
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6253–6265
November 7–11, 2021. c©2021 Association for Computational Linguistics

6253

Inducing Transformer’s Compositional Generalization Ability
via Auxiliary Sequence Prediction Tasks

Yichen Jiang and Mohit Bansal
UNC Chapel Hill

{yichenj, mbansal}@cs.unc.edu

Abstract

Systematic compositionality is an essential
mechanism in human language, allowing the
recombination of known parts to create novel
expressions. However, existing neural models
have been shown to lack this basic ability in
learning symbolic structures. Motivated by the
failure of a Transformer model on the SCAN
compositionality challenge (Lake and Baroni,
2018), which requires parsing a command
into actions, we propose two auxiliary se-
quence prediction tasks as additional training
supervision. These automatically-generated
sequences are more representative of the un-
derlying compositional symbolic structures of
the input data. During inference, the model
jointly predicts the next action and the next to-
kens in the auxiliary sequences at each step.
Experiments on the SCAN dataset show that
our method encourages the Transformer to un-
derstand compositional structures of the com-
mand, improving its accuracy on multiple chal-
lenging splits from≤ 10% to 100%. With only
418 (5%) training instances, our approach still
achieves 97.8% accuracy on the MCD1 split.
Therefore, we argue that compositionality can
be induced in Transformers given minimal but
proper guidance. We also show that a better re-
sult is achieved using less contextualized vec-
tors as the attention’s query, providing insights
into architecture choices in achieving system-
atic compositionality. Finally, we show pos-
itive generalization results on the grounded-
SCAN task (Ruis et al., 2020). 1

1 Introduction

Human intelligence, including natural languages,
demonstrates systematic compositionality, the al-
gebraic capacity to understand and produce a po-
tentially infinite number of novel combinations of
known components (Chomsky, 1957; Montague,

1Our code is publicly available at
https://github.com/jiangycTarheel/
compositional-auxseq

1970). For example, we know the usage of words
“walk,” “twice,” “and”; once we learn a new verb
“dax”, we can immediately understand or produce
utterances like “dax twice and walk.” This type
of compositionality is central to the human abil-
ity of making strong generalizations from limited
data (Lake et al., 2017). However, there have been
arguments that neural networks are associative de-
vices that cannot capture systematic composition-
ality (Fodor and Pylyshyn, 1988; Marcus, 1998;
Fodor and Lepore, 2002; Marcus, 2003; Calvo and
Symons, 2014). Supporting this view, it has been
shown that general neural models, like RNNs and
Transformers (Vaswani et al., 2017), generalize
poorly to the development set’s unseen combina-
tion of components seen in training set (Lake and
Baroni, 2018; Liu et al., 2020).

However, recent works have equipped recurrent
neural networks (RNNs) with separate primitive
and functional embeddings of the input tokens (Li
et al., 2019; Russin et al., 2020). On the SCAN
dataset (Lake and Baroni, 2018) that requires pars-
ing a command into actions, these models can ef-
fectively parse “jump thrice" when only trained
on how to “walk thrice”, “walk”, and “jump”. In
this work, we first show that this dual embedding
method from CGPS-RNN (Li et al., 2019) can
be transferred to the Transformer architecture to
achieve nearly perfect results in substituting new
primitives. Our CGPS-Transformer encoder main-
tains a functional/syntactic embedding and a primi-
tive/semantic embedding for every word in the vo-
cabulary. This separation of syntax and semantics
is crucial in achieving compositionality: during the
training, the model successfully learns the syntac-
tic similarity between “jump” and other primitives
through training examples like “jump−→JUMP” and
“walk−→WALK”. The semantic difference between
primitives (e.g., “jump” should be translated into
“JUMP” rather than “WALK”) is encoded into the
semantic embeddings, which do not participate in

https://github.com/jiangycTarheel/compositional-auxseq
https://github.com/jiangycTarheel/compositional-auxseq

6254

Split Type Input Outputs (Supervisions)

MCD1

Train

jump opposite left twice
Actions: TL, TL, JP, TL, TL, JP
AuxSeq1: 1, 1, 1, 0, 0, 0
AuxSeq2: 2, 1, 0, 2, 1, 0

jump around left thrice
Actions: TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP

AuxSeq1: 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
AuxSeq2: 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0

Dev

jump opposite left thrice
Actions: TL, TL, JP, TL, TL, JP, TL, TL, JP
AuxSeq1: 2, 2, 2, 1, 1, 1, 0, 0, 0
AuxSeq2: 2, 1, 0, 2, 1, 0, 2, 1, 0

jump around left twice
Actions: TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP, TL, JP
AuxSeq1: 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
AuxSeq2: 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0

Table 1: Examples from the SCAN dataset (Lake and Baroni, 2018) under the MCD1 split (Keysers et al., 2020).
The outputs include the action sequence and two auxiliary sequences we created. “JP” is short for JUMP and “TL”
for “TURN LEFT”. Commands “[primitive] around left twice” are excluded from the training set, so the model
must build a generalizable understanding of “twice” from training examples like “jump opposite left twice”.

all but the last attention layer. Therefore, the model
can generalize to test example “jump around left”
from training example “walk around left.”

Next, we show that although this model is ca-
pable of substituting new primitives (e.g., “jump”)
into learned structures (e.g., “[prim] around left”),
it still fails to learn the compositional structure of
larger syntactic units. For example, in the MCD

splits (Keysers et al., 2020) that maximize the out-
put compound divergence between train and test
sets, CGPS-Transformer fails to “walk around left
twice” by training on “walk around left” and “walk
left twice” (see examples in Table 1), only register-
ing an average of 5.7% exact-match score on three
splits. This model also struggles in generalizing to
action sequences longer than those seen in the train-
ing. Hence, in this work, we automatically create
two simple and intuitive auxiliary sequence gener-
ation tasks to represent the lower level symbolic
structures of input commands. These tasks can bet-
ter teach the Transformer model to achieve compo-
sitional generalization. For the example “walk left
thrice−→TURNL WALK TURNL WALK TURNL
WALK”, we create the first sequence [2, 2, 1, 1, 0,
0] to track the progress of three “walk left” actions
and to ensure the correct repetitions of the action
are executed. This sequence exposes the compo-
sitional structure of the action sequence “TURNL
WALK TURNL WALK TURNL WALK” as three
separate segments of “TURNL WALK”. We also
create a second sequence [1, 0, 1, 0, 1, 0] to su-
pervise the successful completion of parsing every
“walk left” action into “TURNL WALK”. This se-
quence isolates the semantics of “walk left” as an

action sequence of length 2. Overall, we extend the
original seq-to-seq task defined in SCAN to a new,
seq-to-3seq task. The two ground-truth auxiliary
sequences, like the action sequence, are only given
for training and the model has to predict these three
sequences jointly at the test time.

