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Abstract

Recently, it has been argued that encoder-
decoder models can be made more inter-
pretable by replacing the softmax function in
the attention with its sparse variants. In this
work, we introduce a novel, simple method
for achieving sparsity in attention: we replace
the softmax activation with a ReLU, and show
that sparsity naturally emerges from such a for-
mulation. Training stability is achieved with
layer normalization with either a specialized
initialization or an additional gating function.
Our model, which we call Rectified Linear
Attention (ReLA), is easy to implement and
more efficient than previously proposed sparse
attention mechanisms. We apply ReLA to
the Transformer and conduct experiments on
five machine translation tasks. ReLA achieves
translation performance comparable to several
strong baselines, with training and decoding
speed similar to that of the vanilla attention.
Our analysis shows that ReLA delivers high
sparsity rate and head diversity, and the in-
duced cross attention achieves better accuracy
with respect to source-target word alignment
than recent sparsified softmax-based models.
Intriguingly, ReLA heads also learn to attend
to nothing (i.e. ‘switch off’) for some queries,
which is not possible with sparsified softmax
alternatives.1

1 Introduction

Attention models (Bahdanau et al., 2015) have
been hugely successful recently, with Trans-
former (Vaswani et al., 2017) in particular, advanc-
ing state of the art on various tasks, such as machine
translation (Bojar et al., 2018), document summa-
rization (Liu and Lapata, 2019) and speech process-
ing (Chiu et al., 2018), and delivering a large im-
pact on a broad range of NLP tasks via large-scale
self-supervised pretraining (Devlin et al., 2019).

1Source code is available at https://github.com/
bzhangGo/zero.
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Figure 1: Overview of the vanilla dot-product attention with
softmax and the proposed Rectified Linear Attention (ReLA).
Major differences highlighted in red.

At the core of attention is a mechanism that dy-
namically highlights relevant context features for
a given query input. In the vanilla softmax-based
attention model (Vaswani et al., 2017, SMATT),
this is achieved by imposing a categorical distribu-
tion constraint on the query-context relevance (i.e.
attention) scores, implemented with the softmax
activation (see Figure 1(a)).

SMATT produces dense distributions, assigning
some small amounts of attention even to irrelevant
features. This complicates the analysis of the infor-
mation flow in the model, and has led researchers
to study sparse alternatives, which often lead to
improved model performance and/or interpretabil-
ity (Correia et al., 2019). Efforts in this category
include designing fixed sparsity patterns (Raganato
et al., 2020; Child et al., 2019) and creating sparsi-
fied softmax variants (Martins and Astudillo, 2016;
Peters et al., 2019). However, these methods also
have drawbacks. Fixed sparsity patterns lack flex-
ibility and generalize poorly across tasks. Spar-
sified softmax variants often depend on complex
inference algorithms (e.g., requiring the sorting
operation), which reduces their efficiency.

In this paper, we propose rectified linear atten-
tion (ReLA) to alleviate the above problems. ReLA

https://github.com/bzhangGo/zero
https://github.com/bzhangGo/zero
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uses ReLU rather than softmax as an activation
function for attention scores, abandoning the prob-
abilistic constraint.2 ReLU is inherently sparse
since negative activations are dropped, and we will
show that such sparse behaviour indeed emerges
during training. In contrast to softmax activations,
the output of ReLU can be any non-negative value,
providing extra flexibility. To stabilize gradients
and ease model convergence, we apply layer nor-
malization together with a specialized initialization
or a gating mechanism. Figure 1(b) shows ReLA,
and also contrasts it with SMATT.

ReLA is an easy-to-implement drop-in replace-
ment for SMATT that requires no specialized op-
erations or inference processes. Note that the be-
haviour of ReLA is data-driven, and it does not
enforce a constant attention mass or sparsity level
across queries, even allowing for null attention (all
attention scores are zero) for some queries. We
provide experimental results for ReLA with Trans-
former on five machine translation tasks, along with
an in-depth analysis on WMT14 English-German
task. Our contributions are summarized below:

• We propose ReLA, a drop-in SMATT alterna-
tive, that learns sparse attention automatically
with high flexibility and efficiency.

• Experiments on five translation tasks show
that ReLA achieves comparable translation
performance, with similar training/decoding
speed to SMATT, but is substantially faster
than sparsified softmax baselines.

