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Abstract

While much research has been done in text-
to-image synthesis, little work has been done
to explore the usage of linguistic structure
of the input text. Such information is even
more important for story visualization since
its inputs have an explicit narrative structure
that needs to be translated into an image se-
quence (or visual story). Prior work in this
domain has shown that there is ample room
for improvement in the generated image se-
quence in terms of visual quality, consistency
and relevance. In this paper, we first ex-
plore the use of constituency parse trees us-
ing a Transformer-based recurrent architecture
for encoding structured input. Second, we
augment the structured input with common-
sense information and study the impact of this
external knowledge on the generation of vi-
sual story. Third, we also incorporate visual
structure via bounding boxes and dense cap-
tioning to provide feedback about the char-
acters/objects in generated images within a
dual learning setup. We show that off-the-
shelf dense-captioning models trained on Vi-
sual Genome can improve the spatial structure
of images from a different target domain with-
out needing fine-tuning. We train the model
end-to-end using intra-story contrastive loss
(between words and image sub-regions) and
show significant improvements in visual qual-
ity. Finally, we provide an analysis of the lin-
guistic and visuo-spatial information.1

1 Introduction

Story Visualization is an emerging area of research
with several potentially interesting applications
such as visualization of educational materials, as-
sisting artists with web-comic creation etc. Each
story consists of a sequence of images along with a
sequence of captions describing the content of the

1Code and data: https://github.com/
adymaharana/VLCStoryGan.
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Petty asks whether it is because of cookies.
Eddy denies with his hands.
Petty hands her cookies to Eddy.
Petty gives her cookies to Loopy and Crong.
Crong sighs.

Figure 1: Example of Generated Images from our
model VLC-STORYGAN and Duco-StoryGAN (Ma-
harana et al., 2021) for the PororoSV dataset.

images. The goal of the task is to reproduce the
images given the captions. It is more challenging
than conventional text-to-image generation (Reed
et al., 2016) because the generative model needs
to identify the narrative structure expressed in the
sequence of captions and translate it into a story of
images. Some critical features of a good story in-
clude consistent character and background appear-
ances, relevance to individual captions as well as
overall story, and coherent narrative. While recent
text-to-image models (Ramesh et al., 2021; Cho
et al., 2020; Li et al., 2019a) are successfully gen-
erating high-quality images, they are not directly
designed for narrative understanding over sequen-
tial text. Hence, story visualization necessitates
independent research towards developing genera-
tive models for the task. In this paper, we explore
the use of visuo-linguistic structured inputs and
outputs for improving story visualization. Towards
this end, we propose (V)isuo-spatial, (L)inguistic
& (C)ommonsense i.e. VLC-STORYGAN which
(1) uses constituency parse trees and commonsense
knowledge as input using structure-aware encoders,
(2) leverages a pretrained dense captioning model
for additional position and semantic information,

https://github.com/adymaharana/VLCStoryGan
https://github.com/adymaharana/VLCStoryGan
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and (3) is trained using intra-story contrastive loss
for maximizing global semantic alignment between
input captions and generated visual stories.

Grammatical structures like constituency parse
trees are potentially rich sources of information
for visualizing relations between objects (or char-
acters), their actions, and their attribute (property)
modifiers. Wang et al. (2019); Nguyen et al. (2020);
Xiao et al. (2017); Cirik et al. (2018) demonstrate
that inducing such tree-structures within the en-
coder guides words to compose the meaning of
longer phrases hierarchically and improves various
tasks like masked language modeling, translation,
visual grounding of language etc., suggesting po-
tential gains in other tasks. Most text-to-image
synthesis as well as story visualization models (Li
et al., 2019c; Maharana et al., 2021) perform flat
processing over free-text captions using LSTM
or Transformer-based encoders. Hence, in order
to leverage the grammatical information packed
in constituency parse trees, we propose a novel
Memory-Augmented Recurrent Tree-Transformer
(MARTT) to encode captions and promote for-
ward flow of hierarchical information across the se-
quence of captions for each story. Further, we find
that input captions in story visualization lack details
about the visual elements in the image. Hence, we
augment the captions with external knowledge. For
instance, when one caption mentions snow while
the other mentions icy roads, we provide the knowl-
edge that both are related to cold weather, encour-
aging the model to learn similar representations for
either of the phrases.

