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Abstract

Fine-grained control of machine transla-
tion (MT) outputs along multiple attributes is
critical for many modern MT applications and
is a requirement for gaining users’ trust. A
standard approach for exerting control in MT
is to prepend the input with a special tag to
signal the desired output attribute. Despite its
simplicity, attribute tagging has several draw-
backs: continuous values must be binned into
discrete categories, which is unnatural for cer-
tain applications; interference between multi-
ple tags is poorly understood. We address
these problems by introducing vector-valued
interventions which allow for fine-grained con-
trol over multiple attributes simultaneously via
a weighted linear combination of the corre-
sponding vectors. For some attributes, our
approach even allows for fine-tuning a model
trained without annotations to support such
interventions. In experiments with three at-
tributes (length, politeness and monotonicity)
and two language pairs (English to German
and Japanese) our models achieve better con-
trol over a wider range of tasks compared to
tagging, and translation quality does not de-
grade when no control is requested. Finally,
we demonstrate how to enable control in an
already trained model after a relatively cheap
fine-tuning stage.

1 Introduction

Some modern machine translation (MT) applica-
tions require fine-grained control along multiple
attributes, and such mechanisms also increase the
users’ trust in scenarios when the system speaks
on their behalf (Prabhumoye et al., 2021). For
example, MT applications like video subtitling in
streaming, video conferencing, online education
and speech MT require that one can control the
length and monotonicity of the translation, setting
clear constraints on the output. In open-domain
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MT, it is unlikely that such constraints are known
or can be inferred from the source to generate an
appropriate translation. However, the uncertainty
around the desired register, style or politeness level
of the translation could be resolved by providing
users with an explicit option to control such at-
tributes. This in turns increases the MT system’s
trustworthiness by providing an explicit contract
(Jacovi et al., 2021), formulated as “whenever there
is an ambiguity, we enable users’ agency”.

A standard method to exert control over MT
outputs is the tagging approach, where an explicit
token is prepended to the source sentence or out-
put hypothesis to signal the desired attribute of the
output (Kobus et al., 2017; Sennrich et al., 2016;
Johnson et al., 2017). While such tags do enable
certain level of control, discrete tags, by their na-
ture, allow only for coarse-grained control and re-
quire that attributes with continuous values, like
monotonicity or length ratio, are binned. For ex-
ample, Lakew et al. (2019) used only three tags to
control translation length, which would arguably
be too coarse for many practical applications. Also,
chaining multiple tags may become cumbersome
and, more importantly, the interference between
tags and the effect of their ordering have not yet
been extensively studied.

An additional desideratum for systems enabling
attribute control is how efficiently they can be re-
alized. For deployed MT engines, (re-)training a
model for every attribute is unrealistic, due to the
associated costs in time and computational power.
Therefore, having a light-weight intervention, ma-
terialized as a small number of tunable parame-
ters, would considerably improve the practicality
of attribute-enabled systems.

In this paper we introduce additive vector-valued
interventions which allow for fine-grained, combin-
able and fine-tunable control of translations, ad-
dressing all of the points above. We propose two
implementations of vector-valued control: 1) one
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attribute embedding vector with the control di-
rection and strength regulated by a multiplicative
scalar factor, appropriate for continuous attributes,
and 2) separate embedding vectors for each discrete
attribute value, each with tunable multiplicative
strengths. The attributes’ embeddings are addi-
tively combined with the encoder’s last layer repre-
sentation and are used by a subset of the decoder
layers through the source-attention mechanism.
Compared with the tagging approach, the con-
trol intervention residing in vector spaces has three
advantages: 1) It avoids the coarse binning inherent
to tagging and enables a more fine-grained, wider-
range and precise control of translations, especially
around bin boundaries. 2) It simplifies simultane-
ous control for multiple attributes via a linear com-
bination of control interventions for each attribute,
with control strength defined by multiplicative scal-
ing factors. 3) For some attributes it allows for
enhancing neural MT models trained without con-
trollability via fine-tuning of intervention vectors.
Our contributions are as follows:

1. We propose a novel mechanism to control dif-
ferent translation attributes and evaluate it on
three important use cases: length, politeness
and monotonicity for translation into German
and Japanese (from English).

2. In all the three use cases, the ability to con-
trol attributes comes at no cost in translation
quality. In fact, including explicit politeness
information, the evaluation scores improved
as compared to strong baselines (+0.6 BLEU
points for German and +2.5 for Japanese).

3. Given a system trained on data without at-
tribute annotation, we demonstrate that we
can add a control component to it, needing
only 20% of the original training time. The
level of control is not on-par with a full train-
ing pass, but the performance is still similar
to the tagging approach.

2 Related work

The tagging approach for controlling translations
has been used for multiple purposes: to indicate
the target language in multilingual NMT (John-
son et al., 2017); to produce translations in more
natural language by tagging data provenance, back-
translated or natural (Caswell et al., 2019); to
control gender (Kuczmarski and Johnson, 2018;
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Figure 1: Model diagram.

Elaraby et al., 2018); to indicate source domains
in multi-domain NMT (Kobus et al., 2017). Closer
to our applications, tags can control length (Lakew
et al., 2019), and formality of translations from
English to German (Sennrich et al., 2016) and
to Japanese (Yamagishi et al., 2016; Feely et al.,
2019), as well as from French to English (Niu et al.,
2018). Stergiadis et al. (2021) experimented with a
pair of tags to control domain and provenance.
Closely related to controllable generation is
work on monolingual style transfer: Krishna et al.
(2020), Riley et al. (2021) and Niu et al. (2018). In
contrast to these papers, we use a classifier of the
target side for labelling the controlling attribute.

3 Additive control

3.1 Base Transformer model

The Transformer model (Vaswani et al., 2017)
consists of a decoder D and an encoder &; the
latter takes the input tokens {x;};—1. 7 and pro-
duces an intermediate encoded representation z =
{2}+=1..7 € R%. Layers of D then decode this rep-
resentation z into a target sentence § = {¥s }s=1...s-
The decoding process is carried out in an auto-
regressive way: at each time step ¢ the decoder uses
the previously generated output tokens {5 }s<; and
accesses z through the attention mechanism.

3.2 Control-induced Transformer model

We propose to achieve control in the encoder’s in-
termediate space by intervening with a perturbation
of the representations z. For each attribute a to con-
trol we define an intervention vector V, of the same
dimensionality as z;, which is added to all outputs
z; of the encoder €. Defining V' = )" w,V,, the
new hidden representation at each step becomes
Zy = z; + V. Note that w, is a continuous weight
that can be used as a “dial” to tune the strength
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of the intervention for each attribute. The additive
approach is motivated by the following desiderata:

1. It is an approach with a clear algebraic struc-
ture that covers multiple attributes in an inter-
pretable manner.

2. It ensures the existence of a neutral state and
the possibility of only modifying a subset of
attributes.

3. Itis permutation invariant, i.e. we did not wish
to have a dependence on the specification or-
der of the attributes (cf. tagging approach).

