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Abstract

An interpretable system for open-domain
reasoning needs to express its reasoning
process in a transparent form. Natural
language is an attractive representation for this
purpose — it is both highly expressive and
easy for humans to understand. However,
manipulating natural language statements in
logically consistent ways is hard: models
must cope with variation in how meaning is
expressed while remaining precise. In this
paper, we describe PARAPATTERN, a method
for building models to generate deductive
inferences from diverse natural language
inputs without direct human supervision. We
train BART-based models (Lewis et al., 2020)
to generate the result of applying a particular
logical operation to one or more premise
statements. Crucially, we develop a largely
automated pipeline for constructing suitable
training examples from Wikipedia. We
evaluate our models using out-of-domain
sentence compositions from the QASC (Khot
et al., 2020) and EntailmentBank (Dalvi et al.,
2021) datasets as well as targeted perturbation
sets. Our results show that our models are
substantially more accurate and flexible than
baseline systems. PARAPATTERN achieves
85% validity on examples of the ‘substitution’
operation from EntailmentBank without the
use of any in-domain training data, matching
the performance of a model fine-tuned for
EntailmentBank. The full source code for our
method is publicly available.1.

1 Introduction

Developing models that can make useful inferences
from natural language premises has been a core
goal in artificial intelligence since the field’s
early days (Bobrow, 1964; Winograd, 1971).
Since then, there has been massive progress
in automated formal reasoning (De Moura and
Bjørner, 2011); in contrast, progress in automated

1https://github.com/alephic/ParaPattern

The Green Bay Packers
play in the NFL.

NFL teams play from
September to January.

Substitution model The Green Bay Packers
play from September to
January.

Conditions lacking
environmental causes
are strictly hereditary.

Contraposition model

Conditions that aren’t
strictly hereditary have
environmental causes.

Figure 1: Examples of the natural deduction operations
for which we construct models. Note that conclusions
involve both lexical inferences (X plays in the NFL→
X is an NFL team, ¬[X lacks Y ] → X has Y ) and
logical transformations.

natural language reasoning has been comparatively
slow. Today, ‘natural language inference’ usually
means recognizing textual entailment (RTE), a
pairwise sentence classification task. Models have
saturated RTE benchmarks (Bowman et al., 2015;
Williams et al., 2018) largely through surface-
level heuristics (Gururangan et al., 2018; Poliak
et al., 2018); hill-climbing on these benchmarks
has failed to yield robust models (Naik et al., 2018)
or systems capable of more complex reasoning.

Following a line of work on multi-hop question
answering (Welbl et al., 2018; Yang et al., 2018;
Chen and Durrett, 2019; Min et al., 2019), the
reading comprehension community has started to
make inroads in the area of reasoning. Recent
datasets have been explicitly designed to test
deduction ability (Liu et al., 2020; Yu et al.,
2020; Holzenberger et al., 2020) and new types of
models take inspiration from formal and informal
reasoning (Clark et al., 2020; Saha et al., 2020;
Cartuyvels et al., 2020; Betz et al., 2021). Many
recent modeling efforts share a common motif
of using intermediate fact chains to support their
final predictions, but a major shortcoming is that
these chains are either retrieved heuristically or

https://github.com/alephic/ParaPattern
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generated freely from autoregressive language
models, meaning they are not necessarily sound.
To enforce soundness, we envision future reasoning
systems factoring the deduction process into a set
of common operations, analogous to proof rules.
Modeling the reasoning process in this way would
grant the ability to generalize systematically to
any problem that could be decomposed in terms
of available operations, among other desirable
properties (Rudin, 2019).

In this work, we describe a generative model for
single-step deductive reasoning, building towards
models capable of generating the range of logical
transformations needed for the full reasoning
process. We use a BART-based sequence-to-
sequence model (Lewis et al., 2020) to represent
the distribution of valid conclusion statements
conditioned on one or more premise statements.
To make sound inferences, the model must be
fine-tuned on well-formed training data. We
describe a pipeline for crafting this data based
on syntactic retrieval from Wikipedia, rule-based
example construction, and automatic paraphrasing
to increase diversity. Our hypothesis is that the
logical regularities in the constructed examples will
teach models to generate correct deductions, while
paraphrasing coupled with the inductive bias from
pretraining will regularize models, allowing them
to robustly tolerate natural lexical and syntactic
variation in their inputs.

We demonstrate our method’s effectiveness
by using it to create models for two distinct
logical operations, substitution and contraposition,
examples of which are shown in Figure 1.
Through experiments on manually-constructed
English perturbation sets, as well as on the English
Question Answering via Sentence Composition
(QASC) and EntailmentBank datasets (Khot et al.,
2020; Dalvi et al., 2021), we show that our
proposed data generation method leads to accurate
and robust operation models. While baseline
methods tend to default to trivial input copying and
fail to assign significant likelihood to valid novel
conclusions, we show that our operation models
reliably generate consistent inferences. Evaluating
our substitution model on fact compositions from
the QASC and EntailmentBank datasets, we find
that our method produces valid conclusions at rates
equivalent to models trained on in-domain, human-
annotated data, indicating that our method is a
viable substitute for expensive direct supervision.

