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Abstract

We observe that the development cross-
entropy loss of supervised neural machine
translation models scales like a power law with
the amount of training data and the number of
non-embedding parameters in the model. We
discuss some practical implications of these re-
sults, such as predicting BLEU achieved by
large scale models and predicting the ROI of
labeling data in low-resource language pairs.

1 Introduction

As training neural networks becomes an organi-
zational and multi-million dollar venture (Brown
et al., 2020), it is imperative to quantifiably pre-
dict the benefits of scaling up neural networks. In
this paradigm, machine learning is an engineering
effort, in which money can buy resources (data,
compute) and the main concern is to predict return-
on-investment (ROI) while avoiding bottlenecks.

Recent work has observed that the cross entropy
loss of neural language models and other autore-
gressive generative models scales like a power law
in the amount of training data, compute, and num-
ber of model parameters over several orders of mag-
nitude (Hestness et al., 2019; Kaplan et al., 2020;

Henighan et al., 2020). Similar intuitions exist in
the realm of supervised MT: doubling the amount
of parallel training data leads to roughly a fixed
improvement in BLEU in both phrase-based statis-
tical MT (Irvine and Callison-Burch, 2013; Turchi
et al., 2008) and neural MT (Koehn and Knowles,
2017; Sennrich and Zhang, 2019).

In Section 2, we show that these MT intuitions
can be quantified and explained via cross-entropy
power law scaling; using a handful of experiments
on small subsets of MT datasets, we precisely pre-
dict the performance of large systems trained on
orders of magnitude more data. In Section 3, we
demonstrate how these trends might be utilized to
make ROI predictions when annotating more data
for low-resource language pairs.

2 Machine Translation Scaling Laws

To investigate the predictability of MT system per-
formance as parameters/data increase, we train
many Transformers of various sizes (Table 2) on
randomly selected subsets of data (12 ,

1
4 ,

1
8 , ...) for

several standard MT datasets. The smallest data
subsets contain ∼0.1% of the total data available.

We use three language pairs in our experiments:

Figure 1: The development cross-entropy vs. the amount of data used to train each model from Section 2. Each
point is colored by the number of non-embedding parameters in the model. The best fit of Equation 1 via least-
squares regression for each language pair is shown as the dotted line.
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Lang
Pair

# Train
Examples αN logNC αD logDC

Ru-En 51.1 M 0.11 21.62 0.38 13.81
De-En 28.3 M 0.13 18.81 0.35 13.43
Zh-En 35.9 M 0.12 19.90 0.43 12.73

Table 1: The number of training examples for each lan-
guage pair, along with our estimates of the parameters
of Equation 1 for those language pairs.

Layers Hidden
Dim

Non-Embed
Params

2 128 393k
2 256 1.5M
2 512 6.3M
6 512 19M

12 512 38M
12 624 56M

Table 2: Number of non-embedding parameters of each
model trained. The feed-forward size is 4× the hidden
size. Layers are allocated evenly between the encoder
and decoder. Non-embedding parameters is roughly
12Ld2, where L is the number of layers and d is the
hidden size.

German-English (de-en), Russian-English (ru-en),
and Chinese-English (zh-en). The data for each
language pair is a concatenation of WMT 2017
data (which includes news commentary, parliamen-
tary proceedings, and web-crawled data) and Open-
Subtitles2018 (Lison and Tiedemann, 2016; Tiede-
mann, 2016). Datasets are tokenized using the
Moses1 tokenizer, after which a 30k BPE vocabu-
lary is constructed using the full dataset. For evalu-
ation, we use newstest2016 concatenated with the
last 2500 lines of OpenSubtitles2018.

Transformers are trained with early stopping and
a learning rate of 0.00022 with a plateau-reduce
schedule for a maximum of 350k updates. Other
training details can be found in the code supple-
ment.3 The resulting losses are plotted in Figure 1,
with model sizes ranging from 393k-56M parame-
ters and data sizes from 40k-50M lines of text.

