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Abstract

The combination of gestures, intonations, and
textual content plays a key role in argument de-
livery. However, the current literature mostly
considers textual content while assessing the
quality of an argument, and is limited to
datasets containing short sequences (18-48
words). In this paper, we study argument qual-
ity assessment in a multimodal context, and
experiment on DBATES, a publicly available
dataset of long debate videos. First, we pro-
pose a set of interpretable debate-centric fea-
tures such as clarity, content variation, body
movement cues, and pauses, inspired by theo-
ries of argumentation quality. Second, we de-
sign the Multimodal ARgument Quality asses-
sor (MARQ) – a hierarchical neural network
model that summarizes the multimodal sig-
nals on long sequences and enriches the multi-
modal embedding with debate-centric features.
Our proposed MARQ model achieves an accu-
racy of 81.91% on the argument quality predic-
tion task and outperforms established baseline
models with an error rate reduction of 22.7%.
Through ablation studies, we demonstrate the
importance of multimodal cues in modeling ar-
gument quality.

1 Introduction

Structured debates and discussions are the basis for
expressing opposing opinions, and are a tool for
convincing others to share that opinion. Starting
with a topic to argue, one can outline steps to reach
a conclusion of why that topic is correct. This can
take many forms in day-to-day life ranging from
salesmen upselling a product or presidential de-
bates, to people arguing whether to get vaccinated
or to wear a mask.

While the points of the argument may be valid,
certain attributes such as clarity in the text, hand
movements, and spoken style increase the effec-
tiveness of the argument (Wachsmuth et al., 2017a;
Braga and Marques, 2004; Straßmann et al., 2016).
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Figure 1: Delivering an argument involves multiple
modalities. For example, a high scoring debater may
use a certain prosodic style and dynamic hand gestures
to present an argument more effectively, whereas a low
scorer may hesitate (i.e., frequent short pauses) or show
lack of confidence. Language only analysis fails to un-
derstand these extra cues.

These attributes increase the credibility of the
speaker, and their ability to convince the listener
(Figure 1). Measuring the quality of an argument
given the language and other non-verbal features
remains an elusive problem. Although argument
quality assessment is an established research area
in NLP, assessment in a multimodal context is un-
derstudied. Most of the previous work focused
on argument quality prediction on short text se-
quences (22-48 words). However, often longer text
sequences are needed to validate an argument on
a certain topic. Even when a model like BERT
(Devlin et al., 2018) can be trained to associate
raw text with a quality metric (Gretz et al., 2020;
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Toledo et al., 2019), it can be difficult to interpret
which features lead to the output score. Such kind
of interpretability is crucial to design a feedback
system for people who want to improve their com-
munication skills (Fung et al., 2015).

In this paper, we study argument quality as-
sessment in a multimodal context using DBATES
(Sen et al., 2021) – the largest (N=716) publicly
available dataset of debate videos. We design in-
terpretable debate-centric features (DCF) such as
content variation, clarity, pauses, hand movement,
emotional appeal, and so on based on theories of
argument quality (Wachsmuth et al., 2017a; Braga
and Marques, 2004; Straßmann et al., 2016). More-
over, we propose a hierarchical multimodal model
named MARQ (Multimodal ARgument Quality as-
sessor) to predict high vs. low quality arguments in
long debate speeches (6 minutes recordings & 1500
words). Sentence level rich unimodal embeddings
are extracted from pretrained models (e.g Univer-
sal Sentence Encoder (Cer et al., 2018), Wav2Vec2
(Baevski et al., 2020)) to reduce long sequential
dependency. A set of LSTM encoders and a Mul-
tihead Self-Attention layer are used to capture the
interaction across the intra-modal, inter-modal, and
DCF information. Our main contributions are:

• We present the first comprehensive study on
multimodal argument quality assessment. A
set of interpretable debate-centric features are
derived based on the theories of argumenta-
tion quality. These features are statistically
significant and can achieve 75.53% accuracy
in argument quality prediction task, thus vali-
dating their usefulness.

• We propose MARQ – a hierarchical mul-
timodal model that captures the long-term
dependencies and the complex interactions
among the modalities. The model achieves
81.91% accuracy in distinguishing the quality
of arguments and outperforms several estab-
lished baselines with an error rate reduction
of 22.7%.