• Our analysis shows that ReLA delivers high
sparsity rate, high head diversity, and better
accuracy than all baselines with respect to
source-target word alignment. We also ob-
serve the emergence of attention heads with a
high rate of null attention, only activating for
certain queries. For some heads, this null rate
can also indicate the quality of sentence pairs.

2 Related Work

ReLA ensures sparsity in attention. An alter-
native solution in this direction is to develop
sparsified softmax alternatives, such as sparse-
max (Martins and Astudillo, 2016; Malaviya et al.,
2018), entmax (Peters et al., 2019; Correia et al.,
2019), fusedmax (Niculae and Blondel, 2017), and

2Note that sparsified softmax variants also use some form
of ReLU to achieve sparsity, but they stick to the probabilistic
constraint which demands extra complexity.

hashing/clustering-based variants (Roy et al., 2020;
Kitaev et al., 2020). These models often require
dedicated algorithms for forward and backward
propagation, at the cost of a significant computa-
tional overhead. Another strategy is to manually de-
fine sparse patterns inspired by task-specific atten-
tion analysis. Raganato et al. (2020) corroborated
the feasibility of fixed patterns for Transformer en-
coder in translation. Child et al. (2019) introduced
local and strided patterns to scale SMATT up to
very long inputs. Unlike data-driven approaches,
whether these patterns could generalize to different
tasks and settings is still an open question.

In contrast, ReLA is both data-driven and effi-
cient. In this respect, our work shares similarity
with the explicit sparse Transformer (Zhao et al.,
2019) which also delivers faster speed but still de-
pends on top-k sorting as in sparsemax and entmax
with k, a tunable hyperparameter. Note that all the
above mentioned methods follow the categorical
distribution constraint on attentions, while ReLA
goes beyond. Thus, unlike ReLA, none of them
enables null attentions.

A different type of linear attention model is
proposed by Katharopoulos et al. (2020) and
Choromanski et al. (2020), who aim at reducing
the O(n2) complexity in SMATT. These mod-
els behave fundamentally differently from ReLA,
because they eliminate the token-wise modeling
rather than introducing sparsity.

The explanatory power of standard attention
weights is hotly debated (Wiegreffe and Pinter,
2019; Jain and Wallace, 2019). Much of the crit-
icism stems from the observation that low atten-
tion scores do not always imply irrelevance of the
corresponding feature, as the information can still
flow and its influence can be large (e.g., due to the
large magnitude of the corresponding features). In
contrast, sparse variants, including ReLA, assign
exact zeroes, ensuring that the information flow
from the corresponding features within the atten-
tion component is cut completely. Even with stan-
dard attention, prior studies show some evidence
that attention partially reflects linguistic properties.
In machine translation, the encoder-decoder atten-
tion captures the source-target word alignment to
a certain degree (Ghader and Monz, 2017), with
recent work further strengthening this via specific
induction methods (Ding et al., 2019; Kobayashi
et al., 2020; Chen et al., 2020). We apply analy-
sis techniques from previous work to analyze our
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models.

3 Background: Attention in Transformer

Many variants of attention mechanism have been
developed since its first proposal (Bahdanau et al.,
2015; Luong et al., 2015). In this paper, we focus
on the one used by Transformer, namely multi-
head scaled dot-product attention (MHATT), in an
encoder-decoder setup. Given query inputs X ∈
Rn×d and a sequence of context items Y ∈ Rm×d,
each head in MHATT summarizes query-relevant
context information as follows:

SMATT (X,Y) = αV,

with α = Softmax
(
f
(
Q,KT

))
,

(1)

with Q = XWq;K,V = YWk,YWv, where
n and m are the query and context length, respec-
tively; d and dh are the model and head dimen-
sion, respectively; W∗ ∈ Rd×dh denotes trainable
model parameters. α ∈ Rn×m is the attention
weight, which estimates the degree of relevance
between one query input and each context. The
softmax normalizes the scores and ensures that the
attention weights α define a categorical distribu-
tion. f(·) is a scoring function. Different attention
mechanisms make different choices for f(·), but
the use of softmax, or its sparsified variants, is
universal.

SMATT in Transformer adopts the scaled dot
product for f(·), which is further extended by
MHATT to allow for parallel attentions in different
sub-spaces over the same inputs:

MHATT (X,Y) =
[
SMATT1, . . . , SMATTH

]
Wo,
(2)

where [·, ·] denotes the concatenation operation, H
is the number of heads, Wo ∈ RHdh×d are output
transformation parameters, and d = Hdh.

