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Abstract

Many datasets have been created for train-
ing reading comprehension models, and a
natural question is whether we can combine
them to build models that (1) perform better
on all of the training datasets and (2) gen-
eralize and transfer better to new datasets.
Prior work has addressed this goal by train-
ing one network simultaneously on multiple
datasets, which works well on average but is
prone to over- or under-fitting different sub-
distributions and might transfer worse com-
pared to source models with more overlap
with the target dataset. Our approach is to
model multi-dataset question answering with
an ensemble of single-dataset experts, by train-
ing a collection of lightweight, dataset-specific
adapter modules (Houlsby et al., 2019) that
share an underlying Transformer model. We
find that these Multi-Adapter Dataset Experts
(MADE) outperform all our baselines in terms
of in-distribution accuracy, and simple meth-
ods based on parameter-averaging lead to bet-
ter zero-shot generalization and few-shot trans-
fer performance, offering a strong and ver-
satile starting point for building new reading
comprehension systems.1

1 Introduction

The goal of reading comprehension is to create
computer programs that can answer questions
based on a single passage of text. Many reading
comprehension datasets have been introduced over
the years, and prior work has explored ways of
training one network on multiple datasets to get
a model that generalizes better to new distribu-
tions (Talmor and Berant, 2019; Fisch et al., 2019;
Khashabi et al., 2020). Our goal is to build a multi-
dataset model that performs well on the training
distributions and can also serve as a strong starting

1Our code and models are available at https://
github.com/princeton-nlp/MADE.
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Figure 1: MADE consists of a set of dataset-specific
adapters and classifiers {(φt, ψt)}|S|

t=1 with a shared
Transformer model θ. They are optimized jointly on
a set of training datasets (left). To transfer to a new
dataset (right), we either average the parameters of the
adapters, or fine-tune the ensemble on the target dataset
and take the weighted average at the end (Section 3).

point for transfer learning to new datasets. Multi-
dataset training provides a way to model the reg-
ularities between datasets but it has the follow-
ing shortcomings. First, multi-task models are
liable to over- or under-fit different tasks (Got-
tumukkala et al., 2020), which can result in worse
in-distribution accuracy. Second, given a particular
target dataset, multi-dataset models might achieve
worse transfer performance compared to a special-
ized model trained on a more similar source dataset.

Our idea is to combine the benefits of single-
and multi-dataset by training a collection of single-
dataset experts that share an underlying Trans-
former model (Figure 1). This system is based
on adapters (Houlsby et al., 2019), lightweight
task-specific modules interleaved between the lay-
ers of a pre-trained Transformer (e.g., BERT; De-
vlin et al., 2019). The standard use of adapters is
as a parameter-efficient alternative to fine-tuning:
task-specific adapters are trained separately on
top of a frozen Transformer, which means the

https://github.com/princeton-nlp/MADE
https://github.com/princeton-nlp/MADE
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adapters cannot directly learn cross-task regular-
ities. We instead first train a shared Transformer in
a multi-adapter setup before refining adapters for
individual datasets, which we call Multi-Adapter
Dataset Experts (MADE). Our intuition is that the
shared parameters encode regularities across differ-
ent reading comprehension tasks while the adapters
model the sub-distributions, resulting in more ac-
curate and robust specialized models that transfer
better to a variety of target datasets.

We apply this approach to a range of extractive
question answering datasets from the MRQA 2019
shared task (Fisch et al., 2019), training MADE
on six in-domain datasets and evaluating general-
ization and few-shot transfer learning to six out-
of-domain datasets. The resulting system outper-
forms single- and multi-dataset models in terms
of in-domain accuracy, and we find that a simple
approach to transfer learning works well: averag-
ing the parameters of the MADE adapters results
in a single model that gets better zero-shot gener-
alization and few-shot transfer performance com-
pared to both baselines as well as a state-of-the-
art multi-dataset QA model, UnifiedQA (Khashabi
et al., 2020). Our experiments illustrate the bene-
fits of modeling both cross-dataset regularities and
dataset-specific attributes, and the trained models
offer a strong and versatile starting point for new
question-answering models.