On the three MCD splits, the CGPS-Transformer
that predicts the auxiliary sequences achieves a per-
fect test-set performance of 100% accuracy, as com-
pared to 7.66%, 3.25%, and 6.12% from the same
model but without the auxiliary sequence predic-
tion tasks. Our approach also generalizes to longer
action sequences with 100% accuracy as compared
to 0% from the baseline without the auxiliary se-
quences. Between the two previous works that
achieved significant progress on the MCD splits,
LANE (Liu et al., 2020) explicitly models the pro-
cedure of recognizing a symbolic function (e.g., “x
twice”) and applying the function via two separate
models. These two models each make their discrete
predictions step-by-step and are jointly trained with
Hierarchical Reinforcement Learning. Guo et al.
(2021) proposed to use monolingual dev/test data
for semi-supervised learning and their results are
worse than ours. Our approach differs from these
two works in that it builds upon the general seq2seq
architecture and does not require a peek into novel
dev-set commands.

We further demonstrate that the CGPS-
Transformer model only needs a small number of
supervision with auxiliary sequences to develop the
compositionality, as it achieves 97.8% accuracy on
MCD1 split with 418 (5% of all) training examples.
This suggests that systematic compositionality does

6255

not require a ton of training examples. Instead, a
small number of well-designed demonstrations that
exhibit the compositional structures of the data can
better induce a generalizable model. Our ablation
study shows that both the auxiliary tasks are neces-
sary in promoting the compositional generalization
behavior of the model. We further conduct ex-
periments to show that it is important to use the
output/intermediate vectors of the decoder’s first
layer as the queries in the task-specific attention for
predicting the first auxiliary sequence (e.g., [2, 2,
1, 1, 0, 0] for “jump left thrice”). If we instead use
the decoder’s highly contextualized final outputs
as the queries, the model would fail to predict the
correct auxiliary sequence and the target actions.
We make three arguments from this ablation study:
(1) the model’s prediction on the target action is
dependent on its predictions of auxiliary sequences
and it does not see them as three independent tasks;
(2) predicting the auxiliary sequences, although
seemingly simple, is not a trivial task and is highly
correlated with understanding the compositional
structure of symbolic functions; (3) it is easier to
achieve compositionality using less contextualized
representations as query vectors of the attention
function. This third point echoes the fact that sys-
tematic compositionality values the meaning of
some individual words (e.g.,“twice” and “thrice”)
in symbolic structures.

Finally, we also show that our auxiliary sequence
prediction method can be transferred to grounded-
SCAN (Ruis et al., 2020), a newer multi-modal
compositional challenge that requires new recom-
binations of seen phrases. Overall, we hope our
method and findings can provide an insightful view
of the compositional generalization in deep neural
models and inspire future works in this direction.

2 Background

2.1 SCAN Dataset Generalization Splits

The SCAN dataset (Lake and Baroni, 2018) con-
sists of natural language command inputs (e.g.,
“jump twice and walk opposite left”) paired with ac-
tion sequence outputs (e.g., “JUMP JUMP TURNL
WALK TURNL WALK”) generated synthetically.
Each sub-command is made of four types of words:
primitive (“walk, jump, look, run, turn”), adverb
(“opposite, around”), direction adv. (“left, right”),
and repetition adv. (“twice, thrice”). Each com-
mand contains at most 2 sub-commands connected
via conjunction (“and, after”). In order to test the

compositional generalization ability, different splits
of the SCAN dataset were created, each of which
has a distributional shift between the training set
and dev/test sets. One of these splits is ADDJUMP,
where the training set is consisted of the atomic ex-
ample (“jump−→JUMP”) and all other atomic and
compound commands without “jump”; the test set
contains compound commands that involve “jump”
(e.g., “jump around left thrice and jump left”).

Later, Keysers et al. (2020) proposed a proce-
dure to maximize the output compound divergence
while guaranteeing a small atom divergence be-
tween train and test sets. They produced three
MCD splits under this objective. For example,
the training and dev sets of MCD1 have a simi-
lar distribution of individual words to ensure min-
imal atom divergence. However, the training set
does not contain compounds “[primitive] around
left twice”, which only appear in the dev and test
sets (as shown in Table 1). These splits require a
higher level of compositionality than recognizing
the syntactic equivalence of primitives: the mod-
els must be able to (1) understand the underlying
symbolic functions “x twice−→ x x” from training
examples like “jump left twice” and master the se-
mantics of “jump around left” from examples like
“jump around left thrice”; (2) compositionally ap-
ply the function “twice” to a novel argument “jump
around left” in the dev and test sets. Therefore,
most models that achieve close-to-perfect results
on ADDJUMP fail on this challenge completely,
struggling under 10% accuracy on all MCD splits.

2.2 Failure Analysis of a Previous Model

Before introducing our method, we first analyze the
failure mode of our CGPS-Transformer, a model
that achieves 95.82% accuracy on ADDJUMP test
set but only 7.66% on MCD1. We observe that,
given the novel, dev command “jump around left
twice” that requires 8 repetitions of “jump left”, the
model mistakenly generates the seen, training ac-
tion sequence for “jump around left thrice”, “jump
around left”, or “jump opposite left twice”. In
some examples, the model completes 11 “jump
left”, one repetition short of the similar training-
set example. This evidence suggests that CGPS-
Transformer does not understand the symbolic
function “x thrice−→ x x x.” During the training,
the model builds a representation for “jump oppo-
site left thrice” as a whole and maps it to the correct
action sequence to reach 100% accuracy. During

6256

Input: walk left and jump twice

Primitive Embed Functional Embed

Decoder Layer 2MHAttention

Transformer Encoder

V

Q

K

Next Action: JUMP
Decoder Layer 1

MHAttention
V

Q

Next in AuxSeq1: 1
Next in AuxSeq2: 0

Actions: TURNL, WALK

ASeq1 Embed Action Embed ASeq2 Embed

AuxSeq1: [0, 0]

