to first learn on the
current task and then gradually learn to assign more
weights to other tasks.

3.3.2 Knowledge Sharing Loss
The output of the task-based self-attention provides
us the knowledge sharing view h

(≤t)
CKS . Along with

the output of Adapter-BERT for the current task
h
(t)
m , we can easily perform contrastive learning be-

tween these two views. Note that h(≤t)CKS is computed
based on the current task data and their correspond-
ing class labels, so we give the two views have
the same label and thus we can integrate the label
information in our CKS loss,

LCKS =

N∑
n=1

− 1

Nyn − 1

N∑
j=1

1n≤j1yn=yj

log
exp((h

(≤t)
CKS:n · h

(t)
m:j)/τ)∑N

k=1 1n 6=k exp((h
(≤t)
CKS:n · h

(t)
m:k)/τ)

,

(12)

where N is the batch size and Nyn is the number
of examples in the batch that have the label yn.
h
(≤t)
CKS is the first view while h(t)m is the second view.

The shared knowledge between them represents
the shared knowledge between previous and cur-
rent tasks. Different from the CED loss, the CKS
loss leverages the class information and thus can
have multiple positive pairs decided by whether
two samples share the same class label.

3.4 Contrastive Supervised Learning of the
Current Task (CSC)

We further improve the performance of the current
task by adopting the supervised contrastive loss
(Khosla et al., 2020) on the current task h(t)m ,

LCSC =

N∑
n=1

− 1

Nyn − 1

N∑
j=1

1n≤j1yn=yj

log
exp((h

(t)
m:n · h(t)

m:j)/τ)∑N
k=1 1n6=k exp((h

(t)
m:n · h(t)

m:k)/τ)
.

(13)

Data source Task/domain Train Validation Test

Liu3domain
Speaker 352 44 44
Router 245 31 31

Computer 283 35 36

HL5domain

Nokia6610 271 34 34
Nikon4300 162 20 21

Creative 677 85 85
CanonG3 228 29 29
ApexAD 343 43 43

Ding9domain

CanonD500 118 15 15
Canon100 175 22 22

Diaper 191 24 24
Hitachi 212 26 27

Ipod 153 19 20
Linksys 176 22 23

MicroMP3 484 61 61
Nokia6600 362 45 46

Norton 194 24 25

SemEval14
Rest. 3452 150 1120

Laptop 2163 150 638

Table 1: Number of sentences in each task or dataset.
More detailed statistics are given in Supplementary.

3.5 Final Loss

The final loss is the weighted average of the super-
vised cross entropy (CE) loss, CSC loss, and the
proposed CED and CKS losses:

L = LCE + λ1LCSC + λ2LCED + λ3LCKS. (14)

4 Experiments

This section evaluates the proposed CLASSIC sys-
tem and compares it with both non-continual learn-
ing and continual learning baselines.

4.1 Experiment Datasets

We use 19 ASC datasets to produce sequences of
19 tasks. Each dataset is a set of aspect and sen-
timent annotated review sentences from reviews
of a particular product and represents a task. The
datasets are from 4 sources: (1) HL5Domains (Hu
and Liu, 2004): review sentences of 5 products;
(2) Liu3Domains (Liu et al., 2015): review sen-
tences of 3 products; (3) Ding9Domains (Ding
et al., 2008): review sentences of 9 products; and
(4) SemEval14: review sentences of 2 products -
SemEval 2014 Task 4 for laptop and restaurant. To
be consistent with the existing research (Tang et al.,
2016), sentences with both positive and negative
sentiments about an aspect are not used. Statistics
of the 19 datasets are given in Table 1.



6877

4.2 Compared Baselines

We employ 46 baselines, which include both non-
continual learning and continual learning methods.
Since little work has been done in DIL, we adapt
the recent TIL systems to DIL by merging classifi-
cation heads to form DIL systems.

Non-Continual Learning Baselines: Each of
these baselines builds a separate model for each
task independently, which we call a ONE variant.
It thus has no knowledge transfer or CF. There are
8 ONE variants. Four are created using (1) BERT
with fine-tuning, (2) BERT (Frozen) without fine-
tuning (3) Adapter-BERT (Houlsby et al., 2019)
and (4) W2V (word2vec embeddings trained with
the Amazon review data in (Xu et al., 2018) using
FastText (Grave et al., 2018)). Adding CSC (Con-
trastive Supervised learning of the Current task)
creates another 4 variants. We adopt the ASC net-
work in (Xue and Li, 2018), taking aspect term and
review sentence as input for BERT variants. For
W2V variants, we use their concatenation.