Dual learning has served as an effective method
for promoting desirable characteristics in target out-
put for both text-to-image generation (Qiao et al.,
2019) and story visualization (Maharana et al.,
2021). Song et al. (2020) use image segmenta-
tion to preserve character shapes while Maharana
et al. (2021) use video captioning for global align-
ment between the input caption and the generated
sequence of frames. Each of these auxiliary tasks
generate uni-modal outputs, dealing either with im-
age or text. In a bid to combine the benefits of
learning signals from both visuo-spatial and lan-
guage modalities, we propose the use of dense cap-
tioning as the dual task, which has proven useful as
a source of complementary information for many
vision-language tasks (Wu et al., 2019; Kim et al.,
2020; Li et al., 2019b). Dense captioning models
provide regional bounding boxes for objects in the

input image and also describe the region. By using
these outputs for dual learning feedback for story
visualization, the generative model receives a sig-
nal rich in spatial as well as semantic information.
The spatial signal is especially important for our
task since the input captions do not contain any
specifications about the shape, size or position of
characters within the story. Further, we find that
off-the-shelf dense captioning models, which are
trained on realistic images from Visual Genome,
transfer well to a markedly different domain like
cartoon and can be used to provide visuo-spatial
feedback without finetuning on target domain.

Finally, we want the model to recognize the sub-
tle differences between frames in a story and gener-
ate relevant images that fit into a coherent narrative.
Hence, we employ contrastive loss between image-
regions and words in the captions at each timestep
to improve semantic alignment between the caption
and image. Adjacent frames in a story often contain
subtle differences, as can be seen in an example in
Fig. 1. We modify the region-word contrastive loss
proposed in Zhang et al. (2021) for story visual-
ization by sampling negative images from adjacent
frames, forcing the model to recognize the differ-
ence between frames. Overall, our contributions
are: (1) We propose VLC-STORYGAN to use lin-
guistic information, augmented with commonsense
knowledge, for conditional image synthesis. (2)
use dense-captioning to provide complementary
positional and semantic information during train-
ing and show that off-the-shelf models trained on
Visual Genome can be effective without fine-tuning
on the target domain. (3) propose intra-story con-
trastive loss between image regions and words to
improve semantic alignment between captions and
visual stories. (4) achieve strong improvements
in visual quality compared to previous state-of-art,
and show the usefulness of structured inputs and
outputs to provide insights for future work.

2 Related Work

Story Visualization. The task of story visualiza-
tion and the model StoryGAN was introduced by Li
et al. (2019c). Zeng et al. (2019) and Li et al. (2020)
used textual alignment modules and Weighted Ac-
tivation Degrees respectively, to improve perfor-
mance of StoryGAN. Song et al. (2020) add a
figure-ground generator and discriminator to pre-
serve the shape of characters. Maharana et al.
(2021) demonstrate the effectiveness of video cap-
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tioning as a dual task for story visualization and pro-
pose additional evaluation metrics. Notable recent
models in the related field of text-to-image gener-
ation are large (Brock et al., 2018), trained on gi-
gantic datasets (Ramesh et al., 2021) and are based
on Transformer architectures Jiang et al. (2021).
Mask-to-image generation modules (Koh et al.,
2021) have proven effective for smaller datasets
containing detailed captions and additional infor-
mation for aligning image sub-regions to words
within captions (Pont-Tuset et al., 2020). This is
in sharp contrast to the datasets available for story
visualization, which have been repurposed from
video QA datasets and hence, contain short descrip-
tions. Our work is based on exploring structured
inputs and outputs for conditional image synthesis
which has been largely unexplored in text-to-image
synthesis and story visualization.

Story Understanding & Commonsense. Iyyer
et al. (2016) introduced Relationship Modelling
Networks to extract evolving relationship trajecto-
ries between two characters in a novel. Chaturvedi
et al. (2017) use latent variables to weigh pre-
defined semantic aspects like topical consistency
to improve encoding for story completion. Guan
et al. (2019); Chen et al. (2019) augment story en-
codings with structured commonsense knowledge
to improve story ending generation. We focus on
the use of structured commonsense as well as gram-
matical trees to improve story encoding for the end
goal of visualization.

Tree Encoder. Tree structures have traditionally
been encoded using Tree LSTMs (Tai et al., 2015;
Miwa and Bansal, 2016; Yang et al., 2017b,a). In
recent work, Wang et al. (2019) enforce a hierarchi-
cal prior in the self-attention layer of Transformer
(Vaswani et al., 2017) and Harer et al. (2019) use
a parent-sibling tree convolution block to perform
structure-aware encoding. Nguyen et al. (2020)
use sub-tree masking and hierarchical accumula-
tion to improve machine translation. We propose a
simpler Tree-Transformer architecture, augmented
with memory units (Lei et al., 2020) for recurrence.

Contrastive Loss. Xu et al. (2018) first pro-
posed the contrastive loss in text-to-image synthe-
sis through the Deep Attentional Multimodal Sim-
ilarity Model (DAMSM). ContraGAN (Kang and
Park, 2020) performs minimization of contrastive
loss between multiple image embeddings in the
same batch, in addition to class embeddings (Miy-

ato and Koyama, 2018). Zhang et al. (2021) com-
bine inter-modality and intra-modality contrastive
losses and observe complementary improvements.
We adapt inter-modal loss for story visualization
by sampling negatives from adjacent frames.