AuxSeq2: [1, 0]

Action: TURNL, WALK, JUMP, JUMP
AuxSeq1: 0, 0, 1, 0
AuxSeq2: 1, 0, 0, 0

Ground-truths:

Figure 1: The CGPS-Transformer with primitive and
functional input embeddings (Li et al., 2019). The de-
coder takes three partially generated sequences as the
input, and predicts the next action and next ids in the
auxiliary sequences. The parts highlighted in non-gray
colors are added to the CGPS-Transformer to support
the prediction of two auxiliary sequences.

the test, instead of generalizing compositionally
to apply the symbolic functions (“twice”) to a novel
argument (“jump around left”), the model gener-
alizes distributionally to map this unseen com-
pound to a seen example from the training set with
similar semantics. Hence, this failure mode of the
CGPS model motivates us to design auxiliary tasks
that encourage the model to view the command as
a symbolic structure: the function “twice” applied
to the argument “walk around left”. We elaborate
on our method in the next section.

3 Method

First, we briefly introduce the baseline model
where we apply our method (Sec. 3.1). We then
motivate and introduce the auxiliary sequences we
create to improve the model’s compositional gener-
alization ability (Sec. 3.2). Finally, we explain how
a seq2seq model can jointly predicts its target se-
quence and the auxiliary sequences in the training
and inference (Sec. 3.3).

3.1 CGPS-Transformer Baseline
The CGPS model (Li et al., 2019) has a RNN en-
coder that embeds and encodes the syntax and se-
mantics of the input separately and a RNN decoder
to achieve generalization over single-word substi-
tutions (e.g., “walk/run−→jump”). We recreate this
model on top of the Transformer (Vaswani et al.,
2017) as the baseline (visualized in Fig. 1).

In the SCAN dataset, we denote input sequence
x, where each word is from an input vocabulary
of size U . The output y is a sequence of T ac-
tions, where each action is from an output vocabu-
lary of size V . The CGPS model has two separate
embedding matrices for the input: the functional
embedding Ef and the primitive embedding Ep:

fi = Ef (xi), pi = Ep(xi) (1)

where f and p are the functional and primitive
embeddings of the input sequence. The encoder
builds the contextualized representation c of the
input using functional embeddings f , while the
decoder produces the output vector zt by attending
to c and previous actions [y1, ..., yt−1]. Instead
of directly projecting zt to the logits on output
vocabulary, the decoder employs an extra multi-
head attention layer, with zt as the query, c as the
key, and the primitive embeddings p as the value.
Its output vector, and further the logits, come from
an attention average over the un-contextualized p:

zt = Decoder(z[1,...,t−1], c)

ot = MHAttn(q = zt, k = c, v = p)

ŷt = Softmax(W · ot + b)

(2)

where MHAttn is the multi-head cross-attention
and ŷt is the final distribution on the output vocab-
ulary. To enforce a strict separation of the infor-
mation encoded in f and p, they regularize the L2

norm of both embeddings and add noise to them
during training.

3.2 Creating Auxiliary Sequences
For every command-action pair in the SCAN
dataset, we automatically create two auxiliary se-
quences of the same length as the action sequence.
These sequences represent the lower level sym-
bolic structures in the input and can better teach the
model in achieving compositional generalization.

(1) As discussed in Sec. 2.2, the model often
mistakenly repeats the “jump around left” action
thrice when it is only asked to “jump around left

6257

Model ADDJUMP LENGH MCD1 MCD2 MCD3

LSTM+Attn (Keysers et al., 2020) 0.0 ± 0.0 14.1 6.5 ± 3.0 4.2 ± 1.4 1.4 ± 0.2
Transformers (Keysers et al., 2020) 1.0 ± 0.6 0.0 0.4 ± 0.2 1.6 ± 0.3 0.8 ± 0.4

CGPS-RNN (Li et al., 2019) 98.8 ± 1.4 20.3 ± 1.1 1.2 ± 1.0 1.7 ± 2.0 0.6 ± 0.3
T5-11B? (Furrer et al., 2020) 98.3 3.3 7.9 2.4 16.8
Semi-Sup† (Guo et al., 2021) 100.0 99.9 87.1 99.0 64.7

LANE (Liu et al., 2020) 100.0 100.0 100.0 100.0 100.0

CGPS-Transformer (baseline) 95.82 0.00 7.66 3.25 6.12
baseline + AuxSeqPredict (Best) 98.52 100.0 100.0 100.0 100.0

baseline + AuxSeqPredict (Avg.± std.) 98.32 ± 0.3 100.0 ± 0.0 99.9 ± 0.2 90.1 ± 6.5 98.2 ± 3.2

Table 2: Test accuracy from the SCAN dataset (Lake and Baroni, 2018), under the ADDJUMP, LENGH, and MCD
splits (Keysers et al., 2020). The model with † uses all dev-set monolingual data during the training. The model
with ? is pre-trained on large corpora of natural language data. We report the best and average (± std.) result out
of 5 random seed runs. See appendix Sec. A for the complete results of all seeds.

twice”. To prevent this error, we create the first
auxiliary sequence AuxSeq1 (the 2nd row of every
outputs in Table 1) to track the progress of three
“jump around left” and to ensure the correct repeti-
tions of the action are executed. For the example
“walk left thrice−→TURNL WALK TURNL WALK
TURNL WALK”, we create a sequence of ids [2,
2, 1, 1, 0, 0]. This sequence exposes the compo-
sitional structure of the action sequence “TURNL
WALK TURNL WALK TURNL WALK” as three
separate segments of “TURNL WALK”: it ignores
the content of every action and focuses on the sym-
bolic functions embodied by “twice” and “thrice”.

(2) The model also sometimes “jump opposite
left twice” when it is actually asked to “jump
around left twice”. In response to this error, we
create the second auxiliary sequence AuxSeq2 (the
3rd row of every outputs in Table 1) to super-
vise the correct completion of every single “jump
around left”. For a shorter example “walk left
thrice−→TURNL WALK TURNL WALK TURNL
WALK”, we create a sequence of ids [1, 0, 1, 0, 1,
0]. This sequence isolates the semantics of “walk
left” as an action sequence of length 2. We ar-
gue that, if the model can correctly predict these
two sequences and builds a connection between
them and the actions, it will learn the composi-
tional structures of the commands and generalize
to novel combinations in the test set. Please refer
to the appendix Sec. B for more details about the
auxiliary sequences.