2 Related Work

Prior work has addressed multi-dataset reading
comprehension by fine-tuning a pre-trained Trans-
former language model (Devlin et al., 2019) simul-
taneously on examples from multiple datasets (Tal-
mor and Berant, 2019; Fisch et al., 2019). Sev-
eral works explore different multi-task sampling
schedules, as a way of mitigating training set im-
balances (Xu et al., 2019; Gottumukkala et al.,
2020). Another line of work focuses on training
models to answer a wider variety of question types,
including UnifiedQA (Khashabi et al., 2020), a
T5 model (Raffel et al., 2020) trained on datasets
with different answer formats, such as yes/no and
multiple-choice, using a unified text-to-text format.

Adapters (Houlsby et al., 2019; Rebuffi et al.,
2018) are task-specific modules interleaved be-
tween the layers of a shared Transformer. Stick-
land and Murray (2019) trained task adapters and
the Transformer parameters jointly for the GLUE
benchmark (Wang et al., 2019) but achieved mixed

results, improving on small datasets but degrading
on larger ones. Subsequent work has used a frozen,
pre-trained Transformer and trained task adapters
separately. Researchers have explored different
methods for achieving transfer learning in this set-
ting, such as learning to interpolate the activations
of pre-trained adapters (Pfeiffer et al., 2021).

3 Method

3.1 Problem Definition
The objective of reading comprehension is to model
the distribution p(a | q, c), where q, c, a ∈ V∗ rep-
resent a question, supporting context, and answer
respectively and consist of sequences of tokens
from a vocabulary V . For simplicity, we focus
on extractive reading comprehension, where every
question can be answered by selecting a span of to-
kens in the context, but the approach is generic and
can be extended to other formats. We make the stan-
dard assumption that the probability of context span
ci...j being the answer can be decomposed into the
product of p(start = i | q, c) and p(end = j | q, c).

We consider a collection of source datasets S
and target datasets T , where each dataset D ∈
S ∪ T consists of supervised examples in the form
(q, c, a). The goal is to train a model on S that
achieves high in-domain accuracy and transfers
well to unseen datasets in T , either zero-shot or
given a small number of labeled examples.

3.2 Multi-dataset Fine-tuning
The standard approach to multi-dataset reading
comprehension is to fit a single model to exam-
ples drawn uniformly from the datasets in S:

argmin
θ,ψ

EDi∼S [Eq,c,a∼Di [− log pθ,ψ(a | q, c)]] ,

where θ refers to the parameters of an encoder
model (usually a pre-trained Transformer like
BERT; Devlin et al., 2019), which maps a question
and context to a sequence of contextualized token
embeddings, and ψ denotes the classifier weights
used to predict the start and end tokens.

The objective is approximated by training on
mixed mini-batches with approximately equal num-
bers of examples from each dataset (Fisch et al.,
2019; Khashabi et al., 2020), although some re-
searchers have investigated more sophisticated sam-
pling strategies (Xu et al., 2019). For example, Got-
tumukkala et al. (2020) introduce dynamic sam-
pling, sampling from each dataset in inverse pro-
portion to the model’s current validation accuracy.
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Model SQuAD 1.1 HotpotQA TriviaQA NewsQA SearchQA NaturalQ Avg.

Dynamic sampling 91.4 80.9 80.5 71.4 84.6 79.8 81.4

Single-dataset fine-tuning 90.9 78.6 79.3 70.3 84.5 79.2 80.5
Single-dataset adapters 91.4 78.5 79.6 70.9 85.1 79.2 80.8
Multi-dataset fine-tuning 91.8 81.0 80.1 72.3 84.7 79.5 81.6
MADE (w/o adapter tuning) 91.9 80.7 80.1 71.8 84.5 79.5 81.4
MADE (w/ adapter tuning) 92.4 81.5 80.5 72.1 85.8 80.9 82.2

Table 1: In-domain F1. Dynamic sampling is a reimplementation of the method from Gottumukkala et al. (2020)
on the MRQA datasets. We compare MADE results at the end of joint optimization (w/o adapter tuning), and after
freezing the Transformer and tuning the adapters separately (w/ adapter tuning). See Section 4.2 for details.