At training time we need an annotation of the
bilingual sentence pairs to train the representa-
tions Vj,, but we do not require the full training data
to be annotated. For unannotated training pairs we
simply set the vector V' to zero. This makes the
approach specially attractive if the desired attribute
is costly to annotate, be it because of the need of
expensive human annotation, fuzzy definition of
the attribute itself or an expensive classifier to run.

Similarly, at inference time if the user does not
want to control attribute a, V, can be set to O,
the “neutral” vector. Setting the full intervention
V = 0, which we denote the “neutral mode”, we re-
cover the behaviour of the initial underlying model,
guaranteeing a fall-back to baseline performance
(assumed to be of acceptable quality).

We also experimented an architecture in which
V' was prefixed to the the embeddings correspond-
ing to the input sequence {z; };—1. 7 instead of be-
ing added to the encoder representation {z; }¢—1.. 7,
which more closely resembles the tagging archi-
tecture. This approach however resulted in models
with a degraded translation quality for the continu-
ous attributes, and thus we focus the discussion on
the additive approach.

3.3 More efficient realization

We additionally considered a modification of the
approach described in the previous section where
the shifts z; + V' are only accessible by the last
N layers of the decoder, see Figure 1. For ex-
ample, the first decoder layers have access to the
standard, non-modified, z; encoder representation
through the attention mechanism, while the last
layers access the modified z;. This modification
allows for faster training and small footprint fine-
tuning, as the weights of the first decoder layers
are kept fixed. From a model interpretability point

of view, we can use this modification to understand
which layers process a specific syntactic / semantic
attribute, as an attributes-informed version of layer
probing used to analyze Transformer encoder-only
models (Tenney et al., 2019).

3.4 Attribute representation

In this work we considered three different attributes
for control, but the approach can naturally be gen-
eralized to other attributes.

Length (L) For length control the confounding
factor is that longer inputs would generate longer
translations. Thus, instead of aiming to control the
output length directly, we control the ratio r be-
tween the output and input lengths, both computed
after tokenization and subword splitting. For this at-
tribute the weight w; corresponds to the ratio r, and
the system learns the length control embedding V.

Politeness (P) Although politeness is an inher-
ently discrete attribute, we also introduce a continu-
ous feature representation (Py vs. P.). The discrete
feature uses a separate embedding for each polite-
ness level ¢, i.e. we train a different V), vector for
each politeness level. For the continuous feature
we fix the weights w), of the different levels, and
the system trains a single politeness embedding
vector V).

Monotonicity (Mg 1) We understand monotonic-
ity as the closeness of the word order in the tar-
get sentence to the word order in the source sen-
tence. We formally define monotonicity as the
strength of the off-diagonal alignment deviations,
inspired by the fast_align model (Dyer et al.,
2013). For a translated pair s = (Sinput, Starget)
and an alignment { (¢, 7) } between the token posi-
tions ¢ € {1,--- ,n} of the input sentence Sinput
and j € {1,--- ,m} of the target sentence siarget,
we define the deviation strength:

_ 1

o) = T {in

ey

t g
n ml|’

where #{(i,j)} denotes the cardinality of the
alignment. In the completely monotonic case, hav-
ing n = m and {(4, j)} being a strictly increasing
bijection, d(s) would be zero; in the general case,
the lower d(s) is, the higher the monotonicity be-
tween the input and the translation. To annotate
0(s) in the training data we used fast_align,
and this is fed into the system as the weight w,,.
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However, if §(s) is small the resulting represen-
tation could potentially “collide” with the neutral
state V,;, = 0; we therefore use the shifted repre-
sentation w,,, = d(s) + k; we found that a small
shift like £ = 0.1 works well to avoid a collision.

For all attributes, we looked for the minimum
number of decoder layers that have access to the
representation with interventions that would work
for all three attributes and found that two layers was
the smallest value (even for length, the simplest
attribute, one layer was not enough).

4 [Experiments

We evaluate our control approach on two lan-
guage pairs (English-to-German and English-to-
Japanese), and three different attributes (length,
politeness and monotonicity of the generated trans-
lations). We verify the validity of the approach re-
garding the general translation quality and for each
controlled attribute individually. We end this sec-
tion with experiments on fine-tuning additive con-
trol models from pretrained baseline models that
were trained without any attribute annotation. For
reproducibility, we include setup details in §A.4.

4.1 Datasets and baselines

For EN = DE we trained on the WMT17 dataset,
using newstest2016 as the development set and
newstest2017 as the test set (Bojar et al., 2017).
In order to test the behaviour on an out-of-domain
setting, where the distribution of the controlled at-
tribute may vary from the training data, we also
evaluate our methods on a subset of OpenSubti-
tles. For EN =- JA we trained and evaluated on
JESC (Pryzant et al., 2018). All the reported results
use SacreBLEU (Post, 2018)!.

4.2 Model configuration and training

We reimplemented the standard Transformer ar-
chitecture (Vaswani et al., 2017) in JAX (Brad-
bury et al., 2018), using the neural network library
Flax (Heek et al., 2020). All our models correspond
to the Base Transformer configuration (Vaswani
et al., 2017).

For training our additive models we label the
whole corpus with the corresponding attributes and
use the standard cross-entropy loss. However, to
encourage the additive model to learn to produce
good translations in the Neutral mode, we ran-
domly mask each attribute independently with a

!Configuration signatures in §A.3.

Model Mode BLEU
Base - 27.11
Tag(L, Py, M) Oracle  26.58
Tag(L, M, P,) Oracle  27.32
Tag, . (L,M,P;) Neutral 26.92
Tag . (L,M,P;) Oracle  27.12
Tag, (L,M,Py) Neutral ~ 27.02
Tag, (L,M,Py) Oracle  26.98
Add(L,Mgy1,P.) Neutral 26.92
Add(L,Mo,P,) Oracle  26.99
Addy(L,Mp1,P.) Neutral 27.43
Addy(L,Mg1,P.) Oracle  27.76

Table 1: BLEU scores on WMT EN-DE. The differ-
ence between the best and worst tagging models, where
only the tag order is changed, is statistically significant
(pval < 10710),

20% chance. We also trained an improved tagging
baseline Tag  , where tags are masked at a 20%
rate so that it approximates the Neutral mode of
the additive model. As there was a 2.7% relative
difference in BLEU? caused by the different order
of tags we also trained a mode Tag, where, addi-
tionally to being randomly masked, tags are also
shuffled to achieve permutation invariance. For
binning the continuous attributes of the tagging
models we used five buckets for length and three
for monotonicity.

4.3 Translation quality results

The main goal of the additive interventions is to
achieve precise control of the desired attributes. As
such, translation quality as measured by standard
metrics may degrade if we keep the references fixed
(e.g. generating a translation with an informal po-
liteness level when the reference is polite). To this
end we also analyse the effect of control-enabled
models on general quality to ensure their perfor-
mance is on par with the baseline models. We con-
trast the Neutral and the Oracle modes where the
latter corresponds to a realistic scenario where the
user knows what attribute value the output should
have. A good control model is expected to take
advantage of the Oracle information and improve
its performance.