3.3 Joint Prediction of Auxiliary Sequences

Now with these two auxiliary sequences, the orig-
inal seq2seq task defined in SCAN is augmented
to a ‘sequence-to-3sequences’ problem. Therefore,
we made some adaptations to our Transformer de-
coder to jointly predict three sequences. First, we

introduce two extra embedding matrices for the
two auxiliary sequences in the decoder in addition
to the existing action embeddings. The input to the
decoder is the sum of three embedding vectors. Af-
ter the regular Transformer layers, we add another
multi-head cross-attention (the red component in
Fig. 1) using the output ht of the decoder’s first
self-attention layer as the query, the input’s func-
tional embedding f as the key, and the encoder’s
output representation c as the value. The attention
outputs oaux are then projected to the space of the
auxiliary sequence ids to produce the logits of the
next id in the auxiliary sequence.

oauxt = MHAttn(q = ht, k = f, v = c)

ŷauxt = Sofmax(W · oauxt + b)
(3)

Later experiments show that the choice of the query
vector plays a crucial role in deciding whether the
model can achieve the compositionality in under-
standing the command. During the training, the
decoder takes the two auxiliary sequences, each
prepended with a start-of-sentence token, as the
input. We then maximize the log-likelihood of pre-
dicting the next id in the auxiliary sequence at each
step. During the inference, the decoder uses the
partial auxiliary and action sequences generated
in the previous steps, instead of the ground-truth
sequences, as the input.

4 Experiments

4.1 SCAN Dataset

The SCAN dataset (Lake and Baroni, 2018) con-
sists of natural language commands paired with ac-
tion sequences. Each data split has a distributional
shift between its training and test sets to evaluate
models’ compositional generalization ability.

6258

ADDJUMP: The training set is consisted of the
atomic “jump” example and all atomic and com-
pound commands without “jump”; the dev and test
sets contain compound commands with “jump”.

LENGTH: All command-action pairs are split ac-
cording to the action sequence length into the train-
ing set (≤22 tokens) and dev/test set (≥24 tokens).

MCD : (Keysers et al., 2020) includes three sep-
arate splits created to maximize the output com-
pound divergence while guaranteeing a small atom
divergence between train and test sets. We refer to
Sec. 2.1 for more details about the challenges.

4.2 Experimental Setup

We use 2 separate Transformer stacks as the en-
coder and decoder. Each stack has 2 layers, 2 heads
per layer, 64 hidden units per head, and a feed-
forward dimension of 256. We train all our models
using the Adam Optimizer (Kingma and Ba, 2015)
with a constant learning rate of 5−3, β1 = 0.9,
β2 = 0.98. Each model is trained on an NVidia
V100 for∼16 hours with the batch size of 512. We
use the same encoder-embedding regularization co-
efficient of 0.01 as Li et al. (2019).

4.3 Main Results

In Table 2, we show our model’s performance
against the CGPS-Transformer baseline and previ-
ous works on multiple splits of SCAN. The CGPS-
Transformer baseline struggles to obtain the basic
compositional generalization ability, with the ap-
palling performance of 7.66%, 3.25%, and 6.12%
accuracy on the three MCD splits, respectively.
When the model faces novel combinations of seen
elements, it fails in a systematic and predictable
way as we explained in Sec. 2.2: instead of general-
izing compositionally to recognize the relationship
between the symbolic functions (“twice”) and their
arguments (“jump around left”), the model general-
ize distributionally to map this unseen compound
to a seen example (“jump around left thrice”) from
the training set with similar semantics.

The CGPS-Transformer baseline is also unable
to generalize to examples with longer action se-
quences, with 0% accuracy on the LENGTH split.
During the training, the model has seen multiple
short commands with the adverb “thrice” but has
never seen “jump around left thrice”, which has
a longer sequence of actions. At the evaluation,
the model fails to perform this long command as it

Model MCD1 MCD2 LENGTH

SCAN (2%) 76.48 28.30 80.92
SCAN (5%) 97.80 89.58 99.69

SCAN (10%) 99.14 93.21 99.89
SCAN (25%) 100.0 99.90 100.0
SCAN (100%) 100.0 100.0 100.0

Table 3: Dev accuracy on the SCAN dataset with vary-
ing amount of training instances.

doesn’t learn a compositional understanding of the
symbolic function “x thrice −→ x x x”.

On the LENGTH and three MCD splits, our
model that predicts the auxiliary sequences obtains
100% accuracy, significantly improving upon the
baseline analyzed above. By the completion of this
work, there are two previous efforts (Semi-sup and
LANE in Table 2) that achieved close-to-perfect
performance on one or multiple MCD splits. Guo
et al. (2021) explored the semi-supervised learn-
ing using extra pseudo-parallel dev/test data and
showed the efficacy of the iterative back-translation
method under this setting. Its performance is worse
than our method on MCD splits. LANE (Liu et al.,
2020) explicitly models the procedure of recogniz-
ing a symbolic function (e.g., “x twice”) and apply-
ing the symbolic function (“x twice−→ x x”) via
two separate models. These two models make their
own discrete predictions and are jointly trained
with Hierarchical Reinforcement Learning. Com-
pared to these two previous methods, our work has
a fundamental difference in the initial objective: we
are investigating the possibility of inducing compo-
sitionality in the internal mechanism of a general
seq2seq neural network. Therefore, we propose
a data-driven approach that teaches the seq2seq
model by examples and without exposure to the
novel test-set commands.

4.4 Few-Shot Learning Studies

In order to understand the sample efficiency of the
CGPS-Transformer when auxiliary sequences are
available, we try to limit the number of training
examples of the command-action pairs and aux-
iliary sequences. As shown in Table 3, CGPS-
Transformer can achieve 97.8% accuracy on the
SCAN MCD1 dev set with only 5% (418) of all
training examples. With 10% (836) of all super-
visions, the model can further improve to a close-
to-perfect 99.14%. To compare with, without the
auxiliary sequences, the model can only get 7.66%
of dev examples correct using all (8365) command-
action pairs. The model also obtains 89.58% accu-

6259

Model MCD1 MCD2 LENGTH

CGPS-Transformer 10.52 3.54 0.00
+ AuxSeq (2%) 1.81 1.43 7.12
+ AuxSeq (5%) 72.73 29.45 60.48

+ AuxSeq (10%) 89.19 52.29 63.90
+ AuxSeq (25%) 98.48 71.51 97.88
+ AuxSeq (100%) 100.0 100.0 100.0

Table 4: Dev accuracy on the SCAN dataset with vary-
ing amount of auxiliary sequence supervision and all
SCAN training instances.

racy on MCD2 and 99.69% accuracy on LENGTH

with 5% of all training examples.2 Therefore, our
auxiliary sequences can greatly improve the train-
ing sample efficiency of the baseline Transformer.
It also suggests that systematic compositionality
does not require a ton of training examples to cover
as much space in the distribution as possible. In-
stead, a small number of demonstrations that ex-
hibit the compositional structures of the data can
better supervise the model to be generalizable.