3.3 MADE

Our approach is to explicitly model the fact that our
data represent a mixture of datasets. We decom-
pose the model parameters into a shared Trans-
former, θ, and dataset-specific token classifiers
ψ = ψ1, . . . , ψ|S| and adapters φ = φ1, . . . , φ|S|
(Figure 1). We use a two-phase optimization proce-
dure to fit these parameters. In the joint optimiza-
tion phase, we jointly train all of the parameters on
the source datasets:

argmin
θ,φ,ψ

EDi∼S [Eq,c,a∼Di [− log pθ,φi,ψi
(a | q, c)]]

After validation accuracy (average F1 scores of
the source datasets) stops improving, we freeze θ
and continue adapter tuning, refining each pair of
(φi, ψi) separately on each dataset.

Zero-shot generalization We use a simple strat-
egy to extend MADE to an unseen dataset: we
initialize a new adapter and classifier (φ′, ψ′) by av-
eraging the parameters of the pre-trained adapters
and classifiers φ1, . . . , φ|S| and ψ1, . . . , ψ|S|, and
return the answer with the highest probability under
pθ,φ′,ψ′(a | q, c). Alternatively, we also consider
an ensemble approach, averaging the token-level
probabilities predicted by each adapter (this is less
appealing as we need to run the model |S| times).

Transfer learning We also consider a transfer
learning setting, in which a small number of la-
beled examples of a target domain (denoted Dtgt)
are provided. We explore two ways to build a sin-
gle, more accurate model. The first is to initial-
ize (φ′, ψ′) as a weighted average of pre-trained
adapters, φ′ = 1

|S|
∑|S|

i=1 αiφi, and classifiers ψ′ =
1
|S|
∑|S|

i=1 αiψi, using Dtgt to estimate the mixture
weights. For each i, we set the mixture weight αi
to be proportional to the exponential of the negative

zero-shot loss on the training data:

αi ∝ exp
(
Eq,c,a∈Dtgt [log pθ,φi,ψi

(a | q, c)]
)
,

and then tune θ and (φ′, ψ′) on the target dataset.
The second approach is to first jointly tune θ, φ,
andψ onDtgt, maximizing the marginal likelihood:

Eq,c,a∼Dtgt

log 1

|S|

|S|∑
i=1

pθ,φi,ψi
(a | q, c)

 ,
and then take the weighted average of the param-
eters, calculating the mixture weights αi as above
but using the loss of the fine-tuned adapters on
a small number of held-out examples from Dtgt.
After training, both approaches result in a single
model that only requires running one forward pass
through (θ, φ′, ψ′) to make a prediction.

4 Experiments

4.1 Setup

We use the datasets from the MRQA 2019 shared
task (Fisch et al., 2019), which are split into six
large in-domain datasets,2 and six small out-of-
domain datasets.3 Dataset statistics are in Ap-
pendix A.1. We use the RoBERTa-base model (Liu
et al., 2019) with the default adapter configura-
tion from Houlsby et al. (2019), which adds ap-
proximately 1.8M parameters to the ~128M in
RoBERTa-base (1%).

2SQuAD 1.1 (Rajpurkar et al., 2016), HotpotQA (Yang
et al., 2018), TriviaQA (Joshi et al., 2017), NewsQA (Trischler
et al., 2017), SearchQA (Dunn et al., 2017), and Natural Ques-
tions (Kwiatkowski et al., 2019)

3BioASQ (Tsatsaronis et al., 2015), DROP (Dua et al.,
2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Re-
lationExtraction (Levy et al., 2017), and TextbookQA (Kemb-
havi et al., 2017).
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Model BioASQ DROP DuoRC RACE RelEx TextbookQA Avg.