2 Methods

We consider an operation G, like our substitution
example (Fig. 1), to be analogous to a proof
rule, allowing one or more premise statements
to be combined and transformed to yield a valid
conclusion statement. A model for G places a
distribution pG(y | x0, . . . , xn) over conclusions y
conditioned on premises xi.

We would like models to satisfy three criteria:

Consistency: Predicted outputs should be valid
deductions from the model’s inputs.

Robustness: Models should be robust to linguistic
variation present in their inputs.

Supervision economy: A minimal amount of
manual effort should be needed to construct a
model for a new operation.

We choose to parameterize pG by fine-tuning
pretrained sequence-to-sequence language models
(Lewis et al., 2020; Raffel et al., 2020). Fine-tuning
pretrained models allows the resulting operations
to successfully handle a wider variety of inputs
by leveraging general linguistic knowledge gained
during pretraining.

The three desired model criteria we have
identified lead to two data collection balancing acts:

• Model consistency and robustness improve
with increased data quantity, quality, and
diversity, but collecting a large amount
of diverse, high-quality data presents a
challenge.

• Variation in the data and even noise will
improve model robustness, but too much noise
will cause the trained model to be inconsistent.

Directly annotating such data is possible, but
requires significant manual labor, either in the
form of expert annotation or careful prompting and
filtering of crowd annotations. While annotated
resources already exist for certain domains (Khot
et al., 2020; Hwang et al., 2021), this is not the case
for most types of reasoning. Scraping data from
free text only works if examples of the desired
operation appear in the wild, which is generally
not the case for concise well-formed deduction
steps. Betz et al. (2020) use templates to generate
logically consistent text for training language
models; however, there is little need for diversity or
naturalism in their data as it is exclusively used
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Figure 2: Schematic overview of the three phases of
our data collection process: retrieval of base sentences
from Wikipedia, expansion of these into reasoning
examples, and paraphrasing.

during pretraining for the purposes of transfer
learning. Tafjord et al. (2021) use template-based
natural language proofs to fine-tune transformer
language models for reasoning; we include a model
trained on their data as one of our baseline systems.

2.1 Data Collection

Our proposed method, PARAPATTERN, combines
scraping, template-based generation, and automatic
paraphrasing in order to achieve sufficient data
diversity and quality with very little manual effort.

PARAPATTERN consists of three phases, as
shown in Figures 2 and 3.

Phase 1: Source scraping A set of dependency
patterns is used to retrieve source sentences suitable
for template expansion from a dependency-parsed
free text corpus. An example of one of the
dependency patterns we use is shown in Figure 3.
This template finds sentences exhibiting the Hearst
pattern (Hearst, 1992) X such as Y indicating a
hypernymy relationship between X and Y. Note
that the retrieved sentences do not constitute
complete training examples; such examples of
logical reasoning are hard to find in the wild. These
sentences need to be reshaped in the next step, but
they are lexically diverse and semantically suitable
as inputs to our templates in terms of the relations
they express.

We perform syntactic search over a corpus of
cleaned English Wikipedia article text comprising
112M sentences. We use the off-the-shelf
spaCy en-core-web-sm dependency parser
(Honnibal et al., 2020), and index the resulting
trees by bottom-up dependency chain prefixes in
chunks of 160K sentences in order to accelerate
the search process. Dependency parsing and
index construction for English Wikipedia takes
approximately 24 hours on a single CPU core.

We use six pattern variations to gather source
sentences for the substitution template and two
patterns for the contraposition template. Potential

matches are filtered based on a list of disallowed
subject modifiers that would result in semantically
invalid examples. After filtering, the substitution
patterns yield ∼44,000 source sentences and
the contraposition patterns yield ∼23,000 source
sentences. All dependency patterns we use are
listed in Figure 7 in the appendix. Dependency
search over the indexed trees takes 30-45 minutes
depending on pattern complexity.

Phase 2: Template expansion Source sentences
are expanded into generated examples through
the application of an operation-specific template.
Figure 3 shows an example of a source sentence
and its rule-based expansion into a pair of premise
statements and a conclusion.

Template outputs are expressed in terms of
the source pattern’s match variables. The
template expansion algorithm produces examples
by breaking out dependency subtrees rooted at each
match variable and rearranging them according
to the template structure. We also apply simple
heuristics for verb reinflection and noun number
adjustment during the reconstruction process to
maximize the fluency of the resulting text.