In the encoder-decoder framework, MHATT is
used in three different ways: Encoder Attention,
Decoder Attention and Cross Attention, modeling
intra-source, intra-target, and source-target depen-
dencies, respectively. Transformer performs lay-
ered MHATT with residual connection and layer
normalization (Ba et al., 2016) to handle varia-
tions of token-wise dependencies. The learning
of MHATT is guided by the training objective, of-
ten without direct supervision.

4 Rectified Linear Attention

We argue that the use of the softmax function in
SMATT (Eq. 1) has two undesirable consequences:

• The attention mass is densely distributed over
all context items, even the ones that are intu-
itively irrelevant.

• The attention mass for each query is constant,
although the relevance of context may vary.

Both potentially hamper interpretability and even
performance.3

As an alternative to sparsified softmax vari-
ants (Peters et al., 2019; Correia et al., 2019), we
go one step further and consider whether the soft-
max, or broadly the categorical distribution, could
be avoided completely.

Model Structure We offer an answer to the ques-
tion by proposing rectified linear attention (ReLA).
ReLA abandons the distribution assumption and
adopts linear activation instead. It is formulated as
follows (see Figure 1(b) for illustration):

ReLA (X,Y) = LN (αV) ,

with α = ReLU
(
f
(
Q,KT

))
,

(3)

where f(·) denotes any scoring function as in
Eq. 1, LN(·) denotes variants of layer normaliza-
tion (Ba et al., 2016; Zhang and Sennrich, 2019),
and ReLU(·) = max(0, ·) is the rectified linear
unit. Note here, we describe our model by assum-
ing only one attention head for clarity. In the multi-
head ReLA, we impose the normalization LN(·)
on the concatenated head representation rather than
each single head separately.

Unlike SMATT, ReLA prunes out all negative
scores of low query-context relevance, automati-
cally ensuring the sparse property of the attention
weight α ∈ Rn×m. Besides, ReLA allows for null
attention, where it assigns zero scores to all context
items (i.e. some rows of α are zero vectors), ef-
fectively switching off the corresponding attention
head for certain queries. Nevertheless, the outputs
of ReLU in Eq. 3 are often of different scales and
varied variance, causing gradient instability and
also optimization failure.

Stabilization with Normalization A common
strategy in deep learning to stabilize neuron ac-
tivations is to apply layer normalization LN(·) (Ba

3As an anecdotal example, Voita et al. (2018) performed an
analysis of attention to previous sentences in MT, and found
that the model has learned to generally attend to the end-of-
sentence symbol as a way to ignore context. While this might
be an effective strategy for instances where context matters
little, this reduces the interpretability of attention.
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et al., 2016). We follow this strategy and normal-
ize each representation z ∈ Rdh in the attention
outputs (αV) with root mean square layer normal-
ization (Zhang and Sennrich, 2019, RMSNorm):

LN(z) = RMSNorm(z) =
z

RMS(z)
� g, (4)

where � denotes the element-wise multiplication,
RMS(·) calculates the root mean square statistic,
and g ∈ Rdh is the gain parameter, usually ini-
tialized at 1. We adopt RMSNorm rather than the
vanilla LayerNorm (Ba et al., 2016) for ReLA be-
cause it avoids the re-centering constraint, being
more flexible and computationally simpler.

Although RMSNorm largely smooths gradients,
our preliminary experiments show that ReLA still
suffers from unstable gradients during early train-
ing, delivering suboptimal convergence. We pro-
pose two solutions, corresponding to two variants
of ReLA, to solve this problem by down-scaling
ReLA’s activations.

ReLA-i changes the initialization of the gain pa-
rameter g in RMSNorm with a uniform xavier
initializer: g ∼ U(−

√
3
dh
,
√

3
dh
).4

ReLA-g adds a simple gating function to the nor-
malization:

LN(z) = σ (w � z)� RMSNorm(z), (5)

where σ(·) denotes the sigmoid function, and
w ∈ Rdh is a trainable parameter.

We compare their performance in our experiments.
The only overhead due to ReLA, compared to
SMATT, is the added normalization layer and it
is marginal. ReLA is a drop-in replacement of
SMATT, and we apply it to Transformer for all
three types of attention.