UnifiedQA-base 59.7 45.7 30.4 51.4† 82.0 35.9 50.9

Multi-dataset fine-tuning 64.1 51.5 63.0 47.6 87.3 59.0 62.1
MADE (w/o adapter-tuning) 66.5 50.9 67.2 47.8 86.7 58.5 62.9
MADE (w/ adapter-tuning) 64.9 49.5 62.3 47.8 86.7 53.2 60.7

Single-dataset adapters (ensemble) 65.3 40.2 60.5 41.6 86.2 55.8 58.3
MADE (w/o adapter-tuning, ensemble) 65.2 52.0 66.6 47.7 86.4 58.8 62.8
MADE (w/ adapter-tuning, ensemble) 66.3 52.5 65.8 48.3 87.5 59.9 63.4

Table 2: Zero-shot generalization results (F1), either averaging parameters (middle) or ensembling predictions
(bottom), and comparing MADE at the end of joint optimization (w/o adapter tuning), and after tuning the adapters
separately (w/ adapter tuning). See Section 4.3. †: RACE is part of the UnifiedQA training data.
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Figure 2: Out-of-domain accuracy (F1) of the different MADE adapters (left) compared with single-dataset
adapters (right), which are trained trained separately with a frozen Transformer.

4.2 In-domain Performance

First we train MADE on the six training datasets
and compare in-domain accuracy with single- and
multi-dataset fine-tuning and standard adapter train-
ing (freezing the Transformer parameters). For
context, we also compare with a method from re-
cent work, dynamic sampling (Gottumukkala et al.,
2020), by sampling from each dataset in proportion
to the difference between the current validation ac-
curacy (EM+F1) on that dataset and the best accu-
racy from single-dataset training. We train all mod-
els by sampling up to 75k training and 1k develop-
ment examples from each dataset, following Fisch
et al. (2019). More details are in Appendix A.2.

Table 1 shows that MADE scores higher than
both single- and multi-dataset baselines. Both
phases of MADE training—joint optimization fol-
lowed by separate adapter tuning—are important
for getting high accuracy. Jointly optimizing the
underlying MADE Transformer improves perfor-
mance compared to single-dataset adapters, sug-

gesting that joint training encodes some useful
cross-dataset information in the Transformer model.
Adapter tuning is important because the multi-
dataset model converges on different datasets at dif-
ferent times, making it hard to find a single check-
point that maximizes performance on all datasets
(see Appendix Figure 3 for the training curve).
Some of the improvements can also be attributed to
the adapter architecture itself, which slightly out-
performs fine-tuning in most datasets. Dynamic
sampling does not improve results, possibly be-
cause the datasets are already balanced in size.

4.3 Zero-shot Generalization

Table 2 shows the results of applying this model
to an unseen dataset (zero-shot). We compare
two methods for using MADE—averaging the pa-
rameters or ensembling the predictions—with the
multi-dataset model from Section 4.2, an ensem-
ble of single-dataset adapters, and the pre-trained
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K Model BioASQ DROP DuoRC RACE RelEx TextbookQA Avg.

16

UnifiedQA-base 59.7 45.2 30.2 52.9 82.0 33.8 50.6
Multi-dataset fine-tuning 64.7 52.2 63.2 47.5 87.3 57.9 62.1
MADE (pre avg.) 67.0 52.8 65.7 47.5 87.7 59.8 63.4
MADE (post avg.) 66.8 52.6 67.2 47.3 87.7 59.7 63.5

64

UnifiedQA-base 65.5 47.9 32.9 54.3 83.4 35.6 53.3
Multi-dataset fine-tuning 66.1 54.9 64.3 48.3 87.8 60.7 63.7
MADE (pre avg.) 69.4 55.9 66.8 47.6 88.4 60.2 64.7
MADE (post avg.) 70.9 55.2 66.9 47.5 88.5 60.0 64.8

256

UnifiedQA-base 71.7 49.8 36.5 55.2 85.6 36.8 55.9
Multi-dataset fine-tuning 73.9 57.2 65.2 49.1 89.1 62.9 66.2
MADE (pre avg.) 73.9 56.9 65.3 48.7 88.9 61.5 65.9
MADE (post avg.) 75.1 56.9 66.9 48.9 90.2 61.8 66.6

Table 3: Transfer learning to MRQA out-of-domain datasets with K training examples (F1, averaged over three
random seeds). †: RACE is part of the UnifiedQA training data. pre avg.: average the adapter parameters at
initialization. post avg.: fine-tune the adapters and jointly and average the parameters at the end. See Section 4.4.