When presenting the results, the additive models
are denoted by Add with the enabled attribute fea-

2Reported as (max-min)/mean of BLEU scores.
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Model Method BLEU
Base - 15.14
Tag, (L,M,Py) Neutral 15.02
Tag, (L,M,Py) Oracle 17.52
Add(L,Mg1,P.) Neutral  14.64
Add(L,Mg1,P.) Oracle 18.04
Add, (L, My 1, PC) Neutral 14.92
Addy(L,Mp 1,P.) Oracle 17.60

Table 2: BLEU scores on JESC EN-JA.

tures indicated between brackets; the subscript in
Adds means that the intervention was applied only
on the last two decoder layers. Models using tags
are denoted by Tag.

EN = DE (Table 1): The performance of the
additive model in the Neutral mode is very close
to or even better than the Baseline and the Neutral
variants of the tagging models. Thus, training a
control-enabled model does not hurt translation
performance even in the case where the attribute
values are left unspecified.

For tagging, by ordering the tags differently, we
get results between 26.58 and 27.32 points, which
indicates that the tag order may require additional
fine-tuning. (L, M, P) produced the best result
while the permutation trick for alleviating order
effect (i.e. Tagi,,) helped but did not solve the
problem completely. It is worth noting that using
masking to support the Neutral mode works well
both with continuous and tagging models.

EN = JA (Table 2): The performance of the
best additive model in Neutral mode suffers a re-
duction of 0.2 BLEU in comparison to the baseline,
similar to the Tag, (L,M,P;). Importantly, mov-
ing to the Oracle mode regains up to 2.9 BLEU
over the baseline which is a better improvement
than what the tagging model achieves in the same
Oracle mode.

4.4 Controlling length

We turn to evaluating length control and show that
the continuous approach yields a more fine-grained
and robust control than tagging.

For this analysis we compute the ratio r of the
source sentence length with respect to the reference
length, and ask the model to produce a longer or
shorter translation by a multiplicative intervention,
i.e. replacing r with r x ¢,. For example i, =

1.0 corresponds to asking the model to match the
length of the references, while i, = 0.9 to make
translations 10% shorter than the references. We
can then measure the effectiveness of length control
by regressing the length of translations over the
length of references to obtain a realized length shift
As as a function of ,., where an ideal control would
achieve As = i,.

We plot results for the model Add(L,Mo 1,P.)
in Figure 2a. To measure the degree of distri-
butional robustness we also measured the real-
ized shifts on a test set from OpenSubtitles as an
out-of-distribution test set. As the models were
trained on WMT17, on OpenSubtitles ideally one
should obtain the same length control we achieved
on WMT17 with the same As resulting from the
same 7.

We illustrate how the BLEU score changes with
the value of intervention in Figure 2c, where the in-
terventions show a graceful degradation of BLEU
(about 2.3 BLEU points to accommodate a 10%
length change). To make sure that the additive con-
trol reformulates sentences in a sensible way and
not simply repeats or trims tokens and is not limited
to simple word-level modifications, we considered
a naive baseline, rewriter, that takes the transla-
tions from the neutral mode and rewrites them to
the resulting desired length either by truncating or
by repeating tokens cyclically from the beginning
till reaching the desired length. We compare the
BLEU scores of this rewriter with our proposed
model in Figure 2d: for German the difference is
positive for ¢, in the wide range [0.75, 1.3] and for
Japanese the range is even wider’. We provide
exemplars of changing the length for German and
Japanese in §A.13.

Comparison to tagging. For tagging we can
shift length in incremental steps by shifting the
tag bucket ¢d (corresponding to the reference),
e.g. id + x for z € {—4,--- ,4+4} and clipping
it to stay in the range of available buckets. Here
x = 0 would correspond to the (length) Oracle
mode. Note that tagging achieves a much smaller
range of effective length control (Figure 2b) than
our continuous method and that As is not a mono-
tonically increasing function of z. For the out-of-
distribution robustness we compared the realized
shifts of tagging and the continuous method using
the test sets of OpenSubtitles and WMT for Ger-

30ut of the plotted range the model and the rewriter be-
come equivalent.
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Figure 2: Control Evaluation.
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man (Figure 2¢) and the test and dev set of JESC for
Japanese® (Figure 2f). We see that the continuous
method gives consistent, close to ideal, shifts for
the same interventions, while tagging is affected
by the distribution shift.

4.5 Controlling politeness

We now focus on controlling translation polite-
ness and formality for two languages that mark
these registers: German with two formality levels
and Japanese with a more developed hierarchy of
speech registers.

EN = DE We annotated German politeness us-
ing the ParZu parser and the lexical rules from (Sen-
nrich et al., 2016), which mostly look at the Ger-
man 2nd person pronouns ‘Sie’ (polite ‘you’) and
‘du’ (informal ‘you’) and the corresponding verbs.
Because WMT contains a very small amount of the
informal class, for evaluation purposes we used the
test set for OpenSubtitles®. We introduced a third
annotation level, unknown, as a sink for the exam-
ples that the rule-based classifier assigns neither to
polite nor to informal; during translation we found
that introducing and enforcing the unknown mode
results in a frequent switch to the indefinite Ger-
man pronoun “man” that corresponds to impersonal
speech. For example, the English sentence “What
would you like to eat?”’, would be translated into
the unknown politeness as “Was will man essen?”
(““What would one like to eat?”).

We found that politeness for the additive mod-
els can be controlled with similar results using ei-
ther discrete P; or continuous P.. As P, relies
on a lower 1-dimensional latent representations,
we focus on reporting results for the P, represen-
tation. For the multipliers w,, we used values
{0.5,1.0,1.5} for unknown, polite and informal
respectively. We did not aim to tune these multipli-
ers (e.g. by treating them as hyper-parameters or
model parameters), because our goal was to show
that as long as there is some separation between
the values the model can learn to generate differ-
ent formalities, irrespective of a formality ranking
order (e.g. having unknown in between polite and
informal).

To evaluate the quality of politeness control, as
in previous works (Sennrich et al. (2016), Feely
et al. (2019)), we measure BLEU improvements
on different splits of the OpenSubtitles test set (Ta-

“Some tags lead to the same shift, so we get < 9 points.
SThe dataset was also considered by Sennrich et al. (2016).

Model Mode all  unknown polite informal
Base - 19.32 20.75 20.59 13.31
Tag(L,M, Py) Oracle 21.99 22.05 24.94 20.47
Tag(L, Py, M) Oracle  21.17 21.14  23.66 20.21
Tag, ., (L,M,P;)  Neutral 19.66 21.05 21.01 13.78
Tag, .. (L,M,P;)  Oracle 21.50 21.67 23.29 20.09
Tag, (L,M,Py) Neutral 19.41 20.77 21.21 13.47
Tag, (L,M,Py) Oracle  21.38 2142 2335 20.33
Add(L,Mo1,P.) Neutral 19.99 21.82 2241 12.33
Add(L,My1,P.) Oracle 21.55 2195 24.13 18.93
Add(L,My.1,P.) L-Fin 21.97 2233 2473 19.39
Addy(L,Mgy1,P.) Neutral 20.33 21.98 23.72 12.83
Addy(L,Mg1,P.) Oracle 21.70 22.05 24.26 19.32
Addy(L,Mg1,P.) L-Fin 22.32 22.6 24.55 20.15

Table 3: BLEU scores of a WMT-trained model on OS
by politeness split. Sizes: all: 4566, unknown: 3617,
polite: 276, informal: 673.

ble 3). Note that in all the additive models the
Oracle mode leads to substantial improvements,
especially on the informal split of the test data.
Moreover, one can further improve the results by
tuning a small length intervention (denoted by L-
Fin) on top of the length oracle®, which is probably
effective because evaluation here happens out-of-
distribution. In the supplementary materials (Ta-
ble 9) we report the results of applying the polite-
ness classifier on the generated translations. In the
first exemplar in Table 5 we give an example of
changing the politeness level in German to match
the reference. For Japanese we include exemplars
in the supplementary material in Table 15.