Phase 3: Paraphrase augmentation Data from
template expansion is augmented by adding copies
of each example with paraphrased input sentences.
Paraphrases are generated using a version of the
PEGASUS model (Zhang et al., 2020) fine-tuned
for paraphrasing.2 We sample two paraphrases
for each original input using nucleus sampling
with p = 0.9. See Figure 4 for samples of
input sentences after paraphrasing has been applied.
These values were determined heuristically in
the course of our preliminary experiments; we
found that using a higher sampling cutoff or more
paraphrases critically reduced the consistency of
model inferences, and lowering p or using only a
single paraphrase per source example increased the
rate of premise copying for examples not matching
a training template.

We observe that the resulting paraphrases tend
to include a noticeable amount of noise (e.g.
the replacement of ‘Hibiscus’ with ‘bing’ in
Figure 3), but we hypothesize that since we
only paraphrase premises, this effectively adds a
denoising component to the fine-tuning objective
similar to the motivation behind backtranslation

2Model weights from https://huggingface.co/
tuner007/pegasus_paraphrase

https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase
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Source sentence:
In Egypt, herbal teas such as Hibiscus tea are very popular.

Premises: In Egypt, herbal teas are very popular.
Hibiscus tea is a herbal tea.

Conclusion: In Egypt, Hibiscus tea is very popular.

2. Template expansion

Premises: Herbal teas are popular in Egypt.
A herbal tea is called bing tea.

Conclusion: In Egypt, Hibiscus tea is very popular.

3. Paraphrasing

1. Retrieval

Figure 3: An example of the steps involved in our data generation process for the substitution operation. Phrases
in the source sentence and expanded template are colored according to their corresponding pattern variable.

Substitution
Premises: Staphylococcus epidermis is a microorganism.

Microorganisms colonize the skin surface.
Paraphrased: Staphylococcus epidermidis is a microorganism.

Microbiological colonization of the skin surface.
“Staphylococcus Epidermidis is a Microorganism.”
The skin surface is colonized by micro organisms.

Conclusion: Staphylococcus epidermis colonizes the skin surface.

Premises: During the undergraduate years, seminarians learn the
ancient language courses.
Latin is an ancient language course.

Paraphrased: The seminars know the ancient language courses.
Latin is an old language course.
Seminarians learn ancient language during their
undergraduate years.
Latin is a language.

Conclusion: During the undergraduate years, seminarians learn Latin.

Contraposition
Premise: As such, rivers that have headwaters in the mountains

provide water for irrigation in the surrounding lands.
Paraphrased: In order for water to be used in the surrounding lands,

the rivers in the mountains must have their headwaters there.
Conclusion: As such, rivers that do not provide water for irrigation in the

surrounding lands do not have headwaters in the mountains.

Premise: Dogs that are especially dirty or hungry are not able to
participate in contests.

Paraphrased: To participate in a contest, dogs that are dirty or hungry,
must be turned away.

Conclusion: Dogs that are able to participate in contests are not especially
dirty or hungry.

Figure 4: Examples produced by our data generation pipeline.

in machine translation (Sennrich et al., 2016).
Additional samples of the output of our data
generation pipeline are shown in Figure 4. These
examples demonstrate the ability of automatic
paraphrasing to reduce both lexical and syntactic
regularities in the original template outputs that
can lead models to overfit to the template. In
our subsequent experiments, we examine this
overfitting by ablating Phase 3 of our data
generation pipeline.

2.2 Model Training
Once data for an operation has been generated,
we use it to fine-tune an instance of BART-Large
(Lewis et al., 2020). Premise sentences x0 . . . xn
are concatenated in a random order and provided
as input to the model’s encoder, and the conclusion
sentence y is used as the target sequence for the
decoder.

We use model and training algorithm implemen-
tations from the transformers library (Wolf
et al., 2020). We fine-tune models for a single
epoch using the ADAMW optimizer (Loshchilov
and Hutter, 2019) with initial learning rate 3e-5 and
triangular learning rate decay. In our preliminary

experiments, we found that fine-tuning models
for more than a single epoch always produced
detrimental overfitting. Models are trained using a
total batch size of 16 split across two NVidia Titan
RTX GPUs; with this configuration, training takes
no more than an hour of wall clock time per model.

3 Experiments

3.1 Baselines

We compare models trained using our proposed
method against three baselines.

Our first baseline system is an unmodified
instance of the pretrained autoregressive GPT2-
Large language model (Radford et al., 2019),
prompted with operation premises followed by
the elicitation prefix “Therefore,” (Zero-shot
GPT2). This baseline, inspired by the zero-shot
premise elaboration employed by Betz et al. (2021),
is intended to assess the likelihood of making
consistent deductions under a general model of
language with no logical specialization.