2.1 Cross-entropy vs. Data/Parameters

Kaplan et al. (2020) provide an ansatz that predicts
cross-entropy loss given the amount of training data
and the size of the neural model:

L(N,D) =

[(NC

N

)αN
αD +

DC

D

]αD
(1)

1statmt.org/moses
2Determined via a brief grid search at medium model sizes.
3https://github.com/mitchellgordon95/mt-scaling

Lang Max Data % |αN − α′
N | |αD − α′

D|
ruen 6.25 0.014 0.013

3.125 0.024 0.026
deen 12.5 0.003 0.004

6.25 0.009 0.016
zhen 6.25 0.003 0.003

3.125 0.006 0.009

Table 3: Difference between scaling exponents when
using the full dataset (αN ,αD) vs. estimating the scal-
ing exponents using only models trained on smaller
subsets of the data (α′

N , α′
D). We see that even when

using 3-6% of the data, the best-fit scaling exponents
of Equation 1 stay very similar.

where L is the per-token development cross-
entropy loss (in nats), N is the number of non-
embedding parameters, D is the amount of training
data (in bytes), and αN , αD, NC , and DC are con-
stants determined by the particulars of the data
distribution and training setup.4

Figure 1 shows that this equation is highly pre-
dictive of our results.5 The predictions are also
fairly stable; Table 3 shows that the best-fit pa-
rameters of this equation stay similar even when
restricting ourselves to using only 3-6% of the data.
In Appendix A we perform a retrospective analysis
of the results from Zhang and Duh (2020) to give
some insight into how different hyper-parameter
settings may influence scaling coefficients.

As either N or D approaches infinity, L(N,D)
simplifies to a “pure power law" in the other vari-
able, which looks like a straight line on a log-log
graph. For example, if we assume all models are
large enough that data becomes the main perfor-
mance bottleneck, then:

L(D) =
(DC

D

)αD
(2)

We will use this assumption later when dealing
with very low-resource language pairs.

2.2 BLEU vs. Cross-Entropy Loss

Predicting cross-entropy loss by itself does not tell
us much about the quality of the translation sys-
tem; we would really like to predict the achieved

4It is unclear why these empirical trends hold so widely
for auto-regressive modeling. Power law scaling can arise in
complex systems for a variety of reasons (Hanel et al., 2018);
Sharma and Kaplan (2020) suggest that scaling exponents may
be related to the intrinsic dimension of the data manifold.

5The best-fit parameters are shown in Table 1; they are
remarkably similar for each language pair, which may be
attributed to the similarity of the domains each dataset was
sourced from.

http://statmt.org/moses
https://github.com/mitchellgordon95/mt-scaling
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Figure 2: (Left) BLEU exponentially decays as cross-
entropy increases. Different language pairs may have
different exponents and constants. (Right) A retrospec-
tive analysis of Zhang and Duh (2020) (Appendix A).
Even the same development dataset with different BPE
applied may have a different constant multiplier.

BLEU score, which is more interpretable to hu-
mans as a measure of adequacy, fidelity, and flu-
ency (Papineni et al., 2002). Figure 2 shows that
the relationship between BLEU and cross-entropy
can vary between different language pairs and BPE
settings. However, when these factors are fixed,
BLEU seems to exponentially increase as cross-
entropy decreases:

BLEU(L) ≈ Ce−kL (3)

This relationship is fairly predictable for high
BLEU values, but becomes noisier as BLEU drops
below 15. Notably, changing the BPE encoding
does not seem to affect k, but does change the
multiplying constant C.6

Why should this relationship be exponential?
We might gain some insight by re-writing Equation
3 in terms of the per-token perplexity (P):

BLEU(P ) ≈ C
( 1

P

)k
(4)

where (1/P ) can intuitively be interpreted as the
expected unigram precision of an autoregressively
sampled translation with the same length as the
reference sentence (Manning and Schutze, 1999).
This is only intuition, however: in practice, we
do not sample translations but decode using beam
search, and BLEU combines multiple modified n-
gram precisions besides unigram precision.7

6We evaluate BLEU using multi-bleu.perl from the Moses
toolkit. De-bpe-ing, de-tokenizing, and using Sacrebleu (Post,
2018) adds a small amount of noise but does not qualitatively
change our results. See Appendix Figure 5.