5 Experiments

Settings We take machine translation as the
testbed. We conduct experiments on five datasets
of varied language pairs and training data sizes,
including WMT14 English-German (Bojar et al.,
2014, En-De, 4.5M training instances), WMT14
English-French (Bojar et al., 2014, En-Fr, 36M),
WMT18 English-Finnish (Bojar et al., 2018, En-
Fi, 3.3M), WMT18 Chinese-English (Bojar et al.,

4Note here we set fanin = fanout = dh.

ID Model BLEU

1 Baseline (softmax) 26.9 (27.59)
2 1 + sparsemax 26.4 (27.02)
3 1 + 1.5-entmax 26.7 (27.39)

4 1 + ReLU alone -
5 4 + RMSNorm 26.0 (26.60)

6 1 + ReLA-i 26.5 (27.16)
7 1 + ReLA-g 26.6 (27.31)

8 7 + LayerNorm 26.6 (27.18)
9 7 + GeLU 26.5 (27.14)
10 7 + Leaky ReLU 26.5 (27.13)

11 7 + Encoder Attention Only 26.3 (27.00)
12 7 + Decoder Attention Only 27.0 (27.70)
13 7 + Cross Attention Only 27.0 (27.69)

Table 1: SacreBLEU (tokenized BLEU in brackets) for differ-
ent models and settings on WMT14 En-De. GeLU: Gaussian
error linear unit (Hendrycks and Gimpel, 2016); Leaky ReLU:
leaky rectified linear unit (Xu et al., 2015). Baseline: Trans-
former. “-”: optimization failed, where training loss didn’t
decrease. Higher BLEU indicates better result.

2018, Zh-En, 25M), and WMT16 Romanian-
English (Bojar et al., 2016, Ro-En, 608K). We
evaluate on the official test set from the correspond-
ing year (e.g. newstest2014 for WMT14), and re-
gard the previous year’s test set as the development
set (e.g. newstest2013 for WMT14). We prepro-
cess all datasets using the byte pair encoding al-
gorithm (Sennrich et al., 2016) with 32K merging
operations. We report detokenized case-sensitive
BLEU (Papineni et al., 2002) implemented by
SacreBLEU (Post, 2018),5 and also show tokenized
case-sensitive BLEU with multi-bleu.perl for abla-
tion studies.

Model Configuration We use the Transformer
base setting for experiments: model dimension
d = 512, head number H = 8, head dimension
dh = 64, 6 layers and FFN size of 2048 (Vaswani
et al., 2017). We apply dropout to the residual con-
nections and attention weights, with a rate of 0.1.
We tune model parameters using Adam (Kingma
and Ba, 2015, β1 = 0.9, β2 = 0.98) with label
smoothing of 0.1. We schedule the learning rate
following Vaswani et al. (2017) with a warmup
step of 4K. Each training batch contains around
25K target tokens. For decoding, we average the
last 5 checkpoints and adopt beam search with a
beam size of 4 and length penalty of 0.6.

Apart from softmax-based SMATT, we con-
sider two additional baselines: sparsemax (Mar-
tins and Astudillo, 2016) and 1.5-entmax (Peters

5Signature: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.2
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Model #Params ∆Train ∆Decode

softmax 72.31M 1.00× 1.00×
sparsemax 72.31M 0.26× 0.54×
1.5-entmax 72.31M 0.27× 0.49×

ReLA-g 72.34M 0.93× 0.98×

Table 2: Number of parameters (#Params) and running ef-
ficiency for different models on WMT14 En-De. ∆Train:
speedup per training step measured on 500 steps with about
25K target tokens per batch. ∆Decode: translation speedup
on newstest2014 with a batch size of 1. We perform 3 runs on
a single GeForce GTX 1080 Ti and report average results for
the speedups. Higher speedup indicates better efficiency.

et al., 2019; Correia et al., 2019).6 We implement
all models with Tensorflow (version 1.13.1).

5.1 Translation Results

We start with an ablation study for ReLA on
WMT14 En-De. Results are given in Table 1.