Our second baseline model is an instance of
BART-Large fine-tuned to generate hypotheses
from the MNLI dataset (Williams et al., 2018)



6270

Substitution - Control
Premises: RSA is a cryptographic system.

Cryptographic systems let people exchange messages securely.
Conclusion: RSA lets people exchange messages securely.

Predicted: RSA lets people exchange messages securely.

Link NP mismatch
Premises: RSA is a cryptographic system.

Encryption protocols let people exchange messages securely.
Conclusion: RSA lets people exchange messages securely.

Predicted: RSA allows people to exchange messages securely.

Identity VP mismatch
Premises: Dominant cryptographic systems include RSA.

Cryptographic systems let people exchange messages securely.
Conclusion: RSA lets people exchange messages securely.

Predicted: RSA allows people to exchange messages securely.

NP + VP mismatch
Premises: Dominant encryption protocols include RSA.

Cryptographic systems let people exchange messages securely.
Conclusion: RSA lets people exchange messages securely.

Predicted: RSA allows people to exchange messages securely.

Number agreement
Premises: RSA is a cryptographic system.

Cryptographic systems shield web traffic from surveillance
and let people communicate securely.

Conclusion: RSA shields web traffic from surveillance and lets people
communicate securely.

Predicted: RSA shields web traffic from surveillance and let people
communicate securely.

Contraposition - Control
Premise: Pesticides that contain DDT have harmful effects on birds.

Conclusion: Pesticides that do not have harmful effects on birds do not
contain DDT.

Predicted: Pesticides that do not have harmful effects on birds do not
contain DDT.

Postnominal modifier mismatch
Premise: Pesticides containing DDT have harmful effects on birds.

Conclusion: Pesticides that do not have harmful effects on birds do not
contain DDT.

Predicted: Pesticides that do not have harmful effects on birds do not
contain DDT.

Prenominal modifier mismatch
Premise: DDT-containing pesticides have harmful effects on birds.

Conclusion: Pesticides that do not have harmful effects on birds do not
contain DDT.

Predicted: Pesticides that do not have harmful effects on birds do not
contain DDT.

Premise negation
Premise: Pesticides that contain DDT aren’t safe for birds.

Conclusion: Pesticides that are safe for birds do not contain DDT.
Predicted: Pesticides that are safe for birds do not contain DDT.

Figure 5: Aligned perturbation set examples for substitution (left) and contraposition (right), with corresponding
predicted PARAPATTERN BART output samples. Perturbed portions of each example are shown in turquoise.
Grammatical errors are shown in orange.

conditioned on their respective premises (MNLI
BART). We train on all instances for which the
gold label indicates entailment (≈103K examples)
with the same training configuration as our other
models, detailed in 2.2. We hypothesize that while
this model may assign higher likelihood to valid
conclusions than a general language model would,
it will place much more probability mass on re-
emitting premise statements due to the fact that
high word overlap tends to be a common feature of
RTE examples labeled as ‘entailment’ (Zhou and
Bansal, 2020).

Our third baseline model is an instance of
BART-Large fine-tuned to generate proof steps
from the ProofWriter dataset (Tafjord et al., 2021)
(ProofWriter BART). While this dataset contains
a large number of English proof steps (≈135K),
the language used in its proofs is automatically
generated from a limited template library and is
thus highly constrained. We hypothesize that this
model will be unable to generalize as a result.

On the QASC and EntailmentBank datasets,
we additionally compare to BART-Large models
fine-tuned on inference steps from each dataset’s
respective training split (QASC BART and
Ent. Bank BART). The QASC training set
contains ∼8K crowd-annotated fact compositions,
while the EntailmentBank training set contains
∼3K expert-annotated premise-conclusion steps.

3.2 Perturbation sets

First, in order to evaluate the accuracy of our
models on the operations they were designed
for, and to understand the degree to which they
generalize when input statements deviate from their
training patterns, we manually construct controlled
perturbation sets for each operation.

Our substitution perturbation set consists of 75
examples evenly split across a control condition
and four test conditions, and our contraposition
perturbation set consists of 60 examples evenly
split across a control condition and three test
conditions (15 examples per condition).

Each example in a given test condition is
constructed by perturbing a corresponding control
example. This aligned structure allows us to
evaluate the impact of a particular perturbation
on model performance without the confounding
effect of content variation that would be present
if each condition were constructed independently.
Samples of each perturbation condition are
presented in Figure 5.

3.3 QASC and EntailmentBank

Our perturbation sets are not necessarily “in-
domain” for our models, but they still neatly fit
the reasoning patterns we are targeting. To test
our approach’s applicability to data outside its
training, we apply our substitution model to the
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Substitution Contraposition

Model Ref.
PPL ↓ BLEURT ↑ Valid% ↑ Ref.