Dense Captioning. Dense captioning jointly lo-
calizes semantic regions and describes these re-
gions with short phrases in natural language (John-
son et al., 2016). Wu et al. (2019) and (Kim et al.,
2020) use dense captions for visual and video ques-
tion answering respectively. We use a pretrained
dense captioning model to first annotate our tar-
get dataset and then use it within a dual learning
framework to improve image synthesis for story
visualization.

3 Methods

3.1 Background

Given a sequence of sentences S = [s1, s2, ..., sT ],
story visualization is the task of generating a corre-
sponding sequence of images X̂ = [x̂1, x̂2, ..., x̂T ].
The sentences form a coherent story with recurring
plot and characters. The generative model for this
task has two main modules: story encoder and im-
age generator. The story encoder E(.) consists of
a recurrent encoder which takes word embeddings
{wik} for sentence sk at each timestep k and gen-
erates contextualized embeddings {cik}. E(.) also
learns a stochastic mapping from S to a representa-
tion h0 which encodes the whole story and is used
to initialize hidden states of the recurrent encoder
(Li et al., 2019c; Maharana et al., 2021). The im-
age generator I(.) takes {cik} and pools them into
representations {ok} which are then transformed
into images {x̂k}. We train the model within a
GAN framework (Goodfellow et al., 2014). The
generated images are passed to image and story dis-
criminators, which evaluate the images in different
ways and send back a learning signal.

In VLC-STORYGAN, we use constituency trees
as input to a structure-aware encoder. Further, we
impose losses based on visuo-linguistic structures
and contrastive loss on the model during training.
We outline each of these modules in detail.

3.2 Memory-Augmented Recurrent Tree
Transformer (MARTT)

Given a sentence s of length n, let G(s) be the
constituency parse tree of s produced by a parser.
T (s) denotes the ordered sequence of n terminal
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Figure 2: Illustration of VLC-STORYGAN architecture. The story encoder is composed of MARTT for encoding
sequence of constituency parse trees, and Graph Transformer for encoding commonsense knowledge graphs. The
intra-story contrastive loss optimizes semantic alignment while dense captioning loss provides visuo-spatial and
semantic feedback about object/characters in generated images.
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Figure 3: Upward cumulative avg. of node embeddings.

nodes (or leaves) of the tree and N(s) denotes the
set of nonterminal nodes (or simply nodes), each of
which has a phrase label (e.g., NP, VP) and spans
over a sequence of terminal nodes. Each leaf em-
bedding is the concatenation of word embedding
and a corresponding node embedding. To com-
pute node embeddings, we perform upward cumu-
lative average (Nguyen et al., 2020) over the nodes
(phrase labels) that the respective non-terminal leaf
token is a child of. For instance, as seen in Fig. 3,
the node embedding for the word Pororo is the av-
erage of embeddings for NNP and NP. The node
representations are learnt during training and pro-
vide information about the phrase label classes for
each token. The encoder receives the sequence of
leaf embeddings, in the same order as in the sen-
tence, as input. Within the encoder, the hierarchical
structure of a parse tree is promoted by introducing
sub-tree masking for encoder self-attention (Wang
et al., 2019). For each word query, self-attention

has access only to other members of the sub-tree at
that layer. In Fig. 2, each token only attends to itself
in the first layer of Tree-Transformer. In the next
layer, says and hi can attend to each other as they
belong to the sub-tree rooted at VP. Consequently,
all tokens within says hi and smiles can attend to
each other in the third layer. This bottom-up ap-
proach, paired with node embeddings, induces the
model to build a hierarchical understanding of the
sentence through compositionality.

Tree Transformer was originally designed to en-
code a single tree input whereas in our task, we
need to encode a sequence of trees for the sequence
of images we plan to generate. Hence, we tie a
series of Tree Transformers together by introduc-
ing memory cells and memory updater modules
in each layer of self-attention. At time step t, the
input query matrix within the self-attention layer
attends over [M l

t−1; H̄
l
t ] where M ∈ RTm×d and

H̄ ∈ RTc×d (Tm denotes memory state length and
Tc denotes length of caption). The memory state
M l
t−1 is updated toM l

t following the steps outlined
for memory updater in Lei et al. (2020).

3.3 Commonsense Knowledge

The input captions in most narrative datasets gen-
erally omit several relevant details about the plot
or the background, which can be considered as
commonsense. For example, in a scene where two
characters are present outside on a sunny day, the
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caption does not explicitly mention the presence
of a sky in the background or the brightness of
the sun. Hence, in order to introduce this external
knowledge and enrich the input captions, we ex-
tract commonsense concepts relevant to each frame.
To do so, we follow Bauer et al. (2018) and use
a simple entity-based method to extract relevant
paths from ConceptNet (see Sec 4 for details).