Continual Learning (CL) Baselines. The CL
setting has 38 baselines in 5 categories. The first
category uses a naive CL (NCL) approach. It sim-
ply uses a network to learn all tasks with no mech-
anism to deal with CF or knowledge transfer. Like
ONE, we have 8 NCL variants. The second cate-
gory has 11 baselines created using recent CL meth-
ods KAN (Ke et al., 2020b), SRK (Lv et al., 2019),
HAT (Serrà et al., 2018), UCL (Ahn et al., 2019),
EWC (Kirkpatrick et al., 2016), OWM (Zeng et al.,
2019) and DER++ (Buzzega et al., 2020). KAN
and SRK are for document sentiment classifica-
tion. We use the concatenation of the aspect and
the sentence as input. HAT, UCL, EWC, OWM
and DER++ were originally designed for image
classification. We replace their original image clas-
sification networks with CNN for text classification
(Kim, 2014). HAT is one of the best TIL methods
with almost no forgetting. UCL is a recent TIL
method. EWC is a popular CIL method, which was
adapted for TIL in (Serrà et al., 2018). They are
converted to DIL versions by merging their classi-
fication heads. OWM (Zeng et al., 2019) is a CIL
method, which we also adapt to a DIL method like
EWC. DER++ and SRK can work in the DIL set-
ting. HAT and KAN require task id as an input in
testing and cannot function in the DIL setting. We
create two variants of HAT (and KAN): using the
last model in testing as CLASSIC does or detect-
ing task id using the entropy method ent in (von

Oswald et al., 2020). This category uses BERT
(Frozen) as the base. The third category has 7 base-
lines using Adapter-BERT. KAN and SRK cannot
be adapted to use adapters. The fourth category
uses W2V, which gives another 11 baselines. The
final category has one baseline LAMOL (Sun et al.,
2020), which uses the GPT-2 model.

Evaluation Protocol: We follow the standard CL
evaluation method in (Lange et al., 2019). We first
present CLASSIC a sequence of ASC tasks for it
to learn. Once a task is learned, its training data is
discarded. After all tasks are learned, we test using
the test data of all tasks without giving task ids.

4.3 Hyperparameters

Unless otherwise stated, the adapter uses 2 layers
of fully connected network with dimensions 2000.
The task id embeddings have 2000 dimensions. A
fully connected layer with softmax output is used as
the classification head in the last layer of BERT. We
use 400 for smax in Eq. 5, dropout of 0.5 between
fully connected layers. The temperature τ in each
contrastive objective is set to 1 (see Supplementary
for parameter tuning). The weight of each objective
in Eq. 14 is set to 1. We use the embedding of
[CLS] as the output of Adapter-BERT. For CKS
and CSC, we use l2 normalization on the output of
Adapter-BERT before computing the contrastive
loss. The training of BERT, Adapter-BERT and
CLASSIC follow that of (Xu et al., 2019). We
adopt BERTBASE (uncased). The max length of
the sum of sentence and aspect is 128. We use
Adam optimizer and set the learning rate to 3e-5.
For the SemEval datasets, 10 epochs are used and
for all other datasets, 30 epochs are used based
on results from validation data. All runs use the
batch size 32. For CL baselines, we train all models
with the learning rate of 0.05, early-stop training
when there is no improvement in the validation loss
for 5 epochs and set the batch size to 64. We use
the code provided by their authors and adopt their
original parameters (for EWC, we adopt the variant
implemented by (Serrà et al., 2018)).

4.4 Results and Analysis

As the order of the 19 tasks can influence the fi-
nal results, we randomly select and run 5 task se-
quences and report their average results in Table 2.
We compute both accuracy and Macro-F1, where
Macro-F1 is the main metric as the imbalanced
classes introduce biases in accuracy.