For Japanese politeness and formality levels we
re-implemented the rules of (Feely et al., 2019) in-
troducing a fourth category unknown in addition to
the original three classes informal, formal and po-
lite (§A.9). To first approximation, the polite level
is characterized by specific verb endings, e.g. C
9 or %79, while the formal one is characterized
by honorific expressions, e.g. = 3\ X 3. The
multipliers we used can be found in the supplemen-
tary materials (Table 10). We see that controlling
politeness improves BLEU scores on every split
when the rule-based feature is supplied (Table 4).

4.6 Controlling monotonicity

In this task we simulate a use case where we need
the NMT system to produce translations of increas-
ing monotonicity, having in mind applications like
interpreting or lecture translation. Here the inter-
vention consists in supplying to the model a desired
value ¢ for the §(s) of Equation 1.

%, € [0.9,1.1] tuned on the dev set.
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Figure 3: Comparison of the translation monotonicity to references for translation into German (WMT) and
Japanese (JESC).

Model Method unknown informal polite formal input You’re good, aren’t you?

reference Dir geht’s gut, nicht?

Base 14.60 1492 1561 2195 neutral Sie sind gut, sind Sie nicht gut?

Tag, . (L,M,P,) Neutral 14.51 15.66 15.06 27.87 match reference politeness Du bist gut, bist du nicht?

Tag, . (L,M,P,) Oracle 14.42 19.63 20.03 52.85 input It was a first for the 58-year-old.

Add(L,Mo1,P.) Neutral 15.16 1425 17.24 3831 reference Fiir den 58-Jahrigen war es eine Premiere.

Add(L, Mg 1,P,) Oracle 15.60 19.32 2028 53.28 make more monotone Es war ein erster fiir den 58-Jahrigen.

Adda(L,Mg1,P.) Neutral 16.11 1542 1573 20.44 match reference monotonicity | Fiir den 58-Jahrigen war dies eine erste.

Addz(L,Mg1,P.) Oracle 16.31 17.79 1897 45.15

Table 4: BLEU scores on JESC by politeness split.
Sizes: unknown: 1176, informal: 308, polite: 508, for-
mal: 8.

Non-monotonicity measure. We introduce as a
measure of non-monotonicity for a set of transla-
tions pairs S

A(S) = Zlen(starget) X d(s),
s€S
which intuitively measures by how many positions
the translation deviates from the input sentence’.
To measure the fraction of translations surpassing
the references in terms of token displacements we

introduce the relative non-monotonicity

A({Sl = (sinasout) : 5(3/) > Cut})
A({s = (Sin, Sref) : 0(s) > cut}) ’

which allows us to take a “snapshot” at different
thresholds for cut, comparing generated outputs
with references.

To make this more clear we report the non-
monotonicity measure for the Base model, starting
with German. Looking at Figure 3a, it becomes
clear that the Base translating to German produces
translations that are more monotone than the ref-
erences and that A,.(cut) decreases with cut.

A (cut) =

A detailed derivation is in A.10.

Table 5: Controlling politeness and monotonicity in
German translations.

For comparison, we have also plotted the ratios
A(cut)/A(0) for the references to highlight how
cut affects the distribution of len(sarget) X 6(s)
for the references; intuitively for German lots of
“mass” for the references is concentrated at low val-
ues of §(s). We report the same for the Base model
translating into Japanese in Figure 3b. Here the
situation is different — while as before the Base pro-
duces translations that are more monotone than the
references, the rate of drop is slower than for Ger-
man and then the trend reverses at about cut = 0.2
where A(cut)/A(0) = 53%. Japanese references
also put more mass on higher values of cut than
the German ones; this should not be surprising, as
English and German languages are SVOs while
Japanese is SOV, so more re-ordering are necessary
to translate into the latter.

Evaluation of control with respect to mono-
tonicity. In Figure 2g we compare a few EN =
DE control-enabled models on the task of mono-
tonicity control of translations. All the models
produce more monotone translations compared to
the baseline and there is no significant difference
between tagging and additive control. However the
model Adds has a smaller effect than the model

6683



-

=
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Fine Tune 25%

Fine Tune 35%
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—— Fine Tune Reset 35%
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0.8

intervention i,

Figure 4: Fine-tuning length control.

Add in improving monotonicity, probably indicat-
ing that monotonicity is a harder attribute bene-
fiting from the interplay between more layers. A
similar conclusion holds for Japanese (Figure 2h).
Here it might be interesting to note that Base, for
large values of cut, produces translations that are
less monotone than the references and that even
the simpler Adds helps to reduce this effect. In the
second exemplar in Table 5 we give an example of
increasing the monotonicity compared to the ref-
erence and of matching the reference’s alignment
score. For Japanese we supply examples in §A.13.
In terms of decreasing monotonicity we found that
the continuous approach is more fine-grained; more
details are given in §A.11.

4.7 Learning to control attributes with
fine-tuning

Obtaining controllable models with fine-tuning a
baseline model is important to reduce costs of de-
veloping attribute-specific models and reduce mem-
ory, ideally allowing to override a (small) subset of
parameters of the main model already in memory.

We focused on the direction EN =- DE starting
from the checkpoint of the Base model and we were
able to learn politeness and length control, while
monotonicity proved to be a harder attribute to
bootstrap from the baseline model. Simultaneously
we aimed at learning joint attribute control with a
minimal number of parameters — learning just the
attribute embedding(s) and either fine-tuning the
last two layers of the decoder or resetting them to a
random initialization, both affecting about 13.9%
of the original model parameters.

In Figure 4 we report results at two time points
during the training: the first was chosen when we

N T T T T T T T
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

saw an early indication of achieving control and
the second when the control results had stabilized.
Here As is an increasing function of 4, even though
not close to the ideal As = 4, as for the Add model;
for the model with (without) resetting at about 15%
(20%) of the original training time one can increase
length by about 17% (5%), and one can decrease
length by about 15% (10%). Regarding politeness,
for the first time point the gains on OpenSubti-
tles between the Neutral and the Oracle mode are
already relatively close to those obtained with train-
ing from scratch (§A.12). Overall, BLEU scores
remain close to those of the model trained from
scratch (e.g. on WMT 26.78 in Neutral mode for
the model without resetting).