The commonsense knowledge paths are merged
into a sub-graph which is then encoded using Graph
Transformer. We use the Transformer-based graph
encoder from Graph Writer (Koncel-Kedziorski
et al., 2019) for structure-preserving encoding of
graphs. First, the input graphs gk are converted
into unlabeled connected bipartite graphs Gk =
(vk, Ek), where vk is the list of entities and rela-
tions, and ek is the adjacency matrix describing
the directed edges (Beck et al., 2018). Next, vk is
projected to a dense, continuous embedding space
Vk and is sent as input to the graph encoder. The
encoder is composed of L stacked Transformer
blocks; each Transformer block consists of a N -
headed self-attention layer followed by normaliza-
tion and a two-layer feed-forward network. The
resulting encodings are referred to as graph contex-
tualized vertex encodings. The entity encodings ek
are then appended to the output ck from MARTT
and used in the alignment module (see Fig. 2).

3.4 Image Generation
The image generator follows the two-stage ap-
proach in prior text-to-image generation works
(Qiao et al., 2019; Xu et al., 2018; Zhang et al.,
2017; Maharana et al., 2021). The alignment mod-
ule performs attention-based semantic alignment
(Xu et al., 2018) between image regions hk and
words m̄k = [fentity(ek); fcaption(ck)] in the cur-
rent timestep. fentity and fcaption are dense layers
for projecting commonsense and caption encodings
respectively, into the same space as image embed-
dings. βjik indicates the weight assigned by the
model to the ith word when generating the jth sub-
region of the image. For the jth image sub-region,
the word-context vector is calculated as:

ajk =
L∑
i=0

βjim̄ik; βjik =
exp(hTjkm̄ik)∑L
i=0 exp(hTjkm̄ik)

The generated images are sent to image and story
discriminators and the corresponding classification
loss is used for training. We use the discrimina-
tor models proposed in Li et al. (2019c). Given

the sentence sk and the context information vector
from the story encoder h0, the image discrimina-
tor attempts to distinguish between the generated
and ground truth image xk, resulting in the loss
Limg. Similarly, the story discriminator classifies
between the ground truth story and the generated
sequence of images X̂ to produce the loss Lstory.
Additionally, the image discriminator is also used
to classify the characters in the frame, when labels
are available.

3.5 Dual Learning with Dense Captioning

As we discussed in Sec. 1, dual learning can pro-
vide important visual or semantic signals for im-
proving story visualization, depending on which
auxiliary task is chosen for the feedback model.
We propose the use of dense captioning for pro-
viding visuo-spatial as well as semantic learning
signals during training and use the model in Yang
et al. (2017b) as the feedback model.2 The dense
captioning model is not fine-tuned on images from
the story visualization dataset since it lacks dense
caption annotations and it is prohibitively time-
consuming and expensive to gather such annota-
tions for the task. Hence, we explore the use of
Visual Genome-based predictions (Krishna et al.,
2017) as "proxy" annotations for our dataset (see
Fig. 2). Using these noisy predictions as ground-
truth, we train the generative model to optimize for
bounding box loss (L1 regression; Lbbox) as well
as captioning loss (cross-entropy; Lcaption).
Position Invariance via Bounding Box Loss:
The input captions in our dataset do not specify
positions for the characters. Unless there is explicit
positional input, it is unreasonable to expect the
model to get the ground truth positions correct in
generated images. Hence, in order to enforce po-
sitional invariance, we augment our dataset with
mirror versions of the stories.

3.6 Contrastive Loss

As discussed in Sec. 3.4, the alignment and re-
finement module computes a pairwise cosine sim-
ilarity matrix between all pairs of image-regions
and word tokens, followed by the soft attention
βi,j for image region j to word i. The aligned
word-context vector aj for the jth sub-region is the
weighted sum of all word representations. Fol-
lowing Zhang et al. (2021), the score function

2We use the implementation at https://github.
com/soloist97/densecap-pytorch

https://github.com/soloist97/densecap-pytorch
https://github.com/soloist97/densecap-pytorch
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between all sub-regions hk for image xk and all
words m̄k corresponding to caption sk is defined as
Sword(xk, sk) = log(

∑N
j=1 exp(cos(hjk, ajk))),

where N is the total number of sub-regions. Fi-
nally the contrastive loss between the words and
regions in image xk and its aligned sentence sk
with respect to the story is defined as:

Lword = −log exp(Sword(xk, sk))∑T
m=1 exp(Sword(xm, sk))

where T is the total number of frames in a story.

Conditioning Mechanism. The story encoder
E(.) encodes the entire story S into a single repre-
sentation, h0, which functions as the initial mem-
ory state of the MARTT model, similar to Maha-
rana et al. (2021). The input S is the concatena-
tion of sentence embeddings sk ∈ R1×ds from all
timesteps. The conditional augmentation technique
(Zhang et al., 2017) is used to convert S into a con-
ditioning vector by using it to construct and sam-
ple a conditional Gaussian distribution i.e., h0 =
µ(S)+σ2(S)1/2� εS , where εS ∼ N (0, 1) and�
represents element-wise multiplication. This intro-
duces a KL-Divergence loss between the learned
distribution and Gaussian distribution i.e., LKL =
KL(N (µ(S), diag(σ2(S)))||N (0, I)).