Ablation on ReLA’s Architecture At the heart
of ReLA is its replacement of softmax with ReLU.
But simply applying ReLU to SMATT increases
gradient instability, resulting in training failure ( 4©).
Applying layer normalization to the outputs of the
attention model alleviates this problem, albeit sac-
rificing 0.9 detokenized BLEU ( 1©→ 5©). By con-
trast, the proposed solutions, ReLA-i and ReLA-g,
yield a detokenized BLEU score of 26.5 ( 6©) and
26.6 ( 7©) respectively, narrowing the quality gap
against the baseline. ReLA-g performs slightly bet-
ter than ReLA-i (+0.1 detokenized BLEU) and on
par with 1.5-entmax (-0.1 detokenized BLEU), par-
tially due to the increased gating parameters. In
the following experiments and analysis, we mainly
report results with ReLA-g (i.e. 7©).7

RMSNorm vs. LayerNorm Results show that
replacing RMSNorm with LayerNorm ( 7©→ 8©)
leads to no quality improvement (-0.13 tokenized
BLEU). We adopt RMSNorm for ReLA due to its
efficiency.

ReLU vs. its Variants We also attempted
some smoothed variants of ReLU, such as
GeLU (Hendrycks and Gimpel, 2016) and Leaky
ReLU (Xu et al., 2015). Results show that these
variants ( 9©, 10©) yield worse performance than
ReLU (-0.1 detokenized BLEU). Dropping those

6https://gist.github.com/
justheuristic/60167e77a95221586be315ae527c3cbd

7Note we apply ReLA-g to all attention sublayers so as to
avoid the interference of other attention variants. This allows
us to fully examine the effectiveness of ReLA.

10 20 30 40 50

Source Length

0.5

0.6

0.7

0.8

0.9

1.0

D
ec

o
d

in
g

S
p

ee
d

u
p

softmax

sparsemax

1.5-entmax

ReLA

Figure 2: Decoding speedup as source length increases on
WMT14 En-De. We divide the newstest2014 testset into 10
disjoint groups uniformly according to source length. Results
are averaged over 3 runs.

low-relevance attention scores, as ReLA does, ben-
efits translation.

ReLA for Different Attention Types By de-
fault, we apply ReLA to all attention sublayers.
As shown in Section 3, Transformer includes three
types of attentions with different functionalities.
We study next how ReLA performs when applied to
each attention separately. Results show that incor-
porating ReLA into the decoder self-attention (12©)
or encoder-decoder cross attention (13©) yields qual-
ity gains over Baseline (+0.1 detokenized BLEU).
By contrast, only sparsifying encoder-side atten-
tions with ReLA leads to a big quality reduction
(-0.6 detokenized BLEU). We argue that the en-
coder self-attention requires denser token-wise
modeling to induce informative features of the
source input for translation, compared to the other
two attention types, echoing with the findings
of Correia et al. (2019).

Efficiency Analysis Table 2 shows the results.
Sparsemax and 1.5-entmax run more than 3 and
1.8 times slower than Baseline (softmax) at train-
ing and decoding, respectively. We ascribe this
to the dedicated inference procedure (such as sort-
ing) both methods require in order to discover the
best sparsity patterns (Peters et al., 2019), which
reduces efficiency. By contrast, the computation in
ReLA-g is much simpler, and training and decod-
ing speed is comparable to the baseline.

Besides, we offer an analysis about the impact of
source length on decoding speed. Curves in Figure
2 show consistent efficiency trend across different
lengths: ReLA translates slightly slower than Base-
line but at least 1.8 times faster than sparsemax and
1.5-entmax.

We also notice that Correia et al. (2019) and
Zhao et al. (2019) reported better training efficiency

https://gist.github.com/justheuristic/60167e77a95221586be315ae527c3cbd
https://gist.github.com/justheuristic/60167e77a95221586be315ae527c3cbd
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Model WMT14 En-Fr WMT18 En-Fi WMT18 Zh-En WMT16 Ro-En

softmax 37.2 15.5 21.1 32.7
sparsemax 37.3 15.1 19.2 33.5
1.5-entmax 37.9 15.5 20.8 33.2
ReLA-g 37.9 15.4 20.8 32.9

Table 3: SacreBLEU scores for different models on more WMT translation tasks. Best scores are highlighted in bold.
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Figure 3: Average sparsity rate over heads at each layer for different attention models and types on the WMT14 En-De test set.
Larger sparsity rate indicates that more attention scores are exactly zero.