7The relationship between precision and perplexity for
higher values of n is not clear. In general, expected bigram
precision 6= (1/P )2.

Figure 3: (Left) Models trained on <5 MB of data
(around 40k lines) fall off-trend when using a BPE vo-
cabulary of 30k, plateauing to an apparent maximum
cross-entropy. (Right) When encoding the same dataset
with a BPE of 2k, the plateau is rectified and returns to
power-law scaling. Similar plots are shown for ru-en
and zh-en in Appendix Figure 7.

2.3 Preventing Breakdown At Smaller
Dataset Sizes

Some extremely low-resource MT datasets (which
we examine in Section 3) can have less than 5 MB
of data (∼40k sentence pairs). Figure 3 shows
that when we extend our previous experiments
to datasets smaller than this size, using 0.05% -
0.0125% of the data, the data scaling power law
seems to break down, casting doubt on our abil-
ity to extrapolate extremely low-resource results to
medium and high-resource data regimes.

However, the results are not simply noisy but
predictably plateau to an apparent ceiling of 7.8
nats. For reference, a unigram language model
trained on only the English part of the training data
(with a 30k BPE vocab) achieves a per-token cross-
entropy of ∼7 nats. This leads us to suspect that
models in this data regime are learning to rely on
simple unigram statistics that do not change much
as we decrease the data size.

Using a much smaller BPE vocabulary of 2k to-
kens rectifies this plateau and returns to power law
scaling, even with datasets <5 MB. We believe this
is because the smaller vocabulary makes it difficult
to exploit unigram statistics for rare words. While
this is not conclusive evidence, we recommend that
cross-entropies near or above unigram LM perfor-
mance should not be relied upon to extrapolate
performance. Dataset subsets which contain less
than half of the BPE vocabulary should similarly
be avoided.8

8In ∼5 MB datasets, around half of the 30k BPE vocab-
ulary is never seen during training. In contrast, ∼10 MB
datasets contain almost every vocab token. See Appendix
Figure 6.
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Figure 4: USD-to-BLEU projections for low-resource
language pairs, with a training setup similar to Section
2.10 We assume each byte of data costs about 0.01 USD
to acquire.9 Negative dollars represent using less data
than is currently available, whereas positive dollars rep-
resents our projections if we were to spend that much
USD on acquiring more data.

3 Predicting ROI of Annotating
Low-Resource Language Pairs

If we assume that data is the main performance
bottleneck (as it is in many low-resource language
pairs), we can plug Equation 2 into Equation 3 to
directly model the relationship between BLEU and
data size:

BLEU(D) = C exp
K

DαD
(5)

where K = k(DC)
αD . This can be further com-

bined with the hourly cost of fluent human transla-
tors to give us an approximate USD-to-BLEU trade-
off when annotating more data for low-resource
language pairs.

Figure 4 shows some example projections for
Tagalog-English (tl-en) and Swahili-English (sw-
en), with each dataset containing less than 50k sen-
tence pairs (Zavorin et al., 2020). Under some
assumptions about the costs of human translation9,
we predict that spending ∼$60k USD to acquire
more tl-en/sw-en data (which would roughly dou-
ble the size of the either dataset) would lead to an
improvement of around 10-15 BLEU.

9We assume translation costs around 0.10 USD per word,
each word is composed of 5 characters on average, and each
character requires around a byte of space.

10We train a 12 layer model using a 2k BPE dataset subsets
(100%, 90%, ..., 50%) with five different data shuffling seeds.
We also increase the checkpoint frequency for earlier stopping.