Objective. The final objective function of the
generative model is minθG maxθI ,θS [LKL+Limg+
Lstory + λbboxLbbox + λcaptionLcaption + Lword]
where θG, θI and θS denote the parameters of the
entire generator, and image and story discriminator
respectively. λ values are weight factors for the
respective losses.

4 Experimental Settings

Evaluation. We adopt the metrics proposed in Li
et al. (2019c) and Maharana et al. (2021):

• Character Classification: Frame accuracy (ex-
act match) and classification F1-score using
finetuned Inception-v3 to measure visual qual-
ity of recurring characters in predicted images.
(Szegedy et al., 2016).

• Video Captioning Accuracy: BLEU2/3 scores
of captions generated for predicted images using
pretrained MART (Lei et al., 2020).

• R-Precision: R-Precision for global semantic
alignment between predicted images and groud
truth captions using the Hierarchical-DAMSM
(Maharana et al., 2021).

• Frechet Inception Distance (FID): The dis-
tance between distributions of real images and
generated images using pretrained Inception-v3.

Since story visualization datasets are adapted
from a video captioning dataset, sometimes a sin-
gle frame does not represent the caption perfectly.
However, during training, we sample a frame from
the video every time, thus providing coverage for
the entire video and association between all char-
acters in the story and their representation in the
frame. With this process, the model is able to ob-
serve all characters from the caption in the target
frames during training time. During inference, our
target is a static story, and not a video. Hence, we
evaluate the predictions under the assumption that
all characters should appear in the frame.

Dataset. We use the PororoSV dataset proposed
in Li et al. (2019c), and the splits proposed in Ma-
harana et al. (2021) to evaluate our approach. Each
sample in PororoSV has 5 frames and 5 correspond-
ing captions that form a narrative. There are 9 re-
curring characters throughout the dataset. Each
character is featured in at least 10% of the frames,
making it crucial for the model to be capable of gen-
erating each of them. There are 10191/2334/2208
samples in training, validation and test splits re-
spectively. The constituency parses are extracted
and pre-processed using spaCy (Kitaev and Klein,
2018) and NLTK (Bird et al., 2009).3 For common-
sense knowledge, we first extract nouns and verb
words from all of the captions in a story, and find
ConceptNet triples (Speer et al., 2017) containing
at least one of those words in the subject and object
phrases. Next, we use pretrained GloVe embed-
dings (Pennington et al., 2014) to find a broader
pool of words which are related to the words and
find additional relevant triples. These triples are
combined into knowledge graph inputs for each
frame. We use the top ten bounding box and cap-
tion predictions from a dense captioning model
pretrained on Visual Genome (Krishna et al., 2017)
for dual learning.

Experiments. Our model is developed using Py-
Torch. All models are trained on the proposed
training split and evaluated on validation and test
sets. We select the best checkpoints and tune hy-
perparameters by using the character classification
F-Score on the validation set.

3https://spacy.io/universe/project/
self-attentive-parser

https://spacy.io/universe/project/self-attentive-parser
https://spacy.io/universe/project/self-attentive-parser


6778

Model Char. F1 Frame Acc. FID↓ BLEU2/3 R-Precision

StoryGAN (Li et al., 2019c) 18.59 9.34 49.27 3.24 / 1.22 1.51 ± 0.15

CP-CSV (Song et al., 2020) 21.78 10.03 40.56 3.25 / 1.22 1.76 ± 0.04

DUCO-STORYGAN (Maharana et al., 2021) 38.01 13.97 34.53 3.68 / 1.34 3.56 ± 0.04

VLC-STORYGAN (Ours) 43.02 17.36 18.09 3.80 / 1.44 3.28 ± 0.00

Table 1: Results on test split of PororoSV Dataset. Lower FID is better; higher is better for rest of the metrics.

Attribute Win% Lose% Tie%

Visual Quality 62% 28% 10%

Consistency 38% 30% 32%

Relevance 22% 18% 60%

Table 2: Results from human evaluation. Win% =
% times stories from VLC-STORYGAN was preferred
over DuCo-StoryGAN, Lose% for vice-versa. Tie%
represents remaining samples.

5 Results

5.1 Main Quantitative Results

The results on the PororoSV test set can be
seen in Table 1. We compare our model VLC-
STORYGAN to three baselines: StoryGAN (Li
et al., 2019c), CP-CSV (Song et al., 2020) and
DUCO-STORYGAN (Maharana et al., 2021) for
PororoSV. The final rows contain results with VLC-
STORYGAN, which outperforms previous models
across most metrics for PororoSV. We see drastic
improvements in FID score and sizable improve-
ments in charcater classification as well as frame
accuracy scores. This demonstrates the superior
visual quality of stories visualized via our proposed
method. There is a small improvement in BLEU
score and a slight drop in R-Precision.