5 Conclusions

We propose a novel approach for controlling NMT
system with respect to multiple attributes. This
approach has several advantages: first, it uses in-
terpretable additive interventions, where each at-
tribute has a “control” subspace in latent space;
second, it allows to control any subset of attributes
while still generating good quality translations in
the absence of any attribute intervention; third, it
results in a more fine-grained and robust control
of continuous attributes compared to the common
tagging approach without the necessity of commit-
ting to a choice of buckets for continuous features;
finally, it allows for a more efficient fine-tuning pro-
cedure where attribute control can be introduced
by affecting a smaller subset of the original model
parameters. We show-cased the flexibility of the ap-
proach by controlling length, politeness and mono-
tonicity of generated translations from English into
German and Japanese. Future directions of work
include: 1) learning latent attribute embeddings
in an unsupervised way, 2) application to other at-
tributes like translation domain or target language
in multi-lingual systems, 3) optimizing the fine-
tuning to affect even less model parameters, 4) an
investigation of which attributes are “easier” and
“harder” to learn.
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A Appendix

A.1 Datasets and baselines

The WMT17 dataset was available via Tensorflow’s
Datasets. For OpenSubtitles we used a random split
to obtain a dev and a test set. Cardinalities of the
dev and test set are available in Table 5.

Dataset ‘ Split ‘ Cardinality
WMT17 dev 2999
WMT17 test 3004
OpenSubtitles | dev 4572
OpenSubtitles | test 4566
JESC dev 2000
JESC test 2000

Table 5: Cardinalities of datasets.

A.2 Tokenizer configuration

For EN = DE we trained a joint unigram Sen-
tencePiece (Kudo, 2018; Kudo and Richardson,
2018) model with a vocabulary size of 32K. For
EN = JA, following (Feely et al., 2019), we
trained two disjoint BPE subword vocabularies
with size 32k and character coverage o = 0.9995
using the same SentencePiece code.

A.3 SacreBLEU configuration

For German we used the configura-
tion  string: BLEU+case.mixed+lang.de-
en+numrefs.1+smooth.exp+tok.13a+version.1.4.3;
for Japanese we used the configura-
tion string BLEU+case.mixed+lang.ja-

en+numrefs.1+smooth.exp+tok.none+version.1.5.1.

Note that as in (Feely et al., 2019) the Japanese
text was tokenized using the KyTea tokenizer
before computing the BLEU score.

A.4 Experiment setup

Our implementation of the Base Transformer is
based on the Flax WMT example®. On the WMT14
test set, used to verify implementation correctness,
our baseline model’s and the original Base Trans-
former’s scores (Vaswani et al., 2017) are, respec-
tively, 27.8 BLEU points and 27.3.

We trained on TPUV2 (16 cores) with batch size
256 and used sentence packing (Shazeer et al.,
2018) to increase efficiency of accelerator usage.
The learning rate was set to 0.0625 with 1k steps of

8https://github.com/google/flax/tree/master/examples/wmt

linear warm-up and square-root decay afterwards.
We used the default Adam optimizer and a dropout
rate of 0.1. For EN = DE we trained for a mini-
mum of 100k steps and after that used early stop-
ping, evaluating every 10k steps, on the dev’s set
BLEU score with a patience of 5; results were eval-
uated on the best checkpoint for the dev set. For
EN = JA we used a patience of 10 and we used
two separate embeddings on top of the separate
BPE vocabularies following the configuration re-
ported in (Feely et al., 2019). For EN = DE we
used beam search with beam size 4 and length-
penalty 0.6. For EN = JA we used beam search
with beam size 10 and length-penalty 0.9; these
parameters having been fine-tuned for the Base on
the dev set.

We were unable to replicate the performance
score of 18.8 for the Base model in (Feely et al.,
2019) even though the improvements we saw for
controlling politeness are consistent with their re-
sults. We conjecture these might be due to a mis-
match of some model configuration or to a different
setup for evaluating the BLEU score.

A.5 Tagging configuration

For length (resp. monotonicity) we used 5 (resp. 3)
buckets whose boundaries were chosen so that each
bucket contains approximately the same amount of
data. For the tagging models that have a Neutral
mode, this was simulated by a “neutral” masking
tag that replaces each original tag independently
with a 20% probability. When using tags interven-
tions were made by shifting, i.e. shifting each tag
id by k positions and clipping to a valid tag; so if
there are [ tags there are 2 x [ — 1 possible inter-
ventions where £ = 0 corresponds to the Oracle
mode.

A.6 BLEU scores for the different
permutations of tagging

In Tables 6 and 7 we report the BLEU scores on
WMT and OpenSubtitles for models trained with
the different permutations of the tags. The best and
worst results are indicated by an asterisk (*) and
are reported in the main paper.

A.7 Annotation of German politeness

We used the rules from (Sennrich et al., 2016),
that look at the German 2nd person pronouns ‘Sie’
(polite ‘you’) and ‘du’ (informal ‘you’) and the cor-
responding verbs. Here the parser is mainly used
to correctly classify ambiguous pronouns, e.g. “ihr”
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Model Mode BLEU
Tag(L,M,P;) Oracle 27.32%
Tag(L,P4,M) Oracle 26.58*
Tag(M,L,P;) Oracle 26.62
Tag(M,P;,L) Oracle  27.06
Tag(Pys,L,M) Oracle 27.13
Tag(P4,M,L) Oracle 27.28

Table 6: BLEU scores on WMT EN-DE for the differ-
ent permutations of tags. * difference is statistically
significant with pval < 10710

Model Mode all  unknown polite informal
Tag(L,M,P;) Oracle 21.99 22.05 24.94 20.47
Tag(L,P4,M) Oracle 21.17 21.14 23.66 20.21
Tag(M,L,Pg) Oracle 21.50 2141 2378 20.69
Tag(M,P4,L) Oracle 21.60 21.65 24.06 20.34
Tag(Pg,L,M) Oracle 21.73 21.81 23.35 20.67
Tag(Pg,M,L) Oracle 21.81 21.80 24.59 20.59

Table 7: BLEU scores of a WMT-trained model on
OpenSubtitles by politeness split for all permutations
of tags. Sizes: all: 4566, unknown: 3617, polite: 276,
informal: 673.

to make sure it refers to a second person. In Table 8
we report relative frequencies of the data annotated
as polite or informal.

A.8 Classification accuracy on the politeness
rewriting task

We took the test subsets of OpenSubtitles where
the references is classified as polite or informal
and translate the source side into either polite or
informal mode and run the rule-base classifier on
the translations to find out the realized rewriting
accuracy (Table 9). Thanks to the flexibility of
the additive approach, we were able to match this
accuracy by fine-tuning the informal multiplier
for after training. For example, for the model
Addy (L, My 1, P.) the multiplier value for infor-
mal that we found by grid-search was 1.9 which
resulted in a rewriting accuracy of 79.6% in Oracle
mode and resp. 80.4%. In terms of BLEU scores
this translates to respective improvements of 19.68

Dataset informal  polite
WMT 1.2% 7.9%
OpenSubtitles 153% 6.2%

Table 8: Relative frequency of politeness annotation for
German.