PPL ↓ BLEURT ↑ Valid% ↑

Zero-shot GPT2 3.52 -0.88 ± 0.35 1 6.04 -0.89 ± 0.31 1
MNLI BART 2.00 -0.06 ± 0.13 6 4.50 -0.16 ± 0.04 2

ProofWriter BART 3.86e2 -1.18 ± 0.14 4 5.83e3 -1.39 ± 0.12 0
Pattern-only BART 3.55 0.49 ± 0.01 55 3.16 0.31 ± 0.00 38

PARAPATTERN BART 1.54 0.66 ± 0.05 87 1.57 0.69 ± 0.07 80

Table 1: Results for each perturbation set, averaged across perturbation conditions. Ref. PPL refers to the perplexity
of the reference conclusion under the model distribution. BLEURT scores are averaged across 10 samples
per example; ± indicates the standard deviation of the samples. Valid% refers to the proportion of generated
conclusions rated as valid and non-redundant following manual review. Separate results for each perturbation
condition can be found in Table 4 in the appendix.

fact compositions in the validation splits of the
QASC and EntailmentBank datasets (Khot et al.,
2020; Dalvi et al., 2021).

QASC fact compositions were annotated by
crowd workers as rationales for multiple-choice
question answering problems. Since annotators
combined facts with a certain question in mind,
there is some amount of missing context for many
QASC fact combinations.

The EntailmentBank dataset consists of a
set of expert-annotated natural language proofs
for elementary science question-answer pairs
involving multi-step reasoning. Thanks to its
trained annotators, EntailmentBank contains fewer
spurious fact combinations than QASC.

3.4 Evaluation Criteria
We evaluate model performance on each dataset
primarily through a manual assessment of
conclusion validity. The first author placed
generated conclusions into one of six categories:

Valid: Conclusion is logically consistent with
premises but does not trivially repeat them.

Valid with minor grammar errors: Conclusion
is valid but includes minor syntactic errors
such as bad verb inflection that do not hinder
comprehension.

Repeats premises: Conclusion is a near-verbatim
copy of one or more premise sentences.

Unsupported: Conclusion is technically true but
does not logically follow from premises.

Incompatible: Conclusion contradicts premises
or is inherently false.

Incomprehensible: Conclusion is difficult to
interpret due to major ungrammaticality.

Model outputs were shuffled and annotated without
knowledge of model identity to prevent rating bias.
The last author reannotated a subset of QASC
examples to validate the first author’s annotations;
there were minor differences in interpretation of
the divisions between non-valid categories, but the
relative proportion of conclusions rated as valid
remained consistent between annotators.

We additionally compute the perplexity of
reference conclusions under each model in order
to assess the likelihood assigned to desired
conclusions by each model’s output distribution.

For the perturbation sets, we also report the
BLEURT score (Sellam et al., 2020) of generated
conclusions with respect to reference conclusions.

4 Results

4.1 Results on Perturbation Sets

Our first question is whether or not we have
good generative models of natural language
deductions. As Table 1 shows, PARAPATTERN

BART outperforms all baselines by a wide margin
in terms of the likelihood of desired conclusions
(Ref. PPL), the similarity of its outputs to
desired conclusions, and its overall rate of valid
inference. Additionally, there is a substantial
gap in performance between models trained
with and without paraphrastic data augmentation
(PARAPATTERN vs. Pattern-only, an ablation of our
method). We observe that PARAPATTERN allows
models to reliably produce valid inferences
when given inputs that lie both on and off the
training template manifold. In contrast, models
trained using generic entailments (MNLI BART)
or purely template-derived inferences (ProofWriter
BART) are almost never able to produce valid, non-
redundant inferences.
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Premises: All cnidarians are aquatic.
Cnidarians are also called coelenterates.

Reference: Coelenterates are aquatic.
Generated: Coelenterates are aquatic.

Premises: A barometer is used to measure air pressure.
Air pressure is a measure of the weight of the air.

Reference: A barometer measures the weight of the air.
Generated: A barometer measures the weight of the air.

Premises: Bad weather decreases visibility while driving. Another dangerous weather phenomena that thunderstorms produce is hail.
Reference: Hail decreases visibility while driving.
Generated: Thunderstorms produce hail, which decreases visibility while driving.

Premises: Volcanic ash in the atmosphere decreases the temperature by blocking the sun. Most volcanic ash consists of fine, dusty particles.
Reference: Fine, dusty particles erupted from volcanos decrease the temperature by blocking the sun.
Generated: Most volcanic ash consists of fine, dusty particles that block the sun, lowering the temperature in the atmosphere.

Premises: Kidney failure may be treated with dialysis. Dialysis is a way of cleaning the blood with an artificial kidney.
Reference: Kidney failure may be treated by cleaning the blood with an artificial kidney.
Generated: Kidney failure often require an artificial kidney.