6878

Scenario Category Model Acc. MF1

Non-continual
Learning

BERT
ONE 0.8584 0.7635

ONE+csc 0.8353 0.7388

BERT (Frozen)
ONE 0.7814 0.5813

ONE+csc 0.8265 0.7232

Adapter-BERT
ONE 0.8596 0.7807

ONE+csc 0.8530 0.7516

W2V
ONE 0.7701 0.5189

ONE+csc 0.7761 0.5487

Continual
Learning

BERT
NCL 0.8048 0.7085

NCL+csc 0.7727 0.5807

BERT (Frozen)
NCL 0.8685 0.7873

NCL+csc 0.8693 0.7912

Adapter-BERT
NCL 0.8667 0.7804

NCL+csc 0.8809 0.7847

W2V
NCL 0.8408 0.7455

NCL+csc 0.8396 0.7509

BERT
(Frozen)

KAN —
KAN+last 0.8320 0.7352
KAN+ent 0.8278 0.7243

SRK 0.8391 0.7438
EWC 0.8660 0.7831
UCL 0.8538 0.7690

OWM 0.8611 0.7665
DER++ 0.8753 0.8009

HAT —
HAT+last 0.8473 0.7649
HAT+ent 0.8418 0.7614

Adapter-BERT

EWC 0.8805 0.7875
UCL 0.7123 0.3961

OWM 0.8766 0.7882
DER++ 0.8859 0.7985

HAT —
HAT+last 0.8823 0.7919
HAT+ent 0.8854 0.8245

W2V

KAN —
KAN+last * 0.7123 0.3961
KAN+ent * 0.7123 0.3961

SRK * 0.7123 0.3961
EWC 0.7586 0.6545
UCL 0.8187 0.6965

OWM 0.8256 0.7253
DER++ 0.8459 0.7722

HAT —
HAT+last 0.7599 0.5849
HAT+ent 0.7605 0.5349

LAMOL 0.8891 0.8059
CLASSIC (forward) 0.8886 0.8365

CLASSIC 0.9022 0.8512

Table 2: Accuracy (Acc.) and Macro-F1 (MF1) av-
eraged over 5 random sequences of 19 tasks. KAN
and HAT need task id in testing and thus have no re-
sults. KAN and SRK (RNN based) cannot work with
Adapters. *: KAN and SRK under W2V fail to train.
Standard deviation showing statistical significance,
network size and running time are in Supplementary.

Overall, Table 2 shows that CLASSIC outper-
forms all baselines markedly.

(1). For non-continual learning baselines (ONE
variants), Adapter-BERT performs similarly to
BERT (fine-tuning). Both BERT (Frozen) and
W2V variants are weaker, which is understandable.

(2). Comparing ONE variants and NCL variants,
we see that under W2V, NCL variants are much bet-

ter than ONE variants. This indicates ASC tasks are
similar and have shared knowledge. Catastrophic
forgetting (CF) is not a major issue for W2V.

However, BERT NCL (fine-tuning) is much
worse than BERT ONE and Adapter-BERT NCL
(adapter-tuning) as BERT fine-tuning learns highly
task specific knowledge (Merchant et al., 2020).
While this is desirable for ONE, it is bad for NCL
because task specific knowledge is hard to share
across tasks, which causes forgetting (CF). The
+csc options are poor for BERT ONE and NCL.

(3). Various continual learning (CL) baselines
with BERT (Frozen) are also markedly weaker than
CLASSIC. Baselines that can use Adapter-BERT
are also much poorer than CLASSIC. Note that
SRK and KAN cannot work with Adapter-BERT.

(4). W2V based CL baselines are even weaker.
(5). Since both KAN and HAT need task id in

testing and the DIL setting does not provide task
id, they have no results. But we use the last model
(+last) or use an existing entropy-based method
(+ent) (von Oswald et al., 2020) to automatically
identify the task id for each test instance. These
variants are also markedly weaker than CLASSIC.

(6). LAMOL is based on GPT-2 and its perfor-
mance is weaker than CLASSIC too.

Effectiveness of Knowledge Transfer. The re-
sults under CLASSIC(forward) in Table 2 are the
average results computed using the accuracy/MF1
of each task when it was first learned. The re-
sults under CLASSIC are the final average results
after all tasks are learned, including backward
transfer. By comparing ONE variants and CLAS-
SIC(forward), we can see whether forward transfer
is effective. By comparing CLASSIC(forward) and
CLASSIC, we can see whether the backward trans-
fer can improve further. We see both forward and
backward transfers are effective.