2 Dataset

DBATES (Sen et al., 2021) is a publicly avail-
able dataset collected from the 2019 North Ameri-
can Debating Championship. The tournament fol-
lowed the British parliamentary debate format for
university-level (Eckstein and Bartanen, 2015). A
motion (e.g., “parents should teach their children

Dataset N Modalities Mean Seq Len
IBM-Rank-Args 6.3k {l} 22.98 words
IBM-Rank-Pairs 14k {l} 23.47 words
IBM-Rank-30k 30K {l} 18.22 words
UKPConvArg1 11k {l} 48.3 words
DTC 400 {l,a,v} 22.5 seconds
DBATES 716 {l,a,v} 6 minutes, 1500 words

Table 1: Comparison between DBATES and other
datasets. Here l, a, v represent language (text), audio,
and visual modalities respectively. DBATES presents a
unique challenge due to the sequence length being sig-
nificantly longer (at least 13x) than the previous ones
and having all three modalities.

that they are inherently special”) is given 20 min-
utes before each debate. Eight debaters are split
into two parties – Government and Opposition. The
Government party present arguments to support the
given motion while the Opposition party argues
against the motion. Each debater gets 6 minutes to
present their arguments to support their stance. Ex-
pert judges discuss among themselves and assign a
score (within 50-100) to each person’s performance
based on the quality of the argument. A total of 716
debate videos (6 minutes each) from 140 unique
debaters have been recorded. The median score
(77) is used as a threshold to distinguish between
high and low-quality arguments. During the final
rounds of the debate championship, the judges have
provided the list of winners instead of assigning
scores to each debate speeches. We remove these
instances (79 samples) and use the debate speeches
that have been annotated with the score (within
50-100).

Table 1 presents a comprehensive comparison
among the existing datasets. Most of the existing
research is limited to datasets (e.g., IBM-RANK
(Gretz et al., 2020; Toledo et al., 2019) and UKP-
ConvArg1 (Habernal and Gurevych, 2016a)) con-
taining only language (text) and with smaller se-
quences (the average sequence length is 18-48
words). These arguments are collected and anno-
tated through crowd-sourcing. Debate Trainees
Corpus (DTC) Petukhova et al. (2017) is a multi-
modal debate dataset consisting of 400 arguments
totaling 2.5 hours. However, the dataset is not pub-
licly available.

We choose DBATES to study multimodal argu-
ment quality analysis, since it is the largest and only
multimodal debate dataset that is publicly available
for research. Moreover, the dataset is collected
from a competitive college debate competition and
has been annotated by expert judges. The aver-
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age sequence length is around 1500 words which
is significantly longer compared to other datasets.
The long multimodal sequence is particularly chal-
lenging for neural models to comprehend, which is
applicable to other multimodal tasks as well.

3 Debate Centric Features

Argument quality can be assessed in many differ-
ent granularity, some of them are subjective and
difficult to compute. Here, we propose a set of
computable and objective debate-centric features
considering all of the language, acoustic and visual
modalities. Experiments in later sections show that
these features can discriminate between high and
low-quality arguments.

3.1 Language-DCF

Content Variation: Monotonous speech that in-
volves repetition and less diversity in content can re-
duce the effectiveness of the argument. We assume
that, as a whole, a segment of sentences discuss the
central topic. If all the sentences of that segment
are very similar to the central topic, i.e., there are
less variation in content, the argument may become
repetitive or monotonous. Each debate consists of
multiple segments like introduction, constructive,
rebuttal, conclusion and so on. In order to measure
variation in content, we first use an Universal Sen-
tence Encoder (USC) (Cer et al., 2018) embedding
of the whole segment to represent the central topic,
and USC embedding of each sentence within the
segment to represent the local topic. The average
cosine distance between a sentence embedding and
the corresponding segment embedding provides an
approximation of the content variation present in
the argument.
Emotional Appeal: Emotional appeal makes the
target audience more receptive to the stance of the
speaker’s argument (Wachsmuth et al., 2017a). To
represent emotional appeal, we compute the senti-
ment (positive/negative) and emotion (sadness, joy,
fear, disgust, anger) scores of each sentence using
IBM Bluemix (Gheith et al., 2016).
Clarity: A clear argument that can avoid ambiguity
and unnecessary complexities can easily persuade
the target audience (Wachsmuth et al., 2017a). We
extract Flesch Reading Ease metric (Flesch and
Gould, 1949) to measure the clarity of an argu-
ment. The metric assigns a readability score (be-
tween 0 and 100) to a given text, high score indicat-
ing the text is easy to understand. Sentence struc-