We also control the amount of auxiliary sequence
supervision given to the model during the training.
All (8365) command-action pairs from the training
set are still available to the model. For those train-
ing examples without the auxiliary sequences, we
feed a sequence of start-of-sentence tokens and
do not supervise its prediction on auxiliary se-
quences. As shown in Table 4, CGPS-Transformer
can achieve 72.73% accuracy on the MCD1 split
with 5% (418) of all ground-truth auxiliary se-
quences and 89.19% accuracy with 10% (836) of
all ground-truths. This result seems surprising at
the first glance: the model obtains 97.8% accuracy
with only 418 command-action pairs and auxiliary
sequences. Now with 7947 extra command-action
supervisions, the performance is even worse at
72.73%. Based on this observation, we believe that
the extra examples without auxiliary sequences en-
hance the model’s tendency to fit whole commands
to distributed representations, and thus deteriorate
the compositional reasoning ability of the model.

4.5 Ablation of Two Auxiliary Sequences

As shown in Table 5, both auxiliary sequences play
important roles in exhibiting the underlying com-
positional structures in the data to the Transformer.
More specifically, the model can master a small
part (15.98% in MCD1) of the novel commands in
the dev set by only predicting auxiliary sequences

2The LENGTH split has a larger training set and thus 5%
of it equals 849 examples.

Model MCD1 MCD2 LENGTH

CGPS-Transformer 10.52 3.54 0.00
+ AuxSeq 1 15.98 5.07 0.77
+ AuxSeq 2 43.21 14.15 24.59

+ AuxSeq 1 & 2 100.0 100.0 100.0

Table 5: Ablation study of the two auxiliary sequences:
dev accuracy on the SCAN dataset.

1 (e.g., [2, 2, 1, 1, 0, 0] for “jump left twice”). The
model achieves relatively higher scores with aux-
iliary sequences 2 (e.g., [1, 0, 1, 0, 1, 0]) only,
but still significantly lags behind the perfect results
with both auxiliary sequences during the training.

4.6 Analyzing the Architectures to Achieve
Compositionality

We conduct another ablation study to show that it is
important to use the intermediate or output vectors
of the decoder’s first layer, as the queries in the
attention layer for predicting the first auxiliary se-
quence (e.g., [2, 2, 1, 1, 0, 0] for “jump left thrice”).
We present the comprehensive ablation results in
Table 6, where the column headers correspond to
different choices of the query: “L1-INT” stands
for the intermediate vector (before cross-attention)
of decoder’s first layer; “L1-OUT” stands for the
first layer’s output vector (after cross-attention);
“L2-OUT” is the decoder’s final output vector after
two layers. Each row represents a choice of the key
and value vectors, among different combinations
of f : functional embeddings, p: primitive embed-
dings, and c: contextualized vectors of the input
command. Every cell contains the accuracy of both
the action sequence and the first auxiliary sequence.
We make three arguments from this ablation study.

First, the model’s prediction on the target ac-
tion is dependent on its predictions of the auxil-
iary sequences and it does not see them as inde-
pendent tasks. We can observe this clear trend in
Table 6: the models with higher accuracy in pre-
dicting the auxiliary sequence (the 2nd number in
each cell) are always better at predicting the action
sequence (the 1st number in each cell) from SCAN.

Second, predicting the auxiliary sequences,
although seemingly simple, is not a trivial task
and is highly correlated with the compositional
structure of symbolic functions. As shown by
the results, the model would struggle to predict the
auxiliary sequence correctly if we simply use the
decoder’s final output vector as the query to the
attention, which leads us to the third point.

It is easier to achieve compositionality us-

6260

K&V/Q L1-INT L1-OUT L2-OUT

f & c 100.0/100.0 99.71/99.71 51.43/51.43
f & f 52.87/47.04 99.33/99.33 57.07/57.07
c & c 100.0/100.0 90.06/90.06 31.74/31.64
c & p 99.62/99.62 98.37/98.37 40.63/40.73

Table 6: MCD3 dev accuracy of predicting the ‘ac-
tion’/‘first auxiliary’ sequence on SCAN using differ-
ent vectors as query (Q), key (K), and value (V) for the
attention (Eqn. 3) to predict the auxiliary sequences.

Adverb (k = 10) Adverb to verb

Baseline 2.04 13.99
+ AuxSeq 4.87 28.03

Table 7: gSCAN (Ruis et al., 2020) test results showing
the exact match accuracy.

ing less contextualized representations as query
vectors of the attention function. As shown in Ta-
ble 6, the performance of using the decoder’s first
self-attention outputs “L1-INT” as the queries is
consistently better than using the decoder’s final
outputs “L2-OUT”, no matter what vectors we used
as the keys and values. This finding echoes with
the fact that systematic compositionality values the
functionality of some individual words (e.g.,“twice”
and “thrice”) in certain symbolic structures. Such
information can be partially lost or harder to isolate
in the highly contextualized vectors.

4.7 Generalization to gSCAN

Finally, we show that our method can be general-
ized to gSCAN (Ruis et al., 2020), a multi-modal
compositional challenge that grounded language in
the states of a grid world. Similar to SCAN, the
gSCAN “Adverb to verb” sub-task tests model’s
ability to execute novel commands made of seen
components (e.g., “pull” and “while spinning”).
The “Adverb” sub-task challenges the model to
learn the meaning of adverb ‘cautiously’ from
just one or a few examples in the training. As
shown in Table 7, on these two adverb sub-tasks,
adding our two auxiliary sequence prediction tasks
improves the performance of the original LSTM
baseline. This demonstrates that our auxiliary se-
quences are not only useful for SCAN, but can have
a strong positive impact on similar compositional-
ity challenge that requires recombination of seen
phrases.