3.1 Limitations

There is a reasonable amount of noise in the cross-
entropy/BLEU relationship at this scale (shown
in Appendix Figure 8) which limits the precision
and reliability of these predictions. In practice, we
expect small amounts of data can be acquired in
batches and predictions can be re-evaluated before
deciding to continue. However, these predictions
give a general sense of the cost of progress in low-
resource machine translation. When engineering a
real-world system, the simple option of acquiring
more data and predictably improving performance
should always be carefully weighed against more
complicated and less predictable options.

That being said, predictably achieving a high
BLEU score on a test dataset is not equivalent to
“solving translation" for that language pair. Under-
specification (D’Amour et al., 2020) still poses a
challenge for effectively evaluating machine trans-
lation systems in real-world scenarios, especially
in low-resource language pairs where evaluation
data is usually from a narrow domain. More ro-
bust evaluation methods are needed, and it is not
clear whether the output of these methods will be
as predictable as cross-entropy loss or BLEU.

And finally, while our work demonstrates em-
pirical power law scaling of NMT systems, it does
not attempt to provide any causal explanation for
these results. We also do not investigate the specific
training factors that lead to a particular scaling ex-
ponent, but we expect this to be a fruitful research
direction for future exploration.11

4 Conclusion

We have shown that supervised neural machine
translation performance with Transformers scales
like a power law in non-embedding parameters and
training data, aligning with similar observations
in unsupervised auto-regressive modeling. We’ve
also seen that as development cross-entropy de-
creases, BLEU exponentially increases. These two
relationships can be combined to predict an effec-
tive USD-to-BLEU trade-off when annotating more
data, even in low-resource regimes.

11For example, Kasai et al. (2020) have found that a deep
encoder and a shallower decoder can be more efficient, which
may lead to better parameter scaling.
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Figure 5: Same results as Figure 2 (Left), but trans-
lations are de-bpe’d, de-tokenized, and BLEU is com-
puted using Sacrebleu (Post, 2018). This introduces
some noise but does not qualitatively change the expo-
nential relationship between cross-entropy and BLEU.

Figure 6: The number of unique words seen during
training drops precipitously around 5 MB of data when
using a BPE of size 30k, but remains constant when
using a BPE of size 2k.

A Parameter Scaling in
Japanese-English Translation

In this section, we provide a brief retrostpective
analysis of the results of Zhang and Duh (2020),
in which many MT systems were trained to eval-
uate the efficacy of hyper-parameter optimization
techniques. Specifically, we examine their results
on the Japanese-English WMT 2019 Robustness
task (Li et al., 2019). Figure 9 shows power-law
scaling of the development cross-entropy loss with
the number of non-embedding parameters.12 We
see that changing the BPE encoding vocabulary
size and the number of layers can affect the con-
stant multiplier NC , but does not seem to affect
the exponent αN . Furthermore, multiple attention

12In these experiments, only a single dataset size was used
so we were unable to verify power-law data scaling.

Figure 7: In both ru-en (Top) and zh-en (Bottom), mod-
els trained on <5 MB of data (around 40k lines) fall
off-trend when using a BPE vocabulary of 30k. When
encoding the same dataset with a BPE of 2k, the plateau
is rectified and returns to power-law scaling.

Figure 8: BLEU vs. cross-entropy development loss
for the models trained in Section 3. Standard error is
shown in the shaded region.
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Figure 9: Non-embedding parameters vs. develop-
ment cross-entropy for the Japanese-English models de-
scribed in Section A. Changing the number of layers or
the BPE vocab size or the number of Transformer lay-
ers seems to impact the multiplying constant NC , but
does not seem to change αN much.

head settings (8, 16) were trained for each model
size but they do not seem to impact scaling trends.

We exclude some outliers with unexpectedly
large losses at for larger model sizes. This only
occurs for specific learning rates, so we believe
those models failed to converge due to improper
learning rate tuning.