UnifiedQA-base (Khashabi et al., 2020).4 We com-
pare MADE with and without the second phase of
separate adapter-tuning.

Surprisingly, averaging the parameters of the dif-
ferent MADE adapters results in a decent predictor.
Parameter averaging works best for MADE with-
out adapter-tuning, possibly because the parame-
ters diverge during adapter tuning and no longer
interpolate well.5 Ensembling the separately-tuned
MADE adapters gives the best performance, at an
additional computational cost.

Figure 2 compares the zero-shot accuracy ob-
tained by the different MADE and single-dataset
adapters. The two sets of adapters show similar
patterns, with some adapters generalizing better
than others, depending on the target, but all of
the MADE adapters generalize better than the cor-
responding single-dataset adapters. This perfor-
mance gap is considerably bigger than the gap in
in-domain performance (Table 1), further illustrat-
ing the benefit of joint optimization.

4.4 Transfer Learning
Finally, we compare two ways of using MADE for
transfer learning: either averaging the adapter pa-
rameters and then fine-tuning the resulting model
(pre avg.), or first fine-tuning all of the adapters
and then taking the weighted average (post avg.).

4UnifiedQA was trained on different datasets with a dif-
ferent architecture, but represents an alternative off-the-shelf
model for QA transfer learning. We compare to UnifiedQA-
base because the encoder has approximately the same number
of parameters as RoBERTa-base.

5We also tried applying this approach to single-dataset
adapters but got an average F1 of 7%.

In both cases, we also back-propagate through the
Transformer parameters. We reserve 400 examples
from each target dataset to use as a test set (follow-
ing Ram et al., 2021) and sample training datasets
of different sizes, using half of the examples for
training and the other half as validation data for
early stopping and to set the mixture weights for
averaging the adapter parameters.

The results are in Table 3. On average, MADE
leads to higher transfer accuracy compared to
the baselines, especially for the smaller sizes of
datasets, showing that an ensemble of robust single-
dataset experts is a good starting point for trans-
fer learning. The post-average method performs
about the same as averaging at initialization in the
lower-data settings, and better with K = 256. All
models struggle to learn on two datasets, DuoRC
and TextbookQA, which have long contexts and
distant supervision, which might represent more
challenging targets for few-shot learning. We also
experimented with single-dataset adapters and with
a frozen Transformer, which perform worse; de-
tailed results are in Appendix B.2.

5 Conclusion

MADE combines the benefits of single- and multi-
dataset training, resulting in better in-domain ac-
curacy and transfer performance than either multi-
dataset models or ensembles of single-dataset mod-
els, especially in low resource settings. For fu-
ture work we plan to explore ensembling methods
for better zero-shot prediction and interpolating
MADE weights for better transfer learning.
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A Task Details

A.1 Dataset Details
We use the pre-processed datasets from the MRQA
2019 shared task (Fisch et al., 2019). Table 4 pro-
vides some dataset statistics.