The captions in PororoSV correspond more ac-
curately to a video segment than a single image
sampled from the segment (see example in Fig. 1).
Hence, even though the metrics BLEU and R-
Precision have been shown to be correlated with
human judgement in text-to-image synthesis (Hong
et al., 2018), the PororoSV dataset fails to be an
appropriate testing bed for extending those met-
rics to story visualization. Since they are adapted
from video datasets, there is poor correlation be-
tween a single frame and the caption that originally
spanned an entire video clip. This leads to un-
stable results and smaller improvement margins
for both metrics. Instead, the dataset presents a
data-scarce scenario where the captions do not pro-
vide sufficient details for accurate generation of

visual stories. This leaves ample scope for aug-
menting the input with external visual information
such as scene graphs and dense captions, or struc-
tured knowledge such as commonsense graphs, as
we have shown with our proposed model. The
structured information in VLC-STORYGAN leads
to better generation of multiple characters, as com-
pared to Duco-StoryGAN (Fig. 1).

5.2 Human Evaluation

We conduct human evaluation on the gener-
ated images from VLC-STORYGAN and DuCo-
StoryGAN, using the three evaluation criteria listed
in Li et al. (2019c): visual quality, consistence, and
relevance (see Appendix for details). Predictions
from our model for PororoSV are preferred 62%
of the times for better visual quality (see Win%
columns). Our model also produces more consis-
tent and relevant images, but the higher % of ties
between the two models for these attributes indi-
cate that much work remains to be done to improve
global alignment between captions and images.

We also examine 50 random samples from the
PororoSV dataset, and evaluate whether the bound-
ing boxes predicted by the pretrained dense cap-
tioning model used in our approach are relevant
to the task i.e. whether more than 50% of the pre-
dicted bounding boxes for each sample capture a
meaningful part of the frame. We observe a high
accuracy for PororoSV i.e. 68%.

5.3 Ablations

Table 3 contains minus-one ablations for VLC-
STORYGAN on the PororoSV validation set. The
fourth row shows results from the complete model
VLC-STORYGAN. We then iteratively remove
each of our contributions and observe the change in
metrics. We obtain the largest drops in FID, charac-
ter classification and frame accuracy by replacing
MARTT with the structure-agnostic MART (fifth
row). This suggests that the constituency tree, as
well as the MARTT architecture, aids in compre-
hension of captions. We see similar but smaller
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Model Char. F1 Frame Acc. FID↓ BLEU2/3 R-Precision

VLC-STORYGAN 50.07 25.33 18.08 4.57 / 2.14 6.06 ± 0.00

- MARTT 48.96 22.84 24.56 4.12 / 1.59 5.86 ± 0.01

- Commonsense Embeddings 50.02 25.17 18.41 4.57 / 2.10 6.08 ± 0.02

- Dense Captioning 49.87 24.68 20.02 4.32 / 1.84 6.07 ± 0.00

- Intra-Story Contrastive Loss 48.65 24.98 21.67 4.43 / 1.92 5.99 ± 0.01

Table 3: Ablation results for our model on validation split of PororoSV dataset. Lower FID indicates better
performance, higher is better for rest of the metrics. Dense captioning includes both bounding box and captioning.

drops with the exclusion of dense captioning from
VLC-STORYGAN, since it provides important po-
sitional and semantic information about visual ele-
ments (seventh row). The minor margins for com-
monsense knowledge (sixth row) suggest that while
it is a promising source of additional data, more
work is needed for its proper integration with input
captions. Finally, the results in the last row show
that the intra-story contrastive loss is effective for
global semantic alignment.

We also ran an experiment for isolating the effect
of memory augmentation in our model, by train-
ing a non-recurrent (no memory) Transformer with
Tree representations for single image generation
instead of story generation, and evaluated using the
story visualization metrics. We observed signifi-
cant drops across all metrics.

6 Analysis and Discussion

In this section, we take a closer look at the various
data sources for VLC-STORYGAN.

6.1 Linguistic & Commonsense Knowledge

Results from Table 3 show that the grammatical
structure of caption contributes to better under-
standing, which translates to improved visual sto-
ries. The improvement in frame accuracy further
suggests that MARTT improves comprehension of
multiple characters simultaneously present in the
narrative. In order to further analyze this premise,
we examine a story involving several characters and
compare predictions from VLC-STORYGAN and
DuCo-StoryGAN in Fig. 4. The constituency parse
tree in Fig. 4 shows the hierarchical understand-
ing of the caption that is inherent in the MARTT
architecture. Sub-tree masking allows the model
to attend over multiple characters independently in
earlier layers and combine the encoding in later lay-
ers. This semantic understanding is reflected in the
image generated by VLC-STORYGAN which gen-
erates both characters mentioned in the caption dis-
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(a)

(b)
Figure 4: (a) Comparison of predictions from DuCo-
StoryGAN and VLC-STORYGAN. (b) The con-
stituency parse for caption of the fourth frame in (a).

tinctly, whereas Duco-StoryGAN barely generates
one of them, validating the idea that grammatical
knowledge is beneficial for story visualization.