5 Discussion

In this section, we discuss what our experiments
reveal regarding the compositionality of Transform-

ers as well as the limitation of our method in terms
of its applicability to other datasets.

First, we develop our method for SCAN (Lake
and Baroni, 2018), which is a synthetic dataset
and its language commands are produced from a
limited set of rules. Thus, it is unclear how the find-
ings on the simplified SCAN setting can be trans-
ferred to large-scale, natural datasets. However, the
community believes that SCAN is a valuable bench-
mark and useful analysis tool for studying language
compositionality because, first, its inputs are still
realistic English, i.e., they use the same set of func-
tional words that people use in natural language
(“and”, “after”, etc.) and each of these words has
an symbolic function that influences the structure
of the output sequence. Second, it has been shown
that even large pre-trained language models cannot
achieve strong performance on SCAN, indicating
that exposure to more texts and linguistic structures
do not naturally induce compositionality in neural
models. Therefore, our method’s effectiveness and
simplicity should still provide some key insights
into the nature of the neural model’s acquisition of
compositionality.

Second, it is worth noting that the synthetic lan-
guage input in SCAN can be written as a context-
free grammar; as a result, we can design an au-
tomatic procedure to generate both auxiliary se-
quences based on the underlying grammar. Apply-
ing this method to a dataset with natural language
requires designing a heuristic to approximate the
underlying grammar. However, as the community
is still trying to establish a basic understanding of
whether/how a neural network can recognize the
compositionality in language, an important first
step could be done under a simpler setting (e.g.,
SCAN) with a controlled grammar. Furthermore,
predicting the auxiliary sequences, although seem-
ingly simple, is not a trivial task and is highly corre-
lated with the compositional structure of symbolic
functions. The fact that Transformer can predict
the two auxiliary sequences perfectly suggests that
it can model the compositional structure without
extra information at test time if given the proper
training supervision. Therefore, we believe that
some of our observations are promising and excit-
ing to the community.

Last but not least, our method achieves strong
few-shot generalization (97.8% on MCD1 with
only 418 training instances) and perfect length gen-
eralization. This opens up the possibility of using

6261

a small number of human-annotated auxiliary se-
quences to improve the models’ performance on
large-scale, natural datasets where automatically
generating auxiliary sequences is infeasible.

6 Related Work

6.1 Compositional Generalization Datasets

The SCAN dataset (Lake and Baroni, 2018) con-
sists of natural language commands paired with
action sequences and is consisted of multiple splits
that test the generalization of different composi-
tional elements. Keysers et al. (2020) proposed a
method to maximize compound divergence while
guaranteeing a small atom divergence between
train and test sets and created three MCD splits
for SCAN. They also constructed the CFQ seman-
tic parsing dataset of natural language questions
paired with SPARQL output using this method. It
was later expanded to ∗-CFQ (Tsarkov et al., 2021),
a large suite of benchmarks based on the original
CFQ task. COGS (Kim and Linzen, 2020) is a
semantic parsing dataset with multiple systematic
gaps that can only be addressed by compositional
generalization. More related tasks (Loula et al.,
2018; Liška et al., 2018; Bastings et al., 2018) are
proposed on top of these original datasets to better
evaluate the compositional generalization ability.

6.2 Compositional Generalization Methods

Many early works have explored the composition-
ality of neural networks, like RNNs, for system-
atic behavior (Wong and Wang, 2007; Brakel and
Frank, 2009) in language learning and composi-
tional counting ability (Wiles, 1998; Weiss et al.,
2018). In a study of sensitivity to hierarchical struc-
ture (Linzen et al., 2016), the authors argued that
sequential language modeling signal is insufficient
for capturing syntax-sensitive dependencies and
called for more direct supervision.

Recently, because of the publication of these
popular benchmarks, multiple works have come up
with promising methods that achieved better but
still limited compositional generalization. Dessì
and Baroni (2019) showed that CNNs can better
generalize to novel compositions than RNNs. Lake
(2019) proposed a meta-learning approach using a
seq2seq model with a memory mechanism. They
randomly shuffled the command-action matching
of four primitives and store the correct matching for
this batch in the memory. A later work (Nye et al.,
2020) argued to generalize via the paradigm of pro-

gram synthesis with a predefined meta-grammar.
Data augmentation (Andreas, 2020; Akyürek et al.,
2021) is also a natural method in promoting the
generalization by automatically creating extra data
that could resemble the test-set distribution. Most
interestingly, previous work (Li et al., 2019; Russin
et al., 2020) showed that it is possible to directly en-
code the inductive bias into the model architecture.
They proposed to embed and encode the syntax
and semantics of the input separately to achieve
the compositional generalization over single-word
substitution (“walk/run−→jump”). However, all of
these works that achieve good results on some
SCAN splits (e.g., ADDJUMP) still struggle sig-
nificantly on the MCD and LENGTH splits.

By the completion of this work, there are only
two previous efforts that achieved close-to-perfect
performance on the MCD splits of the SCAN
dataset. Liu et al. (2020) designed a memory-
augmented neural network that explicitly models
the procedure of recognizing a symbolic function
and applying this function via two separate models.
These two models make discrete predictions and
are jointly trained with Hierarchical Reinforcement
Learning. Guo et al. (2021) explored the semi-
supervised learning with pseudo-parallel dev/test
data and showed the efficacy of iterative back-
translation. Our method differs from these two
works as (1) it induces the compositional rules im-
plicitly from a general, seq2seq Transformer ar-
chitecture; (2) it doesn’t require peeking into the
novel commands of dev/test data. A contemporary
work (Conklin et al., 2021) proposed to construct
meta-train and meta-test sets that consist of similar
input sequence and used meta-learning to encour-
age the model to learn generalizable features.

7 Conclusion

In this work, we propose two auxiliary sequence
prediction tasks to induce the compositional gen-
eralization ability in a Transformer model. On the
challenging LENGTH and MCD splits of the SCAN
dataset, our method achieves the perfect 100% ac-
curacy, a huge improvement from the ≤ 10% per-
formance from the baseline model. We further
show that our method works well in low-resource
settings as it reaches 97.8% accuracy with only
needs 418 training examples. Ablation analysis
shows that the model achieves better composition-
ality using the decoder’s less contextualized vectors
to compute the next token in auxiliary sequences.