A.2 Training Details
Our models are implemented in PyTorch (Paszke
et al., 2019) using HuggingFace (Wolf et al., 2020)
and the adapter-transformers library (Pfeiffer et al.,
2020). For all in-domain experiments, we sample
75,000 training and 1,000 validation examples and
train with a constant learning rate and a batch size
of 8, taking checkpoints every 1024 steps and stop-
ping if validation F1 fails to improve for 10 check-
points up to a fixed maximum number of epochs
(10 for single-dataset training and 3 epochs for
multi-dataset training). We use a constant learning
rate of 1e-5 for Transformer parameters and 1e-4
for adapter parameters, following standard settings
for RoBERTa and adapters respectively (Liu et al.,
2019; Houlsby et al., 2019), and use the AdamW
optimizer (Loshchilov and Hutter, 2018) with the
HuggingFace default parameters. For the multi-
dataset models, we construct mini-batches of size
B by repeating B times: pick a dataset uniformly,
and pick an example uniformly from that dataset.

We train all models on single 2080Ti GPUs with
11GB of memory each. The multi-dataset models
take around two days to train, the single-dataset
models take less than 24 hours, and it takes about 2
hours to train one model sequentially on six transfer
datasets for three values of K and three seeds.

Distant supervision Some datasets provide the
gold answer string but do not mark the gold an-
swer span in the context. We train the model to
maximize the marginal likelihood of the gold an-
swer string, marginalizing over all occurrences in
the context. The set of possible answer spans are
annotated in the pre-processed MRQA datasets.

Long contexts For inputs that are longer than
the maximum input window for RoBERTa (512
tokens), we use a sliding window to split in the
input into multiple “chunks”: every input begins
with the full question and the [cls] and separator
tokens, and we fill the rest of the input window
with tokens from the context, sliding the window
128 characters with each stride. At prediction time,
we return the answer from the chunk with that has
the highest predicted probability.

Negative examples We follow Longpre et al.
(2019) and include “negative examples” during
training. If a context chunk does not contain the
answer span, we include the example as a training
instance and train the model to indicate that the ex-
ample does not contain the answer by selecting the
[cls] token as the most likely start and end span.
At prediction time, we discard “no answer” predic-
tions and return the non-empty answer from the
chunk with that has the highest predicted probabil-
ity. For UnifiedQA, we train the model to predict
an empty string for contexts that don’t contain the
answer to string and at prediction time return the
non-empty answer with the highest probability.

A.3 Transfer learning details

For transfer learning, we take 1/2 of the K training
examples for validation and train for 200 steps or
until performance fails to improve on the validation
loss fails to improve for 10 epochs, and we reduce
the adapter learning rate to 1e-5. The other hyper-
parameters are the same as for in-domain learning.

Training UnifiedQA We download the pre-
trained UnifiedQA-base model from HuggingFace
and train it in the format described in Khashabi et al.
(2020) and in the accompanying code release. 6 We
lower-case the question and context strings and
concatenate them with a special string “\n”, which
represents the backslash character followed by the
letter n; and train the model to generate the answer
string by minimizing cross-entropy loss. We use
greedy decoding for prediction. In our pilot ex-
periments, the recommended optimizer (Adafactor
with a learning rate of 1e-3) quickly over-fits, so
we use the same optimizer, learning rate, and batch
size as for RoBERTa.

B Detailed Results

B.1 In-distribution Details

Figure 3 shows the training curve for training
MADE, normalized by dividing each checkpoint
score by the maximum validation accuracy ob-
tained on that dataset during this run. The model
reaches the maximum performance on the “easy”
datasets early in training, which means that the
model might over-fit to those datasets before con-
verging on the more difficult datasets. MADE
avoids this problem by tuning the adapter param-
eters separately after joint optimization. Inter-

6https://github.com/allenai/unifiedqa
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Dataset Domain |c| # train # dev

SQuAD 1.1 Wikipedia 137 86,588 10,507
NewsQA News articles 599 74,160 4,212
TriviaQA Web snippets 784 61,688 7,785
SearchQA Web snippets 749 117,384 16,980
HotpotQA Wikipedia 232 72,928 5,904
Natural Questions Wikipedia 153 104,071 12,836

BioASQ Science articles 248 - 1,504
DROP Wikipedia 243 - 1,503
DuoRC Movie plots 681 - 1,501
RACE Examinations 349 - 674
RelationExtraction Wikipedia 30 - 2,948
TextbookQA Textbook 657 - 1,503