In Fig. 5, we demonstrate an example of com-
monsense knowledge for a single frame in a story.
We extract a sub-graph containing general informa-
tion about car from ConceptNet (Speer et al., 2017)
and use the graph contextualized embeddings from
Graph Transformer for alignment with the gener-
ated image. The words door and seat rider cor-
respond to specific sub-regions in the image and
improve generalization.
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Caption: The red car is offering Petty and Loopy a ride. 

The red car opens its doors for friends.

Figure 5: Example of commonsense knowledge for a
given caption and its relevance to target image.

Figure 6: Dense captioning results on frames from the
PororoSV dataset.

6.2 Analysis of Dense Caption Feedback

We use the dense captioning predictions on ground
truth images in the PororoSV dataset in order
to obtain the dual learning loss signal for VLC-
STORYGAN during training. While we expected
the predictions to be noisy, we found many of the
predictions to be surprisingly relevant to the Poro-
roSV dataset. For instance, most of the characters
in PororoSV were identified as teddy bear or stuffed
toy or animal and the dense captioning model pro-
vides roughly accurate bounding boxes for the en-
tire character or prominent body parts (see Fig. 6).
This explains the improvement in character classifi-
cation scores with the addition of dual learning via
dense captioning in our model. Many of the back-
ground elements in the stories, such as blue sky,
wooden table, snow, and green tree look similar to
their realistic counterparts in our cartoon setting.
The captions are usually missing descriptions as
well as positions of these minute details, whereas
the dense captioning model provides precise loca-
tions and descriptions for the same.
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Fred is in the living room.
Fred is saying something in the room.
Wilma and Fred are talking while in the room.
Fred is standing in a room, talking to someone off camera right.
Wilma is angrily talking to Fred in a room.

Figure 7: Initial results on the Flintstones dataset.

6.3 Generalization to Flintstones Dataset

In order to measure the generalization of our ap-
proach to another dataset, we transformed the Flint-
stones dataset presented in the text-to-video syn-
thesis work, CRAFT (Gupta et al., 2018), into
story visualization. A single frame is sampled
from each video clip and frames from adjacent
clips are gathered into stories of length 5 (sim-
ilar to PororoSV). The resulting dataset, Flint-
stonesSV, has 7 major recurring characters and has
20132/2071/2309 samples in the training, valida-
tion and test splits. Our model VLC-STORYGAN
outperforms DuCo-StoryGAN on all metrics. We
see 3.89% and 5.95% improvements in character
F1-score and frame accuracy with our structured
framework. Additionally, the FID drops by 9.23%
suggesting large improvements in visual quality
(see Fig. 7). Under human evaluation, predictions
from VLC-STORYGAN are preferred as much or
more than those from Duco-StoryGAN 9̃0% of the
times. The % of ties for all attributes is high, leav-
ing scope for future research into this dataset.

7 Conclusion

In this paper, we investigate the use of structured
knowledge for the task of story visualization. We
propose a novel recurrent Tree-Transformer for en-
coding constituency trees and augment it with com-
monsense knowledge. We train the model using
dense captioning loss and intra-story contrastive
loss. Our results demonstrate the effectiveness of
these approaches. We believe that these methods
will encourage the use of structured knowledge for
story visualization and text-to-image synthesis.
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8 Ethics/Broader Impacts

The datasets and corresponding train/validation/test
splits used in this paper were proposed by Li et al.
(2019c), Kim et al. (2017), (Gupta et al., 2018)
and Maharana et al. (2021). All the samples in the
dataset consist of simple English sentences and car-
toon images. Our experimental results are specific
to the task of story visualization. The pretrained
dense captioning model used in our paper is trained
on English text and real-world images. All other
models used and developed in our paper are trained
on English text and cartoon images. By using car-
toon images in our task, we avoid the egregious
ethical issues associated with real-world usage of
image generation such as DeepFakes. We focus
not on generating realistic images, but on improved
multi-modal understanding in the context of story
visualization.
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A Methods

A.1 Dense Captioning
For position invariance, we augment the PororoSV
dataset with the mirror versions of the images and
the corresponding mirror versions of the bounding
box region predictions. When computing bounding
box loss in dual learning, we compute the loss with
the original bounding box prediction as well as its
mirror version as target and retain the one which
is lower. This way, we avoid penalizing the model
for inverted positions of the characters since we do
not provide explicit positional input to the model.

A.2 Story & Image Discriminators
We use the story and image discriminators as out-
lined in StoryGAN (Li et al., 2019c). The image
discriminator is given the generated image x̂k, the
sentence sk, and the context information vector
from the story encoder h0, and distinguishes be-
tween a corresponding real triplet, containing the
same information except for the real image xk in-
stead of the fake image (Limg). Additionally, the
image discriminator also classifies the characters in
the frame. The story discriminator evaluates the en-
tire story S and the generated sequence of images
X̂ .