4.5 Ablation Experiments

The results of ablation experiments are given in Ta-
ble 3. “-CKS”, “-CSC” and “-CED” mean without
constrastive knowledge sharing, contrastive super-
vised learning on the current task and contrastive
ensemble distillation, respectively. Table 3 clearly
shows that each of the components is effective and
they work in concert to produce the best final result.

5 Conclusion

This paper studied domain incremental learning
(DIL) of a sequence of ASC tasks without knowing



6879

Model Acc. MF1
CLASSIC 0.9022 0.8512
-CSC 0.8872 0.8007
-CKS 0.8915 0.8232
-CED 0.8828 0.7934
-CKS,-CED 0.8864 0.7969
-CKS,-CSC 0.8926 0.8346
-CED,-CSC 0.8868 0.8032
-CED,-CKS,-CSC 0.8823 0.7919

Table 3: Ablation experiment results.

the task ids in testing. Our method CLASSIC uses
adapters to exploit BERT and to deal with BERT
CF in fine-tuning, and the proposed contrastive
continual learning to transfer knowledge across
tasks and to distill knowledge from previous tasks
to the current task so that the last model can be
used for all tasks in testing and no task id is needed.
Our experimental results show that CLASSIC out-
performs the state-of-the-art baselines.

Finally, we believe that the idea of CLASSIC
is also applicable to some other NLP tasks. For
example, in named entity extraction, we can build
a better model to extract the same types of entities
from text of different domains. Each domain works
on the same task but no data sharing (the data may
be from different clients with privacy concerns).
Since this is an extraction task, the backbone model
needs to be switched to an extraction model.

Acknowledgments

This work was supported in part by two grants from
National Science Foundation: IIS-1910424 and
IIS-1838770, a DARPA Contract HR001120C0023,
and a research gift from Northrop Grumman.

References
Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Si-

mone Calderara, Rita Cucchiara, and Babak Ehte-
shami Bejnordi. 2020. Conditional channel gated
networks for task-aware continual learning. In
CVPR-2020, pages 3931–3940.

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Tae-
sup Moon. 2019. Uncertainty-based continual learn-
ing with adaptive regularization. In NIPS-2019.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Da-
vide Abati, and Simone Calderara. 2020. Dark expe-
rience for general continual learning: a strong, sim-
ple baseline. arXiv preprint arXiv:2004.07211.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with A-GEM. In ICLR.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Zhiyuan Chen and Bing Liu. 2014. Topic modeling
using topics from many domains, lifelong learning
and big data. In ICML.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine
learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 12(3):1–207.

Zhiyuan Chen, Nianzu Ma, and Bing Liu. 2015. Life-
long learning for sentiment classification. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
holistic lexicon-based approach to opinion mining.
In Proceedings of the 2008 international conference
on web search and data mining.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In LREC.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9729–9738.

Xu He and Herbert Jaeger. 2018. Overcoming catas-
trophic interference using conceptor-aided back-
propagation. In ICLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In ICML.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of ACM
SIGKDD.

Nitin Kamra, Umang Gupta, and Yan Liu. 2017. Deep
generative dual memory network for continual learn-
ing. CoRR.

Zixuan Ke, Bing Liu, and Xingchang Huang. 2020a.
Continual learning of a mixed sequence of similar
and dissimilar tasks. In NeurIPS.

Zixuan Ke, Bing Liu, Hao Wang, and Lei Shu. 2020b.
Continual learning with knowledge transfer for sen-
timent classification. In ECML-PKDD.

Zixuan Ke, Hu Xu, and Bing Liu. 2021. Adapting bert
for continual learning of a sequence of aspect senti-
ment classification tasks. In NAACL.



6880

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ra-
malho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia
Hadsell. 2016. Overcoming catastrophic forgetting
in neural networks. CoRR.

Matthias De Lange, Rahaf Aljundi, Marc Masana, and
Tinne Tuytelaars. 2019. Continual learning: A com-
parative study on how to defy forgetting in classifi-
cation tasks. CoRR.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo
Ha, and Byoung-Tak Zhang. Overcoming catas-
trophic forgetting by incremental moment matching.
In NIPS.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technolo-
gies, 5(1):1–167.