Table 4: Information about the MRQA datasets, from Table 1 of Fisch et al. (2019), including the domain of
the context passage; the average length of the context c in tokens; and the number of training and development
examples. We downsample the in-domain datasets to 75K training and 1K development examples, and create
few-shot training datasets from the out-of-domain datasets by reserving 400 examples as a test set and drawing
different-sized training sets from the remaining examples, following Ram et al. (2021).
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Figure 3: Validation F1 from the joint-optimization phase of MADE training, as a percentage of the maximum
attained over the course of this run, plotted over number of optimization steps. The vertical black bar marks the
checkpoint with the highest average F1, which is the checkpoint we select to keep, freezing the Transformer and
continuing to tune the adapters separately (not shown).

estingly, adapter-tuning leads to improved perfor-
mance on all datasets (Table 1), even datasets on
which joint-optimization appears to have already
converged.

B.2 Transfer Learning Details
Table 5 provides additional transfer learning results.
Single-dataset adapters transfer worse than MADE.
Freezing the Transformer parameters slighly im-
proves results in the K = 16 setting but leads to
worse performance with more data. The biggest
drop is on BioASQ, possibly because it introduces
new vocabulary and it is beneficial to update the
token embeddings.
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K Model BioASQ DROP DuoRC RACE RelEx TextbookQA Avg.

16

UnifiedQA-base 59.7 45.2 30.2 52.9† 82.0 33.8 50.6
Single-dataset adapters (pre avg.) 63.0 37.7 58.8 35.8 84.1 48.8 54.7
Single-dataset adapters (post avg.) 62.1 40.9 58.8 30.4 84.0 48.8 54.2
MADE (pre avg., freeze θ) 66.7 52.8 66.0 47.4 87.7 60.2 63.5
MADE (post avg., freeze θ) 66.5 52.6 66.8 47.5 87.7 60.4 63.6
MADE (pre avg.) 67.0 52.8 65.7 47.5 87.7 59.8 63.4
MADE (post avg.) 66.8 52.6 67.2 47.3 87.7 59.7 63.5

64

UnifiedQA-base 65.5 47.9 32.9 54.3† 83.4 35.6 53.3
Single-dataset adapters (pre avg.) 62.9 42.3 59.4 36.9 87.0 53.1 56.9
Single-dataset adapters (post avg.) 60.7 39.2 59.0 36.4 84.1 49.6 54.8
MADE (pre avg., freeze θ) 66.9 53.3 67.4 47.9 87.9 60.3 64.0
MADE (post avg., freeze θ) 65.4 52.2 66.8 47.9 87.8 59.9 63.3
MADE (pre avg.) 69.4 55.9 66.8 47.6 88.4 60.2 64.7
MADE (post avg.) 70.9 55.2 66.9 47.5 88.5 60.0 64.8

256

UnifiedQA-base 71.7 49.8 36.5 55.2† 85.6 36.8 55.9
Single-dataset adapters (pre avg.) 69.7 45.0 60.6 41.0 88.4 55.0 60.0
Single-dataset adapters (post avg.) 71.3 44.4 58.8 35.8 86.5 49.2 57.7
MADE (pre avg., freeze θ) 66.8 53.5 66.9 48.0 87.9 60.2 63.9
MADE (post avg., freeze θ) 66.6 52.0 67.0 47.8 87.8 59.9 63.5
MADE (pre avg.) 73.9 56.9 65.3 48.7 88.9 61.5 65.9
MADE (post avg.) 75.1 56.9 66.9 48.9 90.2 61.8 66.6

Table 5: Transfer learning to MRQA out-of-domain datasets with K training examples (F1, averaged over three
random seeds), using the MADE model with adapter-tuning. †: RACE is part of the UnifiedQA training data.
pre avg.: we take the weighted average of adapters at initialization before fine-tuning; post avg.: we fine-tune
each adapter jointly and average them at the end. Freeze θ refers to experiments where we freeze the Transformer
parameters rather than tuning them along with the adapters.