ture complexity also affects the clarity of the text.
We also extract fourteen features that represents
the syntactic complexity of a sentence (Lu, 2010).
The features are mean length of sentence (MLS),
mean length of T-unit (Hunt, 1965) (MLT), mean
length of clause (MLC), clauses per sentence (C/S),
verb phrases per T-unit (VP/T), clauses per T-unit
(C/T), dependent clauses per clause (DC/C), de-
pendent clauses per T-unit (DC/T), T-units per sen-
tence (T/S), complex T-unit ratio (CT/T), coordi-
nate phrases per T-unit (CP/T), coordinate phrases
per clause (CP/C), complex nominals per T-unit
(CN/T), and complex nominals per clause (CP/C).
LIWC Features: LIWC features consist of word
counts for each of the 80 semantic classes present in
the LIWC lexicon (Pennebaker et al., 2001). Some
categories include the frequency of concessive sub-
ordinates (e.g., although, though); conjuncts (e.g.,
alternatively, on the other hand); negations (e.g.,
no, neither, nor) and causal conjuncts (e.g., conse-
quently, therefore) which are often used in a argu-
ment to present the logic.

3.2 Acoustic-DCF
The prosodic style can play a key role while de-
livering an argument. Variation of pitch, show-
ing control on the pauses and speed of speech,
and a smooth delivery can be perceived as expres-
sions of enthusiasm, engagement, commitment and
charisma (Rosenberg and Hirschberg, 2009), which
helps to persuade the audience to make the argu-
ment more credible. On the contrary, taking fre-
quent pauses and unclear articulation can hurt the
effectiveness of an argument delivery. These are
applicable even if the textual content remains the
same, implying the language only assessment of
argument quality will fail to consider these factors.
We use Opensmile (Eyben et al., 2010) to capture
pitch, and commonly used variants of jitter and
shimmer. We model pause as one second silence in
the audio, and extract both the number of pauses
and their duration as Acoustic-DCF features.

3.3 Visual-DCF
Body language plays an important role to show the
confidence in a speaker and increase the credibil-
ity of the argument to the audience. Moving the
arms, stemming the hands on the hip increase the
dominance perception of the speaker (Straßmann
et al., 2016). We extract upper body landmarks
from each frame using Mediapipe1 (Bazarevsky

1https://mediapipe.dev/
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Figure 2: Overview of MARQ Model

et al., 2020). To measure the movement, we com-
pute the euclidean distance of the body landmark
points in consecutive frames. The mean values of
these distances for all the landmark points are taken
as an approximation of the body movement.

4 MARQ Neural Model

Each data point in the DBATES multimodal dataset
can be represented as Xi = {L,A, V,DCF}
where L= language, A=acoustic, V = visual and
DCF= debate-centric features. In addition to the
debate-centric features (DCF ), we consider the
raw text (L), acoustic (A) and visual (V ) infor-
mation to model the summary of the video con-
tent. Given these features our task is to predict
whether the arguments presented in the debate are
of high quality or not. Each debate is around 6 min-
utes in length and the average text length is around
2000 words. To model this long multimodal se-
quence, we took the hierarchical approach in our
MARQ model (Figure 2). First, we extract the
sentence level embeddings from the pre-trained
models. Then a system of LSTM encoders is used
to learn the temporal relations in the unimodal sen-
tence embeddings. Finally, the unimodal sentence
embeddings go through a Multi Head Self Atten-
tion layer to create multimodal representation and
enrich it with debate-centric features.

4.1 Sentence Level Representations
Language: Assume N the number of sentences in
a debate video L = [L1, L2, ...., LN ]. Universal

Sentence Encoder is used to extract embeddings
of each sentence (Cer et al., 2018). The sentence
level embeddings of language can be represented as
ZS
L = UniversalSentenceEncoder(L); where

ZS
L ∈ RN×dsl and dsl = dimension of the univer-

sal sentence encoder embedding. We also use
Sentence-BERT (Reimers and Gurevych, 2019) to
extract sentence embeddings and experiment with
both variations.