Premises: A compass is used to navigate oceans.
And to the east is the Atlantic Ocean.

Reference: A compass is used to navigate the Atlantic.
Generated: The Atlantic Ocean to the east, is navigated using a compass.

Premises: Howling is used to warn other wolves by wolves.
Canis lupus is the same species that includes grey wolves.

Reference: Canis lupus howl.
Generated: Canis lupus uses howling as a warning to other wolves.

Premises: Mutualism is a symbiotic relationship in which both species benefit.
Males have individual territories Has mutually beneficial symbiotic relationship with oxpecker bird. [sic]

Reference: Oxpecker birds help other species benefit.
Generated: Males have mutualism with oxpecker bird.

Figure 6: BLEURT score profile of ParaPattern BART substitution outputs for fact combinations from the QASC
development set. Sampled substitution model outputs and corresponding QASC annotations for a range of scores
are shown to the right. Minor grammatical errors are indicated in orange. Note that generated conclusions remain
semantically coherent despite diverging from annotated references as BLEURT scores decrease.

QASC

Model Ref.
PPL↓ Valid%↑ Gram.%↑

Zero-shot GPT2 7.03 0 0
MNLI BART 3.83 8 7

ProofWriter BART 1.69e2 7 1
Ent. Bank BART 6.61 72 62

Pattern-only BART 39.7 16 10
PARAPAT. BART 4.82 73 68

QASC BART 2.71 77 69

Table 2: Results on the QASC development set.
Valid% indicates the proportion of predictions for 100
uniformly sampled examples that were rated as valid,
non-redundant inferences following manual review.
Gram.% indicates the proportion of predictions rated
both valid and free of grammatical errors.

4.2 Results on QASC
Table 2 shows that PARAPATTERN BART generates
valid, grammatical inferences at a rate comparable
to that of a model with identical parameter budget
and pretraining fine-tuned on in-domain data
(QASC BART) as well as a model fine-tuned
on inferences from EntailmentBank (Ent. Bank
BART), an expert-annotated dataset in an adjacent
domain. Thanks to our automated data collection
pipeline, we are able to achieve this level of fidelity
without any direct annotation.

For a full profile of model behaviors on QASC,
refer to Figure 7. We note that MNLI BART’s
preference for repeating premises results in a
lower reference perplexity than PARAPATTERN
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Figure 7: Detailed results of manual evaluation of
QASC inferences for each model.

BART in Table 2 despite MNLI BART behaving
poorly during generation due to the fact that
reference conclusions exhibit high lexical overlap
with premises. Pattern-only BART also tends
to repeat inputs, but in this case it is a low-
confidence ‘fallback’ behavior, as evidenced by
its high reference perplexity.

Visualizing Model Generations on QASC
Figure 6 depicts a range of PARAPATTERN BART
outputs for QASC validation set fact combinations
ranked according to their BLEURT scores with
respect to the reference combined fact. In the
portion of this distribution above 0 BLEURT, we
see very close agreement between the content
of generated outputs and references. On the
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EntailmentBank

Model Ref.
PPL↓

Valid%
(All) ↑

Valid%
(Subst.)↑

PARAPAT. BART 4.70 57 85
Ent. Bank BART 3.37 69 85

Table 3: Results on the EntailmentBank development
set. Valid% (All) indicates the proportion of
predictions for 100 uniformly sampled examples
manually rated as valid inferences. Valid% (Subst.)
indicates the proportion of valid predictions for the
subset of examples classified as “substitution”, as
defined in Dalvi et al. (2021). This set includes
41% of the sampled examples, in agreement with the
statistic reported by the dataset’s authors. We omit
out-of-domain baselines due to their non-competitive
performance on QASC.
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Figure 8: Detailed results of manual evaluation of
EntailmentBank inferences for our proposed method
(PARAPAT. BART) and an in-domain fine-tuned model
(Ent. Bank BART).

opposite end of the spectrum, we can see the
structure of model outputs diverges from that of the
reference fact combinations. However, even as our
model’s predictions grow farther from the reference
conclusions, they remain semantically consistent
combinations of the premise facts. The prediction
for the final example in Figure 6 is a valid inference
in spite of an ungrammatical premise, exemplifying
one of the benefits of training on data augmented
with noisily paraphrased inputs. In agreement
with our quantitative results, these outputs confirm
that PARAPATTERN generates sound inferences
even under domain shift.

4.3 Results on EntailmentBank

We capitalize on the known taxonomy of
reasoning types present in EntailmentBank to better
understand how well our substitution model aligns
with the definition of ‘substitution’ adopted by the
dataset’s authors. In Table 3 we demonstrate that
PARAPATTERN BART matches the performance
of the in-domain fine-tuned BART model on
the subset of examples where the inputs specify
a well-formed substitution as defined in Dalvi
et al. (2021). This indicates that there is
agreement between their definition of substitution,
our model’s representation of the operation, and
the aspects of the operation captured by the
EntailmentBank training set.