A.3 Image Generation
The image generator follows the two-stage ap-
proach in prior text-to-image generation works
(Qiao et al., 2019; Xu et al., 2018; Zhang et al.,
2017; Maharana et al., 2021). The first stage uses
outputs from the encoder; the resulting image is fed
through a second stage, which weighs the outputs
from the structure-aware context encoder as well
as commonsense encoder, according to the image
sub-regions and reuses for generation. The align-
ment module performs attention-based semantic

https://www.microsoft.com/en-us/research/publication/attngan-fine-grained-text-to-image-generation-with-attentional-generative-adversarial-networks/
https://www.microsoft.com/en-us/research/publication/attngan-fine-grained-text-to-image-generation-with-attentional-generative-adversarial-networks/
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alignment (Xu et al., 2018) between image regions
hk and words m̄k = [fentity(ek); fcaption(ck)] in
the current timestep. fentity and fcaption are dense
layers for projecting commonsense and caption en-
codings respectively, into the same space as image
embeddings. βjik indicates the weight assigned
by the model to the ith word when generating the
jth sub-region of the image. For the jth image
sub-region, the word-context vector is calculated
as:

ajk =
L∑
i=0

βjim̄ik; βjik =
exp(hTjkm̄ik)∑L
i=0 exp(hTjkm̄ik)

B Experimental Settings

B.1 Evaluation

Li et al. (2019c) propose the character classification
accuracy (exact match) within frames of generated
visual stories as a measure of visual quality. Ma-
harana et al. (2021) propose an additional set of
automated evaluation metrics that capture diverse
aspects of a model’s performance on visual story
generation. We adopt those metrics for evaluating
our models:

• Character Classification: We use the finetuned
Inception-v3 (Szegedy et al., 2016) and report
frame accuracy and character F1-score.

• Video Captioning Accuracy: We use the pre-
trained MART video captioning model (Lei et al.,
2020) and report BLEU2/3 scores for the gener-
ated captions.

• R-Precision: We use the Hierarchical-DAMSM
(Maharana et al., 2021) to report R-Precision
scores on the pairs of ground truth captions and
generated stories.

• Frechet Inception Distance (FID): We report
the FID score, which is a metric used for evaluat-
ing the distance between real images and gener-
ated images for text-to-image synthesis datasets.

B.2 Hyperparameters

The image size that we use is 64-by-64, and the
length of the story is 5 images/captions, same as
DuCo-StoryGAN. The learning rates of the gen-
erator and discriminator are 2e-4. The model is
trained for 150 epochs and the learning rate is de-
cayed every 30 epochs. For each training update of
the discriminators, two corresponding updates are
performed for the generator network, with different

mini-batch sizes for image and story discriminators
(Li et al., 2019c). The image discriminator batch
size is 60 and the story discriminator batch size is
12. We found in our experiments that story visual-
ization models are prone to mode collapse at lower
batch sizes, which is not resolved with perceptual
loss in contrast to conventional knowledge. The
above-mentioned hyperparameters are optimized
using 12 iterations of manual tuning.

The MARTT hyperparameters are as follows:
The hidden size of the model is 192. The number of
memory cells is 3. The number of hidden layers is
4. The dropout values across the model are 0.1. The
layer normalization epsilon is 1e-12. The number
of attention heads is 6. The word embedding size
is 300 which is initialized using the 840B glove
training checkpoint. The node embedding size is
50.

The total number of trainable parameters in the
VLC-STORYGAN is approximately 100M. We
use the ADAM optimizer with betas of 0.5 and
0.999. We train the model on a single RTX A6000.
Each epoch takes 50 minutes, with the model being
saved every 10 epochs. At 150 epochs of training,
the total training time is nearly 4 days.

C Results

See examples of predictions for PororoSV and
FlintstonesSV from VLC-STORYGAN in Fig-
ures 8 and 9 respectively.

C.1 Human Evaluation
We conduct human evaluation on the gener-
ated images from VLC-STORYGAN and DuCo-
StoryGAN, using the three evaluation criteria listed
in Maharana et al. (2021): visual quality, consis-
tence, and relevance. Two annotators are presented
with a caption and the generated sequence of im-
ages from both models, and are asked to state their
preferred sequence for each attribute. They also
have the option to pick none if both images fare
the same. In terms of visual quality, predictions
from our model are preferred 62% of the times, as
compared to 28% for DuCo-StoryGAN (see Win%
columns) for PororoSV. Our model is also preferred
more times for the attributes consistency and rel-
evance, but the higher % of ties between the two
models for these attributes indicate that much work
remains to be done to improve global alignment
between captions and images.
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Figure 8: Example of generated images (left) from VLC-STORYGAN and corresponding ground truths (right).
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Figure 9: Example of generated images (left) from VLC-STORYGAN and corresponding ground truths (right).