Acoustic: The wav2vec2 (Baevski et al., 2020)
is a pretrained transformer model of speech recog-
nition that learns the representations of raw audio
in self-supervised manner. It converts the speech
input into discrete latent representations and learns
the contextual representations via contrastive task.
We use the base model that was trained on the 960
hours of Librispeech data (Panayotov et al., 2015).
To extract the sentence level acoustic representa-
tions, the input audio file of the debate is split into
N (#sentence) segments A = [A1, A2, ...., AN ].
The pretrained wav2vec2 model takes the raw au-
dio segment of a sentence i and outputs contex-
tual latent representations. These latent representa-
tions of sentence i go through a MaxPool layer.
The max-pooling gives us computationally effi-
cient method of extracting the most salient features
across the time dimension and yields a fixed dimen-
sional vector. This fixed dimensional vector is the
sentence level acoustic embedding of sentence i.
The sentence level acoustic representations can be
represented as ZS

A = MaxPool(Wav2V ec2(A));
where ZS

A ∈ RN×dsa , dsa = the hidden dimension of
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the wav2vec2 model.
Visual: OpenFace2 (Baltrusaitis et al., 2018)

is used to extract facial Action Units (AU) fea-
tures and rigid and non-rigid facial shape param-
eters. Facial action unit features are based on
the Facial Action Coding System (FACS) (Ek-
man, 1997) which are widely used in human af-
fect analysis. For each frame we extract these
features using OpenFace2. To create sentence
level embeddings, we take all the feature vectors
from the frames of a sentence and apply max-
pooling to get fixed dimensional (dsv) vector. The
sentence level visual representations can be rep-
resented as ZS

V = MaxPool(OpenFace2(V ));
where ZS

V ∈ RN×dsv , dsv = the dimension of the
OpenFace2 features.

4.2 Unimodal Representation of Sentences

The sentence level representations of the language
(ZS

L ) , acoustic (ZS
A) and visual (ZS

V ) are extracted
independently. To learn the temporal relations
among the N sentences, three Bidirectional LSTM
are used for each modality. The outputs of the
three LSTM create the unimodal representations
of the respective modalities. The unimodal rep-
resentations of language can be denote as ZU

L =
LSTML(Z

S
L); where ZU

L ∈ RN×dul and dul = is
the hidden dimension of the LSTML. Similarly
the unimodal representations of acoustic and visual
are : ZU

A ; where ZU
A ∈ RN×dua and ZU

V ; where
ZU
V ∈ RN×duv .

4.3 Multimodal Representation Learning

A multihead self attention layer (Vaswani et al.,
2017) is used to learn the inter modal interactions
among language, acoustic and visual. The self-
attention heads calculate the weighted summation
of values (V ); where the weights are computed
from the scalar dot product of query (Q) and key
(K) vector.

Attention(Q,K, V ) = softmax(
QKT

√
dh

)V (1)

Multiple self-attention heads operating in parallel
create Multi-Head Self Attention Layer - each
potentially focusing on complementary aspects of
the multimodal input. First, we concatenate the
unimodal representations of the language, acoustic
and visual. So, ZU

L,A,V = ZU
L ⊕ ZU

A ⊕ ZU
V ;

where ⊕ represents the concatenation and
ZU
L,A,V ∈ RN×(dul +dua+duv ). Then it goes through

a Multi-Head Self Attention Layer that learns
the interaction across the modalities and output
multimodal representations. The output of the
Multi-Head Self Attention Layer goes through
a Max Pool layer to create fixed dimensional
vector of multimodal representation (ZM ). ZM =
MaxPool(MultiHeadSelfAttention(ZU

L,A,V ));
where ZM ∈ Rdul +dua+duv .