Model polite informal
Base 62.7 8.5
Tag(L,M, Py) 87.1 82.8
Tag(L, P4, M) 85.9 79.0
Tag(M, L, Py) 85.4 78.1
Tag(M, P4, L) 87.2 81.0
Tag(Pg4,L, M) 86.6 81.7
Tag(Py, M, L) 87.7 81.8
Tag, . (L,M,Py) 84.4 79.5
Tag, (L, M, P,) 85.7 79.9
Add(L,Mg1,P.) 77.8 70.2
Add2(L,Mp1,P.) 779 70.8

Table 9: Classification accuracy (%) on rewriting into
polite and informal for the OpenSubtitles test set.

Formality Level Multipliers
unknown 0.5
informal 1.0
polite 1.5
formal 2.0

Table 10: Multipliers for Japanese politeness.

and 20.22. In our grid-search we optimized for the
BLEU score; however there is a trade-off with the
rewriting accuracy as the latter can be further in-
creased above 85% while keeping the BLEU score
above 18.0.

A.9 Annotation of Japanese politeness

For Japanese a politeness and formality regis-
ters can be inferred from verb endings and pres-
ence of honorific expressions. We took the rules
from Table 3 of (Feely et al., 2019) and used the
SpaCy parser. In Listing 1 we report the code
we used for annotation. The formal_verbs,
polite_verbs and informal_verbs are
Python’s sets of strings that we report in Tables 16
and 17. Each string represents the way SpaCy
parses a grammatical rule of politeness inside a
sentence and for each string we report how a full
example sentence was parsed by SpaCy. The values
of the multipliers used for the continuous feature
are in Table 10.

A.10 Quantifying non-monotonicity

To evaluate translation monotonicity one would
like to measure how the change in the monotonicity,
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d(s), is affected when requesting translations with
lower or higher d(s). First note that §(s) is already
normalized to lie in [0, 1] as the ratios i/n, j/m
in its definition rescale the sentence lengths to the
unit interval. In the limit case of n,m — oo we
might think of of an alignment, which concretely
consists of pairs (i/n, j/m), as representing a con-
tinuous curve ¢t — ¢(t) mapping [0, 1] to [0, 1].
Now 6(s) would become the L!-distance between
c and the identity mapping ¢ — ¢. In the finite case,
if we think of an alignment as a curve, possibly
with jumps, we can then think of reparametrizing
it to be defined on a domain corresponding to the
sentence length; we thus propose to multiply 0(s)
by the length of the translation S¢arget, to arrive
at interpretation of len(siarget) X 6(s) as a non-
monotonicity measure — by how many positions
in the translation tokens deviate from the corre-
sponding tokens in the input sentence. Now, given
a set of translations S we define the degree of their
non-monotonicity as:

A(S) = " len(starget) X 8(s),

sES

which quantifies by how many token positions the
translations cumulatively deviate from the corre-
sponding input sentences.

However, we are interested in comparing mono-
tonicity between sets of translations; so given two
sets S, S’ of translations of the same inputs we look
at A(S)/A(S"). This alone, however, would give
a partial picture as it does not take into account the
distribution of the (). Therefore, we propose to
slice A(S) at cuts by looking at subsets of S, S’
where §(s) > cut. Put together, we define the
relative non-monotonicity as:

A(t : translation with §(¢) > cut)

Arer(cut) = ’
el(cut) A(t : reference with §(t) > cut)

which compares the translations with the refer-
ences, with values larger than 1.0 indicating more
re-orderings than the references and vice-versa.

A.11 Decreasing monotonicity

When asking the model to decrease monotonicity,
we observed that the continuous approach gives a
more fine-grained control. For example in Figure 3
we compare a tagging and a continuous model in
the direction EN =- DE for different values of the
interventions. Note that asking to reduce mono-
tonicity does result in lower BLEU scores, so to

base

continuous

n tagging

Figure 3: How we can vary monotonicity EN =
DE for different interventions. The model using tag-
ging is Tag(L,M, P;) while the continuous model is
Add(L, My 1, P.). Darker shades of the same color rep-
resent larger values of the intervention J.

make a fair comparison with tagging we fixed a
range of values for the continuous interventions
that does not lead to a worse reduction in BLEU
than tagging. Here we observe that with the con-
tinuous feature we have a smoother and broader
range of possible effects. For Japanese, besides a
similar situation, we also found a significant differ-
ence between the oracle mode for the continuous
and the tagging approaches. In oracle mode, we
would expect the translations to closely match the
references and hence the A (cut) to stay close to
the ideal line y = 1.0 as cut varies. In Figure 4
we see that at a certain point the continuous ap-
proach performs better than tagging; for example
at cut = 0.3 the tagging model has already increase
around y = 1.5 while the continuous approach is
still around y = 1.07. Note there we are not yet at
the tail of the distribution as for the references the
A(0.3)/A(0) is at about 15%.

A.12 Fine-tuning results

In Table 11 we report the BLEU scores on WMT17
and the formal/informal splits of OpenSubtitles
for the selected checkpoints. On WMT we still
see good performance with similar scores between
Neutral and Oracle mode. The results on OpenSub-
titles show that the model learns to use the polite-
ness annotation to improve the quality of transla-
tions.

A.13 Exemplars

In Table 12 there is an example of varying the
length of a translation for German. Here the con-
trollable model is not simply dropping tokens from
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continuous
7 tagging
=== ideal

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4: Comparing continuous and tagging for
EN = JA monotonicity in oracle mode. The model
using tagging is Tag; (L, M, P4) while the continuous
model is Add(L, My 1, P.).

the end even in the range of 7,, where we found it
comparable to the rewriter in terms of BLEU score.
For example at 7, = 0.6 it takes out some addi-
tional information like the year of the restoration
but keeps the main verb. Note that in neutral mode
the translation was shorter than the reference and
for ¢, = 1.0, corresponding to oracle mode, the
system tries to match the length of the translation.
In Table 13 we consider an example of varying the
length of a translation in Japanese. Going from
shorter to longer translations: the system first trans-
lates the main verb/imperative (i, = 0.3), then it
translates the “together” (¢,, = 0.5) and keeps refin-
ing the verb ending till 7, = 1.0; after that length
is increased by introducing explicitly personal pro-
nouns or the “why?” that would be optional in
Japanese. As a side effect, length interventions are
generating also a broader grammatical variety of
translations.

In Table 14 we have some exemplars for mono-
tonicity control. In the first German example the
reference is less monotonic because the subject
comes at the end and the information about the
58-years old is first; the more monotonic transla-
tion corrects the order. In the first Japanese ex-
ample to increase monotonicity the model adds
the personal pronoun “I” that is missing from the
reference, shifting the alignment. In the second
Japanese example we observed that setting the tar-
get 0 for &(s) small produces a bit more variety of
translations (an advantage of a continuous represen-
tation of monotonicity) where the model tries to get
a translation where the time information about “a
few years” comes towards the end of the sentence.