Model FLOPs

softmax 3HT 2 −HT
ReLA-g HT 2 + 10Td+ T

Table 4: Comparison of FLOPs between softmax-based
SMATT and ReLA-g.

for sparsemax and 1.5-entmax than our results in
Table 2. This is due to implementation difference.
We re-tested the efficiency of different approaches
using Pytorch with an in-house Transformer code-
base, and worked with the official entmax imple-
mentation8. We observe that the training efficiency
gap becomes much narrower, where sparsemax,
1.5-entmax and ReLA yield a speedup of 0.87×,
0.90× and 0.95×, respectively. Although speedups
vary across implementations, ReLA shows consis-
tently higher computational efficiency than these
sparsified softmax variants.

Why ReLA-g Is Slower Than Softmax? Table
2 and Figure 2 show that ReLA-g runs slower than
Baseline. This is because ReLA-g is not just an ac-
tivation function as in softmax. Apart from ReLU,
ReLA-g also includes a gated RMSNorm layer
which brings in extra computational overhead. This
becomes clearer as we show their FLOPs in Table 4,
where T denotes the sequence length.

Take Transformer base (H = 8, d = 512)
as an example. For translation tasks where se-
quences often contain fewer than 100 tokens, the
FLOPs of softmax is lower than that of ReLA-

8Available at https://github.com/deep-spin/
entmax.

g (239K < 592K, at T = 100). But ReLA-
g has better scalability with respect to sequence
length and would benefit long-sequence modeling
(23.99M > 13.12M , at T = 1000).

Results for More Language Pairs Table 3 sum-
marizes the results. Overall, performance of ReLA-
g is competitive to the baseline, with BLEU differ-
ences ranging from -0.3 detokenized BLEU (Zh-
En) to +0.7 detokenized BLEU (En-Fr), suggest-
ing that ReLA generalizes to different (similar or
distant) language pairs. Average performance is
0.5 detokenized BLEU higher than that of sparse-
max, and 0.1 detokenized BLEU below that of
1.5-entmax.

5.2 Attention Analysis

Although different sparsified SMATT models
achieve comparable translation performance, their
learned attention weights α often have different
characteristics. In this section, we quantitatively
analyze these weights on WMT14 En-De. We first
define layer attention, the weights averaged over
the heads in one layer, to ease our following study.
Besides, we obtain the word-level attention weights
by merging its subword-level counterparts follow-
ing Zenkel et al. (2019). We train each model three
times with different random seeds on WMT14 En-
De and report the average results.

Attention Sparsity The ability to automatically
induce sparse attention is one of the key character-
istics of ReLA. We next report the sparsity rates,
i.e. the fraction of attention weights exactly equal

https://github.com/deep-spin/entmax
https://github.com/deep-spin/entmax
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Figure 4: AER scores for different models with normal atten-
tion (left, α) and shifted attention (right, α[1 :]). Solid curves
correspond to the best head per layer; dashed curves are for
layer attention. Lower AER score indicates better alignment
quality.

to 0. We calculate the average sparsity rate over
heads for each layer.

Results are shown in Figure 3. We observe
that the cross attention has the highest sparsity
rate on average, resonating with the fact that word
alignment is sparse. Self-attention at lower en-
coder/decoder layers often has a higher sparsity
rate, particularly for sparsemax and 1.5-entmax.
In ReLA-g, we find that its sparsity rate for the
decoder self- and cross-attention tends to increase
with layer depth, while that of the encoder self-
attention fluctuates. Overall, ReLA-g produces at-
tentions of similar but slightly higher (lower) spar-
sity rate than 1.5-entmax (sparsemax), learned au-
tomatically without any constraint. Note softmax-
based SMATT only produces dense attentions, i.e.,
a sparsity rate of 0.

Cross Attention vs. Word Alignment We ex-
periment with the publicly available De-En eval-
uation set9 and evaluate the alignment quality
with alignment error rate (Och and Ney, 2000,
AER). We study normal attention and shifted atten-
tion following previous work (Chen et al., 2020;
Kobayashi et al., 2020). The former explores at-
tention weights corresponding to decoder outputs
(i.e. α in Eq. 1 and 3); the latter, by contrast, skips
the weights at the first decoding step, i.e. α[1 :], to
offset the left padding to the decoder inputs made
for auto-regressive generation in Transformer.