Furthermore, this result shows that PARA-
PATTERN can circumvent the need for manual
supervision for a given reasoning skill without
sacrificing performance in that skill.

Figure 8 provides a breakdown of model
behaviors on EntailmentBank. Of the 22% of non-
substitution examples for which our substitution
model is able to produce valid inferences, we
note that the majority are instances of ‘property
inheritance’, ‘sequential inference’, or ‘inference
from rule’, according to the taxonomy of Dalvi et al.
(2021). The following are examples of some of
these inferences generated by the PARAPATTERN

BART substitution model:

Inference from rule
If fossils are destroyed in rock transition, then
there will be gaps in the fossil record. Fossils
are lost / destroyed when sedimentary rock
changes to metamorphic rock.
→ Fossils are lost / destroyed when
sedimentary rock changes to metamorphic
rock, leaving gaps in the fossil record.

Property inheritance
United states is located in the northern
hemisphere. New york / new york state is a
state located in the united states of america.
→ New york / new york state is in the
northern hemisphere.

Sequential inference
Humans changing ecosystems usually has a
negative impact on an ecosystem / organisms
living in an ecosystem. Humans building
homes in an ecosystem causes that ecosystem
to change.
→ Humans building homes in an ecosystem
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usually has a negative impact on an ecosystem
/ organisms living in an ecosystem.

We hypothesize that these inferences reflect
generalizations of NP substitution to other phrase
categories, most likely learned as a side effect of
paraphrastic data augmentation.

5 Related Work

Natural Logic (Bernardi, 2002; Zamansky et al.,
2006; MacCartney and Manning, 2009; Angeli
et al., 2016) is related to our approach in that it
provides a framework for logical reasoning about
statements in natural language. Such systems
recognize that there is a cat on the dresser entails
there is an animal on the dresser because of the
hypernymy relationship between cat and animal.
These relationships can be formalized into a
monotonicity calculus (Icard et al., 2017) and past
work has grounded lexical inference tasks into
such a formalism (Angeli et al., 2016; Hu et al.,
2020). Instead of decomposing entailment into
relationships between words, our models learn to
map premises to conclusions at the sentence level,
allowing our approach to handle relationships not
captured by such a formalism.

Multi-Hop Reasoning Combining facts to form
a conclusion overlaps with the idea of multi-hop
reasoning, which has been explored in reading
comprehension settings (Welbl et al., 2018; Yang
et al., 2018). However, training end-to-end
models on these datasets does not necessarily
teach models to combine facts (Chen and Durrett,
2019; Min et al., 2019). Systems like NLProlog
(Weber et al., 2019) attempt to explicitly ground
reasoning in logic, but this process still heavily
relies on latent representations; in contrast, by
grounding reasoning directly in natural language,
a system based on natural deduction operations
like ours gains inherent faithful natural language
explanations and can build on the strengths of
pretrained language models.

More recent datasets emphasize the ability to
actually exhibit correct reasoning chains and form
explanations (Clark et al., 2020; Xie et al., 2020;
Dalvi et al., 2021). Systems like PRover (Saha
et al., 2020) and Leap-of-Thought (Talmor et al.,
2020) have some broadly similar goals to ours,
but only retrieve facts and do not generate novel
conclusions.

Generative Reasoning The generative nature
of our models resembles generative models used
for commonsense inference (Rajani et al., 2019;
Latcinnik and Berant, 2020; Shwartz et al., 2020).
However, these models do not strongly constrain
the nature of what is generated. In contrast,
our models reliably perform specific logical
transformations, indicating that they can support
sound inferences over longer reasoning chains in
future work. Arabshahi et al. (2021) also explore
generative reasoning in commonsense scenarios,
but the domain of their approach is limited. Khot
et al. (2021) use generative models to decompose a
complex QA problem into a series of elementary
steps that can be delegated to simpler models;
this idea parallels the notion of decomposing
reasoning into simple steps to be performed by
generative operation models. Their results support
the idea that such decomposition aids systematic
generalization by enforcing separation of concerns.