4.4 Debate-Centric Feature Representation

The debate-centric features (DCF) are extracted
on the entire debate video. These features go
through a fully connected neural network to cre-
ate non linear projections. ZD = F(DCF ) ;
where F is a fully connected neural network. Fi-
nally, the multimodal representation (ZM ) and
and the debate-centric feature representation (ZD)
get concatenated. The resulted representation is
passed through a fully connected neural network
and softmax layer to compute the output probabil-
ity. p = softmax(F(ZM ⊕ ZD)). This probabil-
ity is used to predict if the given debate video got
the high performance score or not.

5 Experiments

In this section, we discuss the baseline models and
the hyperparameter settings that are used in the
experiments.

5.1 Baseline Models

Logistic Regression: In addition to the debate-
centric features (DCF ), the average sentence level
representations of the language(ZS

L ), acoustic (ZS
A)

and visual (ZS
V ) are used as feature for the logis-

tic regression. We also train logistic regression
with DCF features only to assess the importance of
different debate-centric features.
MulT (Multimodal Transformer for Unaligned
Multimodal Language Sequences): It has a set of
cross modal transformer encoders that captures the
bimodal interaction between the modalities. Then
it summarizes all biomodal information to model
the multimodal sequence (Tsai et al., 2019).
FMT (Factorized Multimodal Transformer for
Multimodal Sequence Learning): It uses seven
distinct self-attention heads to model the multi-
modal dynamics in a factorized manner, capturing
all possible uni-modal, bi-modal, and tri-modal
interactions, simultaneously (Zadeh et al., 2019).

Both of these neural models achieve state of the
art performance in multimodal sentiment and emo-
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Figure 3: Examples of DCF feature distributions that achieve statistical significance (p∗ < 0.05) in Student t-test
analysis. Feature values are normalized in [0-1] range using min-max scaling.

tion prediction task. However, the complexity of
transformer encoder increases exponentially with
the length of the sequence. As our input sequence
is around 1500 words, it is not feasible to train these
models in an end-to-end manner on word level. We
thus use sentence level embeddings (ZS

L ,ZS
A and

ZS
V ) that are extracted from the pretrained models

as input to the MulT and FMT models.

5.2 Hyper Parameter Search
The dataset is divided into 75:15:15 split and
the splits are speaker independent. Binary cross
entropy is used as loss function. We experi-
ment with {32,56,128,256,512} hidden dimen-
sions for the unimodal LSTM’s, [2-11] heads for
the MultiHead Self Attention Layer, {0.05, 0.08,
0.1,0.2,0.15,0.3,0.25} dropout values and {1e-2,e-
3,e-4} learning rates. The search space of the base-
line models are given in the supplementary materi-
als. All experiments are run on K80 gpus.

6 Results & Discussion

We analyze the statistical significance of the debate-
centric features and then compare our MARQ
model with established multimodal baselines.

6.1 Interpretability of the Debate-Centric
Features

In this experiment, we assess whether the debate-
centric features can capture meaningful patterns
associated with argument quality. For each debate-
centric feature, Student t-test analysis is performed
to observe whether the feature plays a significant
role in the differences between the distribution of
high and low-quality arguments. We present fea-
tures with statistical significance (p < 0.05) in
Figure 3. The complete list of significant features
is provided in the supplementary materials.

High-quality arguments show higher (p = 0.05)
content variation compared to low-quality argu-
ments. It indicates that the high-performing de-
baters speak with more diversity compared to the
low-scoring debaters who show less content varia-
tion, possibly resulting in a monotonous delivery.

An interesting finding is that high performing
debaters express more (p = 2e−4) negative sen-
timents in their speech. This may suggest that
in the context of a debate, the debaters often use
negative words to expose the weakness of the oppo-
sition’s stance. Using strong emotional expression
(although negative) might increase the credibility
of their stance on the debate topic.

The clarity of an argument makes it easy to
persuade the audience. This is backed up by our
finding that high-quality arguments have a higher
(p = 0.04) readability score compared to low-
quality arguments. Good arguments have simple
sentence structures that are easy to understand.
From the syntactic complexity features, we ob-
serve that debaters with higher scores use more
words and clauses in their speech (p = e−15). It
is possible that the low-scoring debaters struggle
to find enough content for their arguments. The
good debaters also use fewer (p < 0.05; not listed
in Fig 3) complex nominal and coordinate phrases
per clause and avoid complex sentence structures
(short clauses) to make their arguments clear.