Qian Liu, Zhiqiang Gao, Bing Liu, and Yuanlin Zhang.
2015. Automated rule selection for aspect extraction
in opinion mining. In IJCAI.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
NIPS.

Guangyi Lv, Shuai Wang, Bing Liu, Enhong Chen, and
Kun Zhang. 2019. Sentiment classification by lever-
aging the shared knowledge from a sequence of do-
mains. In DASFAA.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick,
and Ian Tenney. 2020. What happens to BERT em-
beddings during fine-tuning? CoRR.

German Ignacio Parisi, Ronald Kemker, Jose L. Part,
Christopher Kanan, and Stefan Wermter. 2019. Con-
tinual lifelong learning with neural networks: A re-
view. Neural Networks.

Qi Qin, Wenpeng Hu, and Bing Liu. 2020. Using the
past knowledge to improve sentiment classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 1124–1133.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H. Lampert. 2017. icarl:
Incremental classifier and representation learning.
In CVPR.

Mohammad Rostami, Soheil Kolouri, and Praveen K.
Pilly. 2019. Complementary learning for overcom-
ing catastrophic forgetting using experience replay.
In IJCAI.

Paul Ruvolo and Eric Eaton. 2013. ELLA: an efficient
lifelong learning algorithm. In ICML, pages 507–
515.

Joan Serrà, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. 2018. Overcoming catastrophic forget-
ting with hard attention to the task. In ICML.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. In NIPS.

Lei Shu, Hu Xu, and Bing Liu. 2017. Lifelong learning
CRF for supervised aspect extraction. In ACL.

Daniel L. Silver, Qiang Yang, and Lianghao Li. 2013.
Lifelong machine learning systems: Beyond learn-
ing algorithms. In Lifelong Machine Learning, Pa-
pers from the 2013 AAAI Spring Symposium, Palo
Alto, California, USA, March 25-27, 2013.

Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. Uti-
lizing BERT for aspect-based sentiment analysis via
constructing auxiliary sentence. In NAACL.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.
2020. LAMOL: language modeling for lifelong lan-
guage learning. In ICLR.

Duyu Tang, Bing Qin, and Ting Liu. 2016. Aspect
level sentiment classification with deep memory net-
work. In EMNLP.

Yonglong Tian, Dilip Krishnan, and Phillip Isola.
2020a. Contrastive representation distillation. In
ICLR.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. 2020b. What
makes for good views for contrastive learning? In
NeurIPS 2020.

Gido M. van de Ven and Andreas S. Tolias.
2019. Three scenarios for continual learning.
https://arxiv.org/abs/1904.07734.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. CoRR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Johannes von Oswald, Christian Henning, João Sacra-
mento, and Benjamin F Grewe. 2020. Continual
learning with hypernetworks. In ICLR.

Hao Wang, Bing Liu, Shuai Wang, Nianzu Ma, and
Yan Yang. 2019. Forward and backward knowledge
transfer for sentiment classification. In ACML.



6881

Shuai Wang, Guangyi Lv, Sahisnu Mazumder, Geli Fei,
and Bing Liu. 2018. Lifelong learning memory net-
works for aspect sentiment classification. In IEEE
International Conference on Big Data.

Rui Xia, Jie Jiang, and Huihui He. 2017. Distantly su-
pervised lifelong learning for large-scale social me-
dia sentiment analysis. IEEE Trans. Affective Com-
puting, 8(4):480–491.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
BERT post-training for review reading compre-
hension and aspect-based sentiment analysis. In
NAACL-HLT.

Hu Xu, Sihong Xie, Lei Shu, and Philip S. Yu. 2018.
Dual attention network for product compatibility
and function satisfiability analysis. In AAAI.

Wei Xue and Tao Li. 2018. Aspect based sentiment
analysis with gated convolutional networks. In ACL.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu.
2019. Continuous learning of context-dependent
processing in neural networks. Nature Machine In-
telligence.

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas,
and Augustus Odena. 2018. Self-attention genera-
tive adversarial networks.