6 Conclusion

Building systems that use natural language as
a medium for reasoning will require operations
to logically combine and transform natural
language statements. In this work, we present
PARAPATTERN, a method for creating such
models with minimal manual effort by fine-
tuning pretrained sequence-to-sequence language
models on data generated through a three-step
process of syntactic retrieval, template expansion,
and automatic paraphrasing. Our experimental
results show that PARAPATTERN yields operation
models capable of generating consistent logical
transformations over a diverse range of natural
language inputs, matching the performance of
models trained with in-domain human supervision.
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A Appendix

Substitution source dependency patterns:
[nsubj:NNS$0 <[amod:‘such’ > prep:IN‘as’ < pobj:$1]]> ROOT:VBP$2
[nsubj:NNS$0 < prep:IN‘like’ < pobj:$1]> ROOT:VBP$2
[nsubj:NNS$0 < prep:VBG‘include’ < pobj:$1]> ROOT:VBP$2
ROOT:VBP$2 <[dobj:NNS$0 <[amod:‘such’ > prep:IN‘as’ < pobj:$1]]
ROOT:VBP$2 <[dobj:NNS$0 < prep:IN‘like’ < pobj:$1]
ROOT:VBP$2 <[dobj:NNS$0 < prep:VBG‘include’ < pobj:$1]

Contraposition source dependency patterns:
[nsubj:NNS$0 <[nsubj:WDT‘that’ > relcl:VBP$1]] > ROOT:VBP$2
[nsubj:NNS$0 <[prep:IN‘with’ < pobj:$1]] > ROOT:VBP$2

Figure 9: All syntactic patterns used for data scraping. Pattern heads are written as arclabel:POS‘lemma’$i,
where arclabel constrains the label on the arc to the matching token’s head, POS constrains the part-of-speech
tag of the matching token, and ‘lemma’ constrains the lemmatized form of the matching token. $i indicates that
a matching token and the subtree under it will be exposed as a match variable for use in template expansion.

Substitution Contraposition

Model Ref.
PPL ↓ BLEURT ↑ Valid% ↑ Ref.

PPL ↓ BLEURT ↑ Valid% ↑

Control Control
Zero-shot GPT2 3.28 -0.93 ± 0.33 3 5.41 -0.93 ± 0.28 3

MNLI BART 1.79 0.05 ± 0.15 13 3.81 -0.25 ± 0.02 1
ProofWriter BART 1.72e2 -1.22 ± 0.16 10 3.01e3 -1.36 ± 0.12 0
Pattern-only BART 1.01 0.89 ± 0.00 100 1.01 0.90 ± 0.00 93

PARAPATTERN BART 1.08 0.85 ± 0.01 96 1.10 0.89 ± 0.02 100

Link NP mismatch Postnominal modifier mismatch
Zero-shot GPT2 3.61 -0.89 ± 0.35 1 6.31 -0.86 ± 0.30 0

MNLI BART 1.91 -0.04 ± 0.07 0 4.79 -0.29 ± 0.02 8
ProofWriter BART 2.46e2 -1.21 ± 0.20 9 3.25e3 -1.42 ± 0.14 0
Pattern-only BART 1.46 0.70 ± 0.0 53 2.23 0.00 ± 0.00 0

PARAPATTERN BART 1.39 0.68 ± 0.05 87 1.39 0.75 ± 0.08 87

Identity VP mismatch Prenominal modifier mismatch
Zero-shot GPT2 3.74 -0.87 ± 0.36 2 6.96 -0.87 ± 0.28 0

MNLI BART 2.17 -0.07 ± 0.12 3 6.14 -0.30 ± 0.04 0
ProofWriter BART 2.68e2 -1.25 ± 0.14 0 7.05e3 -1.51 ± 0.12 0
Pattern-only BART 4.39 0.09 ± 0.00 13 7.08 -0.37 ± 0.00 0

PARAPATTERN BART 1.59 0.52 ± 0.14 86 1.79 0.48 ± 0.15 58

NP + VP mismatch Premise negation
Zero-shot GPT2 4.15 -0.89 ± 0.35 0 5.50 -0.87 ± 0.37 3

MNLI BART 2.17 -0.18 ± 0.17 2 3.24 0.20 ± 0.07 0
ProofWriter BART 2.81e2 -1.31 ± 0.08 0 1.00e4 -1.26 ± 0.11 0
Pattern-only BART 8.37 0.00 ± 0.00 7 2.32 0.70 ± 0.00 60

PARAPATTERN BART 1.71 0.46 ± 0.08 75 2.01 0.64 ± 0.04 75

Number agreement
Zero-shot GPT2 2.83 -0.81 ± 0.33 1

MNLI BART 1.97 -0.03 ± 0.16 11
ProofWriter BART 9.63e2 -0.93 ± 0.14 0
Pattern-only BART 2.53 0.77 ± 0.00 100

PARAPATTERN BART 1.93 0.75 ± 0.02 93

Table 4: Results for each perturbation set, broken down by test condition. Ref. PPL refers to the perplexity of the
reference conclusion under the model distribution. BLEURT scores are averaged across 10 samples per example;
± indicates the standard deviation between samples. Valid% refers to the proportion of generated conclusions
rated as valid and non-redundant following manual review.