Model Mode Dataset BLEU
Neutral WMT 26.78

Oracle WMT 26.55

15% Neutral OS-informal 13.32
Oracle  OS-informal  17.55

Neutral OS-polite 22.17

Reset Oracle  OS-polite 23.11
Neutral WMT 26.74

Oracle WMT 26.53

35% Neutral OS-informal 13.37
Oracle  OS-informal 18.24

Neutral OS-polite 22.35

Oracle  OS-polite 23.12

Neutral WMT 26.66

Oracle WMT 26.87

20% Neutral OS-informal 12.96
Oracle  OS-informal 18.04

Neutral OS-polite 22.81

Fine Tune Oracle  OS-polite 23.24
Neutral WMT 26.73

Oracle WMT 26.90

35% Neutral OS-informal  13.30
Oracle  OS-informal 19.23

Neutral OS-polite 22.96

Oracle  OS-polite 23.79

Table 11: BLEU scores for fine-tuning.

In Table 15 we show how the politeness Oracle
helps in German and Japanese to get a translation
more close to the reference since the English input
sentences admit different translations in the target
languages, e.g. regarding choices for the informal/-
formal pronouns for German, or verb endings and
honorifics for Japanese.

A.14 Model implementation

In Listing 2 we give an indication of how the model
can be implemented in Flax. Note that for simplic-
ity we assume that the encoder and the two parts
of the decoder are already implemented, e.g. by
taking them from the WMT example in the Flax
library. To make the code listing clear and short we
assume the each row of the batch contains a single
sentence, i.e. that the model is not implemented to
work with sentence packing. In the case of sentence
packing a few modifications are necessary but are
easy to implement using either jax.lax.scan
or jnp.einsum, depending on how one keeps
track of the sentence id.
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input

reference
neutral
i, = 0.6
i = 0.7
i, = 0.8
i, = 0.9
i, = 1.0
i, = 1.10
i = 1.20

Gee and Schwartzman are scheduled to discuss and share images of the 1926 Bertram Goodhue
design as well as the 1993 restoration and addition by Hardy Holzman Pfeiffer Associates.

Es ist vorgesehen, dass Gee und Schwartmann Bilder des 1926 Bertram Goodhue Designs sowie
die 1993 Restoration und Ergidnzung von Hardy Holzman Pfeiffer Associates diskutieren und
teilen werden.

Gee und Schwartzman sollen die Bilder des Bertram Goodhue-Designs von 1926 sowie die
Restaurierung und Ergénzung von Hardy Holzman Pfeiffer Associates von 1993 diskutieren und
teilen.

Gee und Schwartzman sollen Bilder des Bertram Goodhue Designs von 1926 sowie die Restau-
rierung und Ergiinzung diskutieren.

Gee und Schwartzman sollen Bilder des Bertram Goodhue Designs 1926 sowie die Restaurierung
und Ergénzung von Hardy Holzman Pfeiffer.

Gee und Schwartzman sollen die Bilder des Bertram Goodhue Designs 1926 sowie die Restau-
rierung und Ergidnzung von Hardy Holzman Pfeiffer diskutieren.

Gee und Schwartzman sollen die Bilder des Bertram Goodhue-Designs 1926 sowie die Restau-
rierung und Ergénzung von Hardy Holzman Pfeiffer Associates 1993 diskutieren.

Gee und Schwartzman sollen die Bilder des Bertram Goodhue-Designs 1926 sowie die Restau-
rierung und Ergédnzung von Hardy Holzman Pfeiffer Associates aus dem Jahr 1993 diskutieren
und teilen.

Gee und Schwartzman sollen die Bilder des Bertram Goodhue-Designs von 1926 sowie die
Restaurierung und Ergédnzung von Hardy Holzman Pfeiffer Associates aus dem Jahr 1993
diskutieren und mit ihnen teilen.

Gee und Schwartzman sollen die Bilder des Bertram Goodhue-Designs von 1926, sowie die
Restaurierung und Erginzung von Hardy Holzman Pfeiffer Associates aus dem Jahr 1993
diskutieren und mit ihnen in Verbindung bringen.

Table 12: Modifying length of a German translation.
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input

reference
i = 0.30
i, = 0.50
i, = 0.70
i = 0.90
i, = 1.00
1, = 1.10
i, = 1.20
i, = 1.30
i, = 1.50

why don’t you come sit down with me?

Z o BISRTARICES B\n?

over here come together not sitting down?
T

sit down!

—flC 5T

together sit down!

—HHICIES S

together let’s sit down

— I S T2 5?

together why don’t sit down?
—AHICHE S T h?

together not sitting down?

il —ABICHE > 725 &9 722

with me together when sitting down how’s it?
LR & AR S

why with me together not sitting down?
TR & —HEICHES TV o?

why with me together not sitting down?
TRHE NI & IS ES B2

why you with me together not sitting down?

Table 13: Modifying length of a Japanese translation.
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input
reference
make more monotone

match reference monotonicity

It was a first for the 58-year-old.
Fiir den 58-Jdhrigen war es eine Premiere.
Es war ein erster fiir den 58-Jahrigen.

Fiir den 58-Jdhrigen war dies eine erste.

input

reference

make more monotone

match reference monotonicity

i’ve already met four people
PEica N> 720

already 4 people met
HILFEICANIC 225 72

I already 4 people met
FTTICAANICE STV S

already 4 people meeting

input

this thing was discovered just a few years

I R ERIICRRINSZL T

reference
this only a number years before discovered conj. particle
make more monotone FHAINT=DIXIF A D 2~35FH]

discovered subj. particle only 2~3 years before
make more monotone CORRITIZAOHF T

this discovery already number of years prep. since
make more monotone NZHALEDOIX DI REET

this discovered subj. particle a little number years prep. since
ZHTIEAD BEERIICRER I NN T

match reference monotonicity

this already a number years before discovered conj. particle

Table 14: Increasing monotonicity.
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input
reference
neutral

match reference politeness

You’re good, aren’t you?
Dir geht’s gut, nicht?
Sie sind gut, sind Sie nicht gut?

Du bist gut, bist du nicht?

input

reference

neutral

match reference politeness

why don’t we catch that plane?
RATHEZIME 2 £L £ O
plane catch let’s (verb ending)
RATREIZ & 52

plane how about?
RITHE = £ 2 2L & O

plane catch let’s (verb ending)

input

reference

neutral

match reference politeness

good morning, okazaki.

Bl ) ITTWES. [MEFS A
good morning hon. ozazaki hon.
Bld ko i

good morning ozazaki
BldkH)ITInwEg. MIFTA

good morning hon. ozazaki hon.

input

reference

neutral

match reference politeness

who are you? tell me your name.
— ki F 72 Gl S 2

what the heck person are name tell
PETHETT b2

you who/person are?

HEFZY BHIZEE 2

who/person are? name tell

Table 15: Matching politeness of references.