A Appendix

A.1 Detailed Datasets Statistics
Table 1 in the main paper has already showed the
number of examples in each dataset. Here we pro-
vide additional details about aspects and sentiments.
The detailed statistics of the 19 datasets or tasks
are given in Table 4 here.

A.2 Standard Deviations
Table 5 reports the standard deviation of CLASSIC
and the considered baselines over 5 runs with ran-
dom seeds using one random task sequence. We
can see the results are stable.

A.3 CLASSIC in TIL Scenario
Table 6 shows that our proposed method CLASSIC
can be adapted for the Task Incremental Learning
(TIL) setting of continual learning, which requires
the task ids during testing, but our DIL setting
does not require. We can observe that CLASSIC
in the TIL setting also outperforms existing TIL
baselines.

A.4 Execution Time and Number of
Parameters

Table 7 reports the number of parameters (regard-
less of trainable or non-trainable) and the training

execution times of different models. The execution
time is computed as the average training time per
task. Our experiments were run on GeForce GTX
2080 Ti with 11G GPU memory.

A.5 Hyper-parameters and Validation
Results

Sec. 4.3 in the main paper reported the best hyper-
parameters. Regarding hyper-parameter search, we
performed grid search on the temperature param-
eter τ within {0.03, 0.5, 0.8, 1}, batch size within
{32, 64, 128}, and smax within {140, 200, 300,
400}. We also experimented with whether to apply
the l2 normalization before contrast and whether to
use the logits or the second last layer to do the con-
trast. We did not save the validation results but the
reported test results in the paper are given by the
parameters with the best validation performance.
We encourage the reviewers and interested readers
to play with the submitted code.



6882

Dataset Domains Training Validating Testing

Liu3domain
Speaker 233 S./352 A./287 P./65 N./0 Ne. 30 S./44 A./35 P./9 N./0 Ne. 38 S./44 A./40 P./4 N./0 Ne.
Router 200 S./245 A./142 P./103 N./0 Ne. 24 S./31 A./19 P./12 N./0 Ne. 22 S./31 A./24 P./7 N./0 Ne.

Computer 187 S./283 A./218 P./65 N./0 Ne. 25 S./35 A./23 P./12 N./0 Ne. 29 S./36 A./29 P./7 N./0 Ne.

HL5domain

Nokia6610 209 S./271 A./198 P./73 N./0 Ne. 29 S./34 A./30 P./4 N./0 Ne. 28 S./34 A./25 P./9 N./0 Ne.
Nikon4300 131 S./162 A./135 P./27 N./0 Ne. 15 S./20 A./18 P./2 N./0 Ne. 15 S./21 A./19 P./2 N./0 Ne.

Creative 582 S./677 A./422 P./255 N./0 Ne. 68 S./85 A./42 P./43 N./0 Ne. 70 S./85 A./52 P./33 N./0 Ne.
CanonG3 190 S./228 A./180 P./48 N./0 Ne. 25 S./29 A./21 P./8 N./0 Ne. 24 S./29 A./24 P./5 N./0 Ne.
ApexAD 281 S./343 A./146 P./197 N./0 Ne. 35 S./43 A./16 P./27 N./0 Ne. 28 S./43 A./31 P./12 N./0 Ne.

Ding9domain

CanonD500 103 S./118 A./96 P./22 N./0 Ne. 11 S./15 A./14 P./1 N./0 Ne. 13 S./15 A./11 P./4 N./0 Ne.
Canon100 137 S./175 A./123 P./52 N./0 Ne. 19 S./22 A./20 P./2 N./0 Ne. 16 S./22 A./21 P./1 N./0 Ne.

Diaper 166 S./191 A./143 P./48 N./0 Ne. 22 S./24 A./18 P./6 N./0 Ne. 24 S./24 A./22 P./2 N./0 Ne.
Hitachi 152 S./212 A./153 P./59 N./0 Ne. 23 S./26 A./19 P./7 N./0 Ne. 23 S./27 A./14 P./13 N./0 Ne.

Ipod 124 S./153 A./101 P./52 N./0 Ne. 18 S./19 A./14 P./5 N./0 Ne. 19 S./20 A./15 P./5 N./0 Ne.
Linksys 152 S./176 A./128 P./48 N./0 Ne. 19 S./22 A./13 P./9 N./0 Ne. 20 S./23 A./16 P./7 N./0 Ne.