Figure 4 shows the results. Regardless of the
attention type (normal or shifted), attention re-

9https://www-i6.informatik.rwth-aachen.
de/goldAlignment/

Model Normal Attention Shifted Attention
AoL AoH AoL AoH

softmax 75.95 67.51 79.38 54.31
sparsemax 78.17 67.88 82.32 54.95
1.5-entmax 78.82 67.69 79.84 58.98
ReLA-g 64.46 61.64 59.24 52.41

Table 5: Average AER scores over layers for different models.
AoL: average for layer attention; AoH: average for the best
head. Best scores are highlighted in bold.

Model Enc Dec Cross

softmax 0.56 0.31 0.45
1.5-entmax 0.84 0.39 0.52

ReLA-g (τ=1.00) 1.26 0.81 0.78
ReLA-g (τ=0.50) 0.97 0.65 0.69
ReLA-g (τ=0.25) 0.92 0.65 0.71
ReLA-g (τ=0.10) 0.92 0.66 0.72

Table 6: Average head diversity score over layers for different
models. Enc: encoder attention; dec: decoder attention; cross:
cross attention. τ : temperature used for the re-normalization.

sembles alignments more at some middle layer of
Transformer; and the shifted attention overall per-
forms better than the normal attention, echoing pre-
vious findings (Chen et al., 2020; Kobayashi et al.,
2020). When considering the best AER head per
layer, we observe that ReLA-g generally obtains
the (near-)best AER at each layer index for both
normal and shifted attention. This becomes more
obvious for the layer attention (bottom figures). Re-
sults in Table 5 further show that the behaviour of
ReLA-g is more alignment-like than the baselines
we consider.

Head Diversity We evaluate head diversity with
a generalization of Jensen-Shannon divergence
following (Correia et al., 2019) to reflect dis-
agreements between heads. For ReLA-g, we re-
normalize its attention scores via softmax, and re-
gard the null attention as a special one-hot distribu-
tion putting all probability mass to a dummy zero
vector, i.e. entropy of 0.

Figure 5 shows the results. We observe that the
heads of the encoder self-attention exhibit much
higher disagreement than those of the other two
attention types for all sparsified attention models.
Overall, heads in ReLA-g are in less agreement
than with the sparsified softmax alternatives, in
most cases across different attention types. This
indicates that ReLA-g is capable of inducing heads
with different roles (Voita et al., 2019).

Note we convert the attention scores of ReLA-g
into categorical distribution via softmax for diver-

https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
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Figure 5: Jensen-Shannon (JS) Divergence over heads at each layer for different attention models and types on the WMT14
En-De test set. Higher JS Divergence indicates higher head diversity.
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Figure 6: Average null rate over heads at each layer for
different attention types in ReLA-g on the WMT14 En-De test
set. Null attention corresponds to attention of all zero scores.
Dashed curves stand for the results on the hallucinated test set
where target sentences are randomly shuffled. Hallucination
pairs are assigned with significantly higher null rate for the
cross-attention across different layers.

sity evaluation. Such re-normalization might have
a large impact on the final diversity results. We next
explore this impact by adding some temperatures
(τ ) to α, i.e. ατ (in Eq. 3) before applying soft-
max. Smaller temperatures will enforce smooth-
ness into the output distribution, so alleviating the
emergence of peaked distributions. Table 6 shows
the results. The temperature indeed affects the di-
versity results but does not eliminate the diversity
gap, and the diversity of ReLA gradually converges
as τ goes smaller.

Null Attention One important feature distin-
guishing ReLA from (sparsified) softmax is that
ReLA allows for null attention where all keys are
assigned an attention weight of 0, effectively deac-
tivating the attention head for this query. Figure 6
analyzes the null rate of different attention types,
i.e. the fraction of query tokens associated with
all zero attention scores. Note all softmax-based
variants have a null rate of about or exactly 0.

We find that the encoder self-attention has few
null attentions, suggesting that encoder prefers
denser connections and also compact information
flow. The decoder self-attention yields more null

attentions for deeper layers. Together with the find-
ings from Figure 3, it shows that the lower decoder
self-attention layers model dense dependency with
previous target tokens, while the dependencies in
the upper ones become sparser. The cross-attention
shows the most interesting phenomenon: an obvi-
ous peak at the middle layer. Attention at this layer
shows the highest sparsity (Figure 3) with a large
null rate variance of 0.256 (over heads), low head
disagreement (Figure 5), but best AER score (right,
bottom figure in Figure 4). Notice that attentions in
ReLA-g are of high diversity. The layer attention
at each layer has almost no null attentions.