6693



Rule

Strings in Rule

Example

informal_verbs

72 AUX

72 5 AUX 7= AUX

L < AUX 7\ ADJ

L < AUX 7t h>» ADJ
7= AUX

7259 AUX

72 AUX h>v5 SCONJ
72 AUX |F & SCONJ
72 AUX - T PART
72 AUX 5 I

Z 9 ADV /2 AUX

X 9 AUX 72 AUX

H{Kk#4 NOUN |3 ADP IHH NOUN h*+ ADP /= AUX

H {k & NOUN |X ADP #EH NOUN 5>+ ADP 72 5
AUX 7= AUX

f%%r PRON /=5 NOUN H* ADP H % ADJ U < AUX
Uy ADJ

71z PRON 7= NOUN h* ADP H % ADJ U % AUX
7 h>- ADJ 7= AUX

Y NOUN h* ADP [% % VERB 725 5 AUX

72 AUX H>% SCONJ 7 A PRON 72 AUX

FE\y ADJ A SCONJ 72 AUX |7 & SCONJ

72 AUX - C PART #4< ADJ 7\ » ADJ 72 AUX
72 AUX > 7 PART 2 < ADJ 75\ y ADJ 72 AUX
I3\ INTJ £ 9 ADV 72 AUX

IZVY INTJ X 5 AUX 72 AUX

polite_verbs

T AUX

TL AUX /= AUX

Wy AUX

A
%% h*> ADJ 7= AUX

¥ 9 AUX

X L AUX /= AUX
¥+ AUX A AUX

FL X AUX

TL x D AUX
{723\ VERB
7 3\ AUX

T AUX & % AUX

T AUX b PART 7\
ADJ

1z NOUN T3 AUX

£ H NOUN |X ADP & 7¢ /= PRON & ADP #E/f- NOUN
H NOUN L AUX /= AUX

4 H NOUN | ADP & ") VERB < AUX 7\ AUX
—WE NOUN H NOUN I ADP & 1) NOUN 7¢h* - ADJ
7= AUX

+ NOUN #24 NOUN % ADP E\\ VERB ¥ 9 AUX
# NOUN #:¥4 NOUN % ADP B\ VERB X L AUX
7= AUX

+ NOUN 734 NOUN % ADP E\» VERB X # AUX
A AUX

3+ NOUN # 4 NOUN % ADP B\ VERB ¥ L x 9
AUX

Y NOUN h* ADP [%% VERB TL x 9 AUX

£ —J)L NOUN % ADP < 723 \» VERB

Z o DET 4 NOUN |X ADP . VERB 7¢ 3y AUX
442 NOUN T AUX & % AUX

442 NOUN @ AUX b PART 70\ ADJ

Table 16: Annotation of Politeness for Japanese (I). Components of each rule and an example sentence.
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Rule

Strings in Rule

Example

formal_verbs

T3 AUX 9 AUX

W5 5 L%\ VERB X
I AUX

& AUX X9 AUX
3V AUX X9 AUX

¥ L VERB ¥ 9 AUX

Z'% NOUN |C ADP 7¢
" VERB ¥ 9 AUX

¥ i VERB L AUX %
9 AUX

+ NOUN H NOUN |z
ADP #$H*Y VERB ¥ 7
AUX

+ NOUN W C VERB IC
ADP 7" VERB F 7
AUX

fal\y VERB X9 AUX

%Y VERB ¥ 9 AUX
£ NOUN L AUX ¥
4 AUX

# L VERB [ 17 AUX
¥ 9 AUX

L Ehsh VERB £9
AUX

TH< VERB
THZ VERB ¥ 9 AUX

TH\VY VERB € SCONJ

# | VERB & |7 AUX
¥ 93 AUX

T3\ VERB ¥ 3 AUX

- L%\WVERB ¥7
AUX

B L VERB LI AUX
¥ 3 AUX

E{ NOUN h* ADP % 5 % PRON C© AUX Z 3\ AUX
¥4 AUX

2 NOUN X ADP 2817 NOUN IZ ADP W\ &5 5 L <\
VERB 9 AUX

Jii NOUN |Z ADP 11 NUM Jt NOUN & " AUX 9
AUX

Z o DET 4 NOUN |X ADP i VERB 7% &\ AUX
3 AUX

168 NOUN % ADP # L VERB F 7 AUX
7 PRON |3 ADP it [lif NOUN ¢ ADP I[#] NOUN %
ADP Z'& NOUN |C ADP 7t ) VERB ¥4 AUX

5 % NOUN |3 ADP [l] NOUN % ADP }£ R VERB L
AUX ¥ 9 AUX

i H NOUN |Z ADP 35 NOUN H NOUN |2 ADP ##n»
) VERB ¥ 7 AUX

%Z NOUN |3 ADP 35 NOUN W2 C VERB |C ADP 7% Y
VERB ¥ 9 AUX

HH H NOUN ¥ NOUN - F+ PROPN C ADP fi]\» VERB
¥4 AUX

$+ NOUN J§ NOUN ~\ ADP % Y VERB % 3 AUX

fu] PRON %1 NOUN L AUX Z 9 AUX

fif PRON 7£L VERB I+ AUX ¥ 9 AUX h* PAR

i NOUN % ADP {1 L FhY VERB 3 AUX

1% NOUN |3 ADP TH< VERB
f£5 NOUN |X ADP & VERB ¥4 AUX

% NOUN “E NOUN |X ADP 74~ NOUN % ADP JHW
VERB T SCONJ \ AUX ¥ 9 AUX

it NOUN | ADP 3% L VERB &l AUX F 9 AUX

4 NOUN X ADP 35 NOUN 5 < NOUN %Z ADP |
3\ VERB F 93 AUX

S NOUN | ADP 355 L < \» VERB % 9 AUX

Z NOUN 4% NOUN % ADP H | VERB |17 AUX
¥ 9 AUX

Table 17: Annotation of Politeness for Japanese (II). Components of each rule and an example sentence.
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def annotate (jp_txt:
jp_doc = nlp_jp (jp_txt)
jp_doc = expand_doc (jp_doc)
politeness =
# formal > polite > informal
done = False
for table,

Listing 1: Annotation of Japanese politeness

import spacy
# Initialize SpaCy.
nlp_Jjp = spacy.load(

"ja_core_news_sm’)

str) :

" <unknown>'

tag in zip(
(formal_verbs,

polite_verbs, informal_verbs),
("<formal>’, ’'<polite>',
'<informal>")):

for form in table:
if form in jp_doc:
politeness = tag
done = True
break
if done:
break

return politeness

Listing 2: Implementation of the model

import flax
import flax.linen as nn

class Model (nn.Module) :
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encoder: nn.Module

# First few layers of decoder
decoder_lo: nn.Module

# Last N layers of decoder
decoder_up: nn.Module

# Cardinality of attributes
nr_attr: int

emb_dim: int

@nn.compact

def _ call_(inputs, targets,
attr_id, attr_weight):
# attr_id: B, nr_attr
# attr_weight: B, nr_attr
# inputs, targets: B, T

# Construct vector V

V = nn.Embed (
num_embeddings=nr_attr,
features=emb_dim) (attr_id)

attr_weight = jnp.expand_dims (

attr_weight, axis=-1)

= V * att_weight

sum over the # of attributes

so shape B, emb_dim

= jnp.sum(V, axis=1l)

add dimension to sum

across time steps

= jnp.expand_dims (V,

< HH < K

axis=1)

encoded = self.encoder (
inputs)

decl = self.decoder_lo(
targets, encoded)

logits = self.decoder_up (
decl, encoded + V)

return logits