6262

Acknowledgements

We thank the reviewers for their helpful com-
ments. This work was supported by NSF-CAREER
Award 1846185, DARPA YFA17-D17AP00022,
ONR Grant N00014-18-1-2871, and DARPA MCS
Grant N66001-19-2-4031. The views are those of
the authors and not of the funding agency.

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob

Andreas. 2021. Learning to recombine and
resample data for compositional generaliza-
tion. In International Conference on Learning
Representations.

Jacob Andreas. 2020. Good-enough composi-
tional data augmentation. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7556–7566, On-
line. Association for Computational Linguistics.

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right.
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 47–55, Brussels, Belgium.
Association for Computational Linguistics.

Philémon Brakel and Stefan Frank. 2009. Strong
systematicity in sentence processing by simple re-
current networks. In Proceedings of the Annual
Meeting of the Cognitive Science Society, vol-
ume 31.

Paco Calvo and John Symons. 2014. The Architecture
of Cognition: Rethinking Fodor and Pylyshyn’s
Systematicity Challenge. MIT Press.

Noam Chomsky. 1957. Syntactic structures. De
Gruyter Mouton.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 3322–3335, Online. Association for
Computational Linguistics.

Roberto Dessì and Marco Baroni. 2019. CNNs found
to jump around more skillfully than RNNs: Compo-
sitional generalization in seq2seq convolutional net-
works. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 3919–3923, Florence, Italy. Association for
Computational Linguistics.

Jerry A Fodor and Ernest Lepore. 2002. The
compositionality papers. Oxford University Press.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Yinuo Guo, Hualei Zhu, Zeqi Lin, Bei Chen, Jian-
Guang Lou, and Dongmei Zhang. 2021. Revisit-
ing iterative back-translation from the perspective of
compositional generalization. In AAAI.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Mea-
suring compositional generalization: A comprehen-
sive method on realistic data. In International
Conference on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A
compositional generalization challenge based on
semantic interpretation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9087–9105,
Online. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Brenden Lake and Marco Baroni. 2018. Generaliza-
tion without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In International Conference on Machine Learning,
pages 2873–2882. PMLR.

Brenden M Lake. 2019. Compositional general-
ization through meta sequence-to-sequence learn-
ing. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Brenden M Lake, Tomer D Ullman, Joshua B Tenen-
baum, and Samuel J Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and brain sciences, 40.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel
Hestness. 2019. Compositional generalization for
primitive substitutions. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4293–4302, Hong Kong,
China. Association for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/W18-5407
https://doi.org/10.18653/v1/W18-5407
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115

6263

Adam Liška, Germán Kruszewski, and Marco Baroni.
2018. Memorize or generalize? searching for a com-
positional rnn in a haystack. In AEGAP Workshop
of ICML.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and
Dongmei Zhang. 2020. Compositional generaliza-
tion by learning analytical expressions. In NeurIPS.

João Loula, Marco Baroni, and Brenden Lake. 2018.
Rearranging the familiar: Testing compositional
generalization in recurrent networks. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 108–114, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Gary F Marcus. 1998. Rethinking eliminative connec-
tionism. Cognitive psychology, 37(3):243–282.

Gary F Marcus. 2003. The algebraic mind: Integrating
connectionism and cognitive science. MIT press.

Richard Montague. 1970. Universal grammar. 1974,
pages 222–46.

Maxwell I Nye, Armando Solar-Lezama, Joshua B
Tenenbaum, and Brenden M Lake. 2020. Learning
compositional rules via neural program synthesis. In
NeurIPS.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M Lake. 2020. A bench-
mark for systematic generalization in grounded lan-
guage understanding. In NeurIPS.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua
Bengio. 2020. Compositional generalization by fac-
torizing alignment and translation. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics: Student Research
Workshop, pages 313–327, Online. Association for
Computational Linguistics.

Dmitry Tsarkov, Tibor Tihon, Nathan Scales, Nikola
Momchev, Danila Sinopalnikov, and Nathanael
Schärli. 2021. *-cfq: Analyzing the scalability of
machine learning on a compositional task. In AAAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
RNNs for language recognition. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 740–745, Melbourne, Australia. As-
sociation for Computational Linguistics.

Paul Rodriguez Janet Wiles. 1998. Recurrent neu-
ral networks can learn to implement symbolsensi-
tive counting. Advances in Neural Information
Processing Systems, 10:87.

MCD1 MCD2 MCD3 LENGTH

seed1 100.0 91.49 100.0 100.0
seed2 100.0 100.0 91.78 100.0
seed3 100.0 80.11 99.33 100.0
seed4 100.0 86.90 99.81 100.0
seed5 99.52 91.97 100.0 100.0

all 99.9±0.2 90.1±6.5 98.2±3.2 100.0±0.0

Table 8: SCAN results of 5 different random seeds.

Francis CK Wong and William SY Wang. 2007. Gener-
alisation towards combinatorial productivity in lan-
guage acquisition by simple recurrent networks. In
2007 International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, pages
139–144. IEEE.

Appendix

A Stability across Random Seeds

It has been previously observed that the per-
formance of non-pretrained models on the
SCAN (Lake and Baroni, 2018) dataset is not stable
across different random seeds. We train our model
with auxiliary sequence prediction tasks with 5 ran-
dom seeds and report the full results in Table 8.
Our model achieves stable, close-to-perfect results
in the MCD1, MCD3, and LENGTH splits. How-
ever, there is a relatively larger standard deviation
among the 5 runs on the MCD2 splits. Upon analyz-
ing the examples in the MCD2 splits and the mis-
takes the model makes in some random-seed runs,
we find that MCD2 poses a unique compositional
challenge that’s not covered in other MCD splits:
the training set contains no examples of the form
“X [once] after Y twice.” While other MCD splits
require the model to perform an unseen application
of a seen function (e.g., “twice”) to a seen argu-
ment (e.g., “jump around left”), MCD2 additionally
challenges the model with unseen combination of
seen functions (e.g., twice and once in “X once
after Y twice”). Both of our auxiliary sequences
are designed to guide actions inside a single func-
tion (e.g., “jump around left twice”) while the extra
challenge of MCD2 calls for generalizing over two
functions, thus causing a bit more unstable perfor-
mance across different random seeds. However,
our method still achieves a best score of 100% and
an average of over 90% accuracy on MCD2, out-
performing the baseline significantly.

https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117

6264

Dataset Input Outputs (Supervisions)