Diving deeper into these null attentions as shown
in Figure 7, we observe diverse specializations:
head 0 and 7 capture source-target alignments with
varying degrees of sparsity; head 2 has a null rate of
83%, and tends to fire after producing a verb (null
rate 0% after AUX, 23% after VERB), attending
tokens in the corresponding clause; head 3 has a
null rate of 95%, but regularly fires after comma
(null rate 0.03%), attending to the relevant source
context (the clause boundary has said that in this
example). Extra attention matrices are shown in
Appendix A.

Is Null Attention Meaningful? Apart from
heads that have learned some sparse specializa-
tion, we also find that null attention can be infor-
mative for some cross-attention heads which learn
an alignment. Specifically, the null rate increases
for sentence pairs of low quality where many tar-
get tokens lack relevant source translations (see
Appendix B). In order to quantify this effect, we
create a hallucinated test set with target references
randomly shuffled for comparison. The dashed
curves in Figure 6 show that ReLA-g associates
such hallucination pairs with clearly higher null
rate for the cross-attention across different layers.

We next average the null rate of the cross-
attention over layers and utilize this metric to rank
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Figure 7: Null-attention examples for head (0,2,3,7) at the 3rd cross attention layer. This example comes from the WMT14
En-De test set. Different heads show different linguistic patterns.

the WMT14 En-De training corpus (top ranked
samples have lower null rate). We randomly sam-
ple 100 cases from the top 10K candidates, and an-
other 100 from the bottom 10K for manual analysis.
We observe clear quality difference between these
two groups: sentence pairs with a low null rate are
predominantly good translations (∼95% correct),
whereas sentence pairs with a high null rate are
predominantly mistranslations (∼1% correct). Bad
translations include sentence pairs with the wrong
output language and semantically mismatched sen-
tence pairs. Most interestingly, this null rate metric
is sensitive to insertion errors, which are difficult to
detect via traditional corpus filtering methods. We
note previous work that used attention statistics to
identify mistranslations (Rikters and Fishel, 2017),
but find null attention more easily interpretable than
more subtle changes in attention distribution.

6 Conclusion and Future Work

In this paper, we have presented rectified linear
attention (ReLA), a novel softmax-free sparse at-
tention model. ReLA avoids the categorical distri-
bution assumption for attention, and, due to using
ReLU as activation function, prunes out all nega-
tive attention scores and produces sparse attention.
To stabilize model training, we add a normaliza-
tion layer to attention outputs with a specialized
initialization or gating structure. ReLA is data-
driven, computationally efficient and is a drop-in
replacement of SMATT. Experiments on five ma-
chine translation tasks with Transformer demon-
strate ReLA’s effectiveness in delivering compara-
ble translation quality to softmax-based baselines.
Results also show that ReLA is substantially faster
than sparsemax and 1.5-entmax at training and de-
coding. The attentions learned by ReLA corre-
spond better to word alignment, with high head
diversity and sparsity rate. Also, in contrast to
alternative sparse attention approaches, ReLA pro-

duces null attentions, i.e. a head can assign a total
attention of zero for some queries, leading to highly
specialized attention heads and showing potential
to indicate translation quality.

In the future, we will apply ReLA to other neu-
ral models and tasks. We are interested in scal-
ing ReLA to very long inputs (Child et al., 2019;
Kitaev et al., 2020), or multi-source architectures
where the relevance of each source may vary. In
its current formulation, the sparsity level of ReLA
emerges from the threshold in ReLU which prunes
negative scores. We are interested in ways to ma-
nipulate the level of sparsity, or make the threshold
differentiable.
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Figure 8: Null-attention examples at the 3rd cross attention layer. All examples come from the WMT14 En-De test set.
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Figure 9: Null-attention examples for multi-clause sentences at the 3rd cross attention layer. All examples come from the
WMT14 En-De test set.
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Figure 10: Null-attention at the 3rd cross attention layer for the 7-th head. Example comes from the WMT14 En-De training
corpus. Top row shows high-quality examples, while bottom row shows low-quality ones. Low-quality examples include
insertion errors and mistranslations, which increase the null rate.