MicroMP3 384 S./484 A./340 P./144 N./0 Ne. 42 S./61 A./48 P./13 N./0 Ne. 51 S./61 A./39 P./22 N./0 Ne.
Nokia6600 298 S./362 A./244 P./118 N./0 Ne. 26 S./45 A./32 P./13 N./0 Ne. 39 S./46 A./30 P./16 N./0 Ne.

Norton 168 S./194 A./54 P./140 N./0 Ne. 17 S./24 A./15 P./9 N./0 Ne. 24 S./25 A./5 P./20 N./0 Ne.

SemEval14
Rest 1893 S./3452 A./2094 P./779 N./579 Ne. 84 S./150 A./70 P./26 N./54 Ne. 600 S./1120 A./728 P./196 N./196 Ne.

Laptop 1360 S./2163 A./930 P./800 N./433 Ne. 98 S./150 A./57 P./66 N./27 Ne. 411 S./638 A./341 P./128 N./169 Ne.

Table 4: Statistics of the datasets. S.: number of sentences; A: number of aspects; P., N., and Ne.: number of
positive, negative and neutral aspect polarities respectively. Note that SemEval14 has 3 classes of polarities while
the others have only 2 classes (positive and negative) because in these datasets, those sentences without sentiment
(neutral) are not annotated with aspects. Thus, we cannot use them for aspect sentiment classification (ASC).



6883

Scenario Category Model
DIL

Acc. MF1

Non-continual
Learning

BERT
ONE ±0.0145 ±0.0300

ONE+csc ±0.0127 ±0.0336

BERT (Frozen)
ONE ±0.0100 ±0.0024

ONE+csc ±0.0140 ±0.0149

Adapter-BERT
ONE ±0.0170 ±0.0379

ONE+csc ±0.0094 ±0.0327

W2V
ONE ±0.0129 ±0.0206

ONE+csc ±0.0092 ±0.0079

Continual
Learning

BERT
NCL ±0.0137 ±0.0228

NCL+csc ±0.0266 ±0.0328

BERT (Frozen)
NCL ±0.0065 ±0.0110

NCL+csc ±0.0085 ±0.0116

Adapter-BERT
NCL ±0.0102 ±0.0128

NCL+csc ±0.0102 ±0.0130

W2V
NCL ±0.0192 ±0.0230

NCL+csc ±0.0121 ±0.0108

BERT
(Frozen)

KAN —
KAN+last ±0.0032 ±0.0045
KAN+ent ±0.0056 ±0.0065

SRK ±0.0069 ±0.0099
EWC ±0.0094 ±0.0093
UCL ±0.0084 ±0.0100

OWM ±0.0092 ±0.0140
DER++ ±0.0096 ±0.0120

HAT —
HAT+last ±0.0095 ±0.0098
HAT+ent ±0.0029 ±0.0097

Adapter-BERT

EWC ±0.0110 ±0.0110
UCL ±0.0000 ±0.0000

OWM ±0.0052 ±0.0109
DER++ ±0.0137 ±0.0179

HAT —
HAT+last ±0.0038 ±0.0055
HAT+ent ±0.0059 ±0.0106

W2V

KAN —
KAN+last ±0.0000 ±0.0000
KAN+ent ±0.0000 ±0.0000

SRK ±0.0000 ±0.0000
EWC ±0.0059 ±0.0076
UCL ±0.0097 ±0.0128

OWM ±0.0077 ±0.0081
DER++ ±0.0075 ±0.0041

HAT —
HAT+last ±0.0053 ±0.0082
HAT+ent ±0.0103 ±0.0199

LAMOL ±0.0027 ±0.0062
CLASSIC ±0.0048 ±0.0101

Table 5: Standard deviations. HAT and KAN have no
results because they require task ids in testing, but in
the DIL setting, no task ids are provided in testing.