We find that debaters with low scores take more
(p = 4e−4) pauses than debaters with high scores.
However, the average duration of the pause is
longer (p = 5e−3) among the debaters with high
scores. A possible explanation is that the low scorer
debaters hesitate during their argument delivery
that resulted in more unintentional short pauses,
making it difficult for the audience to pay full atten-
tion. Perhaps, the good debaters have more control
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Figure 4: Relative importance of different sub-
categories of debate-centric features obtained from the
Logistic Regression Model

in their speech and they plan their pauses, allowing
audience to follow along. The hand and gesture
movement of the debaters is also correlated with
the scoring of their argument (p = 0.015). We find
that debaters who move their right hand more often
usually scored higher. However, we could not find
any significance of the left-hand movements. It is
possible that the number of left-handed debaters in
this dataset was not large enough to provide any
statistical significance.

We also run logistic regression using debate-
centric features only to distinguish the high-quality
arguments from the low-quality ones. It achieves
an F1-score of 75.23%, which demonstrates the
discriminative power of these features. The relative
importance of the debate-centric features is ana-
lyzed from the associated weights of the logistic
regression. The cumulative weights of each sub-
category are normalized by the number of features
from each sub-category (Figure 4). We observe
that Clarity is the most important feature for dis-
tinguishing the argument quality while Content
Variation and Acoustic-DCF features also play a
key role in the classification. We find that Visual-
DCF has the least importance. This is possible
because the judges were specifically instructed not
to be biased by visual appearances.

These interpretable features not only help the
model to achieve good performance, but also re-
veal debating strategies to deliver more convincing
arguments. Models trained on these features will
be helpful to design feedback system for training
debaters to improve their argumentation skill.

6.2 Argument Quality Prediction

The results of the multimodal argument quality pre-
diction are presented in Table 2. A Logistic Regres-

Models Accuracy F1 Score
Logistic Regression 75.53 76.77
MulT 76.60 76.57
FMT 69.15 67.70
MARQ (Sentence Bert) 79.79 79.78
MARQ 81.91 81.88

Table 2: Performances of the competitive models on
multimodal argument quality prediction task. Binary
accuracy and F1-score are reported here as perfor-
mance metrics.

Models Accuracy F1 Score
MARQ 81.91 81.88
- DCF 78.72 78.43

- acoustic 80.85 80.83
- visual 80.85 80.85

Table 3: Role of modalities in our MARQ model. Here
‘-’ denotes removal of the corresponding feature set.

sion model that uses all the modalities and DCF
features achieves 75.53% accuracy and 76.77% F1
score respectively in predicting high vs low-quality
arguments.

Multimodal Transformer model (MulT) (Tsai
et al., 2019) achieves 76.60% accuracy and 76.57%
F1 score on this task. It has six cross-modal
transformer-based encoders to capture the cross-
modal interactions and three transformer encoders
to fuse the cross-modal information. It overfits
quickly due to a high number of parameters. A
similar trend is also observed in the FMT model
(Zadeh et al., 2019) since it also has a large number
of parameters. Moreover, the FMT model performs
worse than the logistic regression baseline indicat-
ing the limitation of this model in a low resource
scenario.

Our MARQ model outperforms all of these es-
tablished baselines by achieving 81.91% accuracy
(22.7% error rate reduction compared to the MulT
model) and 81.88% F1 score (22.7% error rate re-
duction compared to MulT). The Sentence-BERT
variation of MARQ does not achieve similar per-
formance, possibly because it was not pre-trained
on a related task.

Finally, we study the role of different modalities
by re-training the MARQ model after removing
all features of a modality (one modality at a time).
The performance is reported in Table 3. Remov-
ing debate-centric features has the worst impact,
increasing the error rate by 17.63%. Visual and
acoustic modalities have a similar impact on the
multimodal argument quality prediction. Though
the MulT and FMT models do not use DCF fea-
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tures, they perform worse than the MARQ model
not using DCF features. This indicates the im-
portance of MARQ type architecture in model-
ing a low-resource multimodal dataset of long se-
quences.