SCAN

jump opposite left twice Actions: TL, TL, JP, TL, TL, JP, TR, WK, TR, WK, TR, WK
and AuxSeq1: 1, 1, 1, 0, 0, 0, 5, 5, 4, 4, 3, 3

walk right thrice AuxSeq2: 2, 1, 0, 2, 1, 0, 9, 8, 9, 8, 9, 8

walk right twice Actions: TL, TL, JP, TL, TL, JP, TL, TL, JP, TR, WK, TR, WK
after AuxSeq1: 5, 5, 5, 4, 4, 4, 3, 3, 3, 1, 1, 0, 0

jump opposite left thrice AuxSeq2: 10, 9, 8, 10, 9, 8, 10, 9, 8, 1, 0, 1, 0

jump around left Actions: TR, WK, TR, WK, TL, JP, TL, JP, TL, JP, TL, JP
after AuxSeq1: 4, 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0

walk right twice AuxSeq2: 9, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

Table 9: Examples from the SCAN dataset (Lake and Baroni, 2018). The outputs include the action sequence and
two auxiliary sequences we created. “JP” is short for JUMP; “WK” is WALK, “TR” is “TURN RIGHT”, and “TL”
is “TURN LEFT”.

Dataset Input Outputs (Supervisions)

gSCAN

walk to the Actions: TL, TR, TR, TL, WK, TL, TR, TR, TL, WK, TL, TR, TR, TL, WK
red small circle AuxSeq1: 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0

cautiously AuxSeq2: 15, 14, 13, 12, 11, 15, 14, 13, 12, 11, 15, 14, 13, 12, 11

walk to the Actions: TL, TL, TL, TL, WK, TL, TL, TL, TL, WK, TL, TL, TL, TL, WK
red small circle AuxSeq1: 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
while spinning AuxSeq2: 8, 7, 6, 5, 4, 8, 7, 6, 5, 4, 8, 7, 6, 5, 4

walk to the Actions: TL, WK, ST, WK, ST, WK, ST, WK, ST, WK, ST, WK, ST, WK, ST
red small circle AuxSeq1: 6, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0

hesitantly AuxSeq2: 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

Table 10: Examples from the gSCAN dataset (Ruis et al., 2020). The outputs include the action sequence and two
auxiliary sequences we created. “ST” is short for STOP; “WK” is WALK, “TR” is “TURN RIGHT”, and “TL” is
“TURN LEFT”. If the model is asked to “walk cautiously”, it needs to turn left, turn right, turn right, and turn left
to check its surrounding before walking. If the model is asked to “walk while spinning”, it needs to turn left for 4
times before walking. If the model is asked to “walk hesitantly”, it needs to “stop” after every “walk”.

B Auxiliary Sequence Details

B.1 Auxiliary Sequence for SCAN
For every command-action pair in the SCAN
dataset (Lake and Baroni, 2018), we automatically
create two auxiliary sequences of the same length
as the action sequence. These sequences represent
the lower level symbolic structures in the input and
can better teach the model in achieving composi-
tional generalization.

(1) As explained in Sec. 3.2, we create the first
auxiliary sequence AuxSeq1 (the 2nd row of every
outputs in Table 1 and Table 9) to track the progress
of three “jump opposite left” and to ensure the cor-
rect repetitions of the action are executed. For the
example “jump opposite left thrice−→TL TL JP TL
TL JP TL TL JP”, we create a sequence of ids [2,
2, 2, 1, 1, 1, 0, 0, 0]. This sequence exposes the
compositional structure of the action sequence “TL
TL JUMP TL TL JUMP TL TL JUMP” as three
separate segments of “TL TL JUMP”: it ignores
the content of every single action inside a “jump op-
posite left” and focuses on the symbolic functions

embodied by “twice” and “thrice”.

Additionally, if the command comes after the
conjunction word “and” or “after”, we increment
every element of the sequence by 3 (because each
command has a maximum repetition function of
“thrice”). Therefore, in the first example of Table 9,
the second command “walk right thrice” is paired
with an AuxSeq1 of [5, 5, 4, 4, 3, 3].

(2) We create the second auxiliary sequence
AuxSeq2 (the 3rd row of every outputs in Table 1
and Table 9) to supervise the correct completion of
every single “jump around left”. For a shorter ex-
ample “walk left thrice−→TURNL WALK TURNL
WALK TURNL WALK”, we create a sequence of
ids [1, 0, 1, 0, 1, 0]. This sequence isolates the
semantics of “walk left” as an action sequence of
length 2.

Additionally, if the command comes after the
conjunction word “and” or “after”, we increment
every element of the sequence by 8 because each
command has a maximum length of 8 (e.g., “walk
around left”). Therefore, in the first example of

6265

Table 9, the second command “walk right thrice”
is paired with an AuxSeq2 of [9, 8, 9, 8, 9, 8]. We
argue that, if the model can correctly predict these
two sequences and builds a connection between
them and the actions, it will learn the compositional
structures of the commands and generalize to novel
combinations in the test set.

B.2 Auxiliary Sequence for gSCAN
Grounded-SCAN (Ruis et al., 2020) (gSCAN) is a
multi-modal compositional challenge that grounds
language in the states of a grid world. Similar to
SCAN, gSCAN also test model’s ability to execute
novel commands made of seen components (e.g.,
“pull” and “while spinning”). It also challenges the
model to learn the meaning of adverb ‘cautiously’
from just one or a few examples in the training.
The automatic procedure of generating auxiliary
sequences for SCAN can be easily transferred to
gSCAN with only a small change for the AuxSeq2.
As shown in the first example in Table 10, we create
the first auxiliary sequence (AuxSeq1) to track the
progress of all “walk” actions by counting down
the remaining “walk” to perform. For the second
auxiliary sequence (AuxSeq2), instead of simply
counting down an action sequence of length k (e.g.,
[2, 1, 0] for “walk opposite left”), we addition-
ally distinguish between different adverbs in the
sequence. Consider the first two examples in Ta-
ble 10: the AuxSeq2 counts down from 15 to 11
when the model needs to “walk cautiously”, but
counts down from 8 to 4 when prompted to “walk
while spinning”. This is not needed for SCAN
because every adverb in SCAN has a different ac-
tion sequence length. For example, AuxSeq2 starts
from 8 for “walk around left” and starts from 3 for
“walk opposite left” and thus can already teach the
model to distinguish between these adverbs.