Scenario Category Model
TIL DIL

Acc. MF1 Acc. MF1

Non-continual
Learning

BERT
ONE 0.8584 0.7635 0.8584 0.7635

ONE+csc 0.8353 0.7388 0.8353 0.7388

BERT (Frozen)
ONE 0.7814 0.5813 0.7814 0.5813

ONE+csc 0.8265 0.7232 0.8265 0.7232

Adapter-BERT
ONE 0.8596 0.7807 0.8596 0.7807

ONE+csc 0.8530 0.7516 0.8530 0.7516

W2V
ONE 0.7701 0.5189 0.7701 0.5189

ONE+csc 0.7761 0.5487 0.7761 0.5487

Continual
Learning

BERT
NCL 0.4960 0.4308 0.8048 0.7085

NCL+csc 0.5939 0.3416 0.7727 0.5807

BERT (Frozen)
NCL 0.8551 0.7664 0.8685 0.7873

NCL+csc 0.8783 0.8271 0.8693 0.7912

Adapter-BERT
NCL 0.5403 0.4481 0.8667 0.7804

NCL+csc 0.8630 0.8090 0.8809 0.7847

W2V
NCL 0.8269 0.7356 0.7736 0.6765

NCL+csc 0.8421 0.7418 0.8396 0.7509

BERT
(Frozen)

KAN 0.8549 0.7738 —
KAN+last — 0.8320 0.7352
KAN+ent — 0.8278 0.7243

SRK 0.8476 0.7852 0.8391 0.7438
EWC 0.8637 0.7452 0.8660 0.7831
UCL 0.8389 0.7482 0.8538 0.7690

OWM 0.8702 0.7931 0.8611 0.7665
DER++ 0.8427 0.7508 0.8753 0.8009

HAT 0.8674 0.7816 —
HAT+last — 0.8473 0.7649
HAT+ent — 0.8418 0.7614

Adapter-BERT

EWC 0.5630 0.4958 0.8805 0.7875
UCL 0.6446 0.3664 0.7123 0.3961

OWM 0.7299 0.6651 0.8766 0.7882
DER++ 0.4763 0.3554 0.8859 0.7985

HAT 0.8614 0.7852 —
HAT+last — 0.8823 0.7919
HAT+ent — 0.8854 0.8245

W2V

KAN 0.7206 0.4001 —
KAN+last — 0.7123 0.3961
KAN+ent — 0.7123 0.3961

SRK 0.7101 0.3963 0.7123 0.3961
EWC 0.8416 0.7229 0.7586 0.6545
UCL 0.8441 0.7599 0.8187 0.6965

OWM 0.8270 0.7118 0.8256 0.7253
DER++ 0.8327 0.6993 0.8459 0.7722

HAT 0.8083 0.6363 —
HAT+last — 0.7599 0.5849
HAT+ent — 0.7605 0.5349

LAMOL 0.8891 0.8059 0.8891 0.8059
CLASSIC (forward) 0.8897 0.8338 0.8886 0.8365

CLASSIC 0.8942 0.8393 0.9022 0.8512

Table 6: Accuracy (Acc.) and Macro-F1 (MF1) aver-
aged over 5 random sequences of 19 tasks.

Scenarios Category Model #parameters (M) Running time (s)

Non-continual
Learning

BERT ONE 109.5 600.0
BERT (Frozen) ONE 110.4 500.0
Adapter-BERT ONE 183.3 684.0

W2V ONE 6.7 189.0

Continual
Learning

BERT NCL 109.5 600.0
BERT (Frozen) NCL 110.4 500.0
Adapter-BERT NCL 183.3 684.0

W2V NCL 6.7 189.0

BERT (frozen)

KAN 116.6 550.0
SRK 117.8 600.0
EWC 110.4 580.0
UCL 110.4 638.0

OWM 110.6 635.0
DER++ 115.0 650.0

HAT 111.3 610.0

Adapter-BERT

EWC 183.3 840.0
UCL 183.4 870.0

OWM 184.4 780.0
DER++ 184.0 880.0

HAT 185.2 840.0

W2V

KAN 7.0 150.0
SRK 7.2 160.0
EWC 6.2 162.0
UCL 6.2 135.0

OWM 6.4 125.0
DER++ 6.8 135.0

HAT 6.4 180.0
LAMOL 124.4 650.0

CLASSIC 185.2 900.0

Table 7: Network size (number of parameters, regard-
less of trainable or non-trainable) and average training
execution time per task of each model in seconds.