7 Related Work

The automatic assessment of argument quality
(Toledo et al., 2019; Gienapp et al., 2020) has been
receiving growing interest in the NLP community.
Identifying argument quality has applications in
diverse domains, including but not limited to ar-
gument search (Wachsmuth et al., 2017b,c), find-
ing counter arguments (Wachsmuth et al., 2018),
automated decision making (Bench-Capon et al.,
2009), writing support (Stab and Gurevych, 2014)
and essay evaluation (Nguyen and Litman, 2018).
Wachsmuth et al. (2017a) proposed a taxonomy
of dimensions for quantifying argument quality,
where they summarized several high level dimen-
sions behind the structure of good arguments such
as clarity, coherence, effectiveness, emotional ap-
peal, etc. However, the subjective nature of these
dimensions makes the task of automatic argument
quality scoring difficult.

Earlier research on automatic argument quality
assessment focused on comparative pairwise ap-
proach, where the task is to identify higher quality
argument from a given pair of arguments (Haber-
nal and Gurevych, 2016b; Simpson and Gurevych,
2018; Potash et al., 2019; Gleize et al., 2019). Re-
cently, Toledo et al. (2019) introduced straight-
forward point-wise argument quality metric that
scales with the data size linearly. They introduced
IBM-RANK (6.3K text arguments) that was crowd
sourced and then annotated with an individual qual-
ity score. Following similar approach, Gretz et al.
(2020) proposed IBM-RANK-30k – the largest
dataset of argument quality score prediction in free
text. Both of them utilized BERT (Devlin et al.,
2018) based fine tuning for this task.

The previous research and datasets (Table 1)
are mostly limited to short text sequences (18-48
words). Also, most of the prior work only con-
sider a single modality (text). However, real life
arguments are multimodal. Non-verbal cues like
facial expression, body language, prosodic strate-
gies often amplify or dampen the quality of a given
argument. Analysis based on the unimodal signal is
not fully inclsuive of real-world characteristics and
could lead to misleading findings (Braga and Mar-

ques, 2004; Straßmann et al., 2016; Hasan et al.,
2019c). That’s why there exists vast amount prior
research that utilize multimodal data to understand
human communication behavior properly (Rahman
et al., 2020; Hasan et al., 2021; Zadeh et al., 2018a;
Tsai et al., 2019; Samrose et al., 2019; Sen et al.,
2018; Hasan et al., 2019b; Zadeh et al., 2018b;
Hasan et al., 2019a). Petukhova et al. (2017) dis-
cuss the design and evaluation of a Virtual Debate
Coach (VDC) for training young politicians to im-
prove their debate skills. They used logistic regres-
sion to identify multimodal features correlated with
debate performance. Their DTC dataset comprised
of 400 debate videos collected from professional
debaters. Another similar work (Hirata et al., 2019)
also uses logistic regression of multimodal features
to assess argument quality and thereby generate
automated feedback. However, none of the above
studies released their dataset for further research.

Recently, Sen et al. (2021) publicly released
DBATES – a dataset of debate videos (N = 716)
collected from the 2019 North American Univer-
sities Debate Championships. The authors per-
formed logistic regression to show that beside text,
other nonverbal features have correlation with the
performance of a debate. The DBATES dataset also
presents a global challenge applicable to any multi-
modal assessment task – representing multimodal
signals in a long video, which was not addressed by
the authors. In this study, we use this dataset and
make two major contributions – 1) first to study
multimodal argument quality assessment beyond
logistic regression; 2) address a technical challenge
of multimodal representation for long videos (6
minutes on average).

8 Conclusion

In this paper, we presented a comprehensive study
on multimodal argument quality assessment. The
debate-centric features reveal interpretable patterns
associated with the quality of argument and help
improve the prediction performance. These fea-
tures can easily be adapted to a working system
with transparent, objective, repeatable feedback
on assessing the quality of a speech and its argu-
ments, and thus lead to equitable access to a train-
ing system for anyone wanting to become a good
debater. We also proposed a hierarchical neural
model (MARQ) to assess the quality of argument
in a long video and showed the importance of hav-
ing nonverbal cues through further ablation studies.
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Although our work is limited to the only publicly
available video dataset of debate, we hope it will
inspire others to study the task of argument qual-
ity assessment in multimodal context, and develop
new datasets and algorithms.

The code and data described in this paper are
publicly available at https://github.com/
matalvepu/MARQ
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