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Abstract

Current approaches to incorporating terminol-
ogy constraints in machine translation (MT)
typically assume that the constraint terms are
provided in their correct morphological forms.
This limits their application to real-world sce-
narios where constraint terms are provided as
lemmas. In this paper, we introduce a mod-
ular framework for incorporating lemma con-
straints in neural MT (NMT) in which linguis-
tic knowledge and diverse types of NMT mod-
els can be flexibly applied. It is based on a
novel cross-lingual inflection module that in-
flects the target lemma constraints based on
the source context. We explore linguistically
motivated rule-based and data-driven neural-
based inflection modules and design English-
German health and English-Lithuanian news
test suites to evaluate them in domain adap-
tation and low-resource MT settings. Results
show that our rule-based inflection module
helps NMT models incorporate lemma con-
straints more accurately than a neural module
and outperforms the existing end-to-end ap-
proach with lower training costs.1

1 Introduction

Incorporating terminology constraints in machine
translation (MT) has proven useful to adapt
translation lexical choice to new domains (Hokamp
and Liu, 2017) and to improve its consistency in a
document (Ture et al., 2012). In neural MT (NMT),
most prior work focuses on incorporating terms
in the output exactly as given, using soft (Song
et al., 2019; Dinu et al., 2019; Xu and Carpuat,
2021) or hard constraints (Hokamp and Liu, 2017;
Post and Vilar, 2018). These approaches are
problematic when translating into morphologically
rich languages where terminology should be
adequately inflected in the output, while it is

1Code and test suites are released at https://github.
com/Izecson/terminology-translation

more natural and flexible to provide constraints as
lemmas as in a dictionary.

To the best of our knowledge, only one pa-
per has directly addressed this problem for neural
MT: (Bergmanis and Pinnis, 2021) design an NMT

model trained to copy-and-inflect the terminology
constraints using target lemma annotations (TLA)
— TLA are synthetic training samples where the
source sentence is tagged with automatically gen-
erated lemma constraints. While this approach im-
proves translation quality, the end-to-end training
set-up prevents fast adaptation to lemmas and in-
flected forms that are rare or unseen at training
time. Its impact is also limited to a specific neural
architecture, and it is unclear whether its benefits
port to more generic sequence-to-sequence models.

In this paper, we introduce a modular framework
for inflecting terminology constraints in NMT.
It relies on a cross-lingual inflection module
that predicts the inflected form of each lemma
constraint based on the source context only. The
inflected lemmas can then be incorporated into
NMT using any of the aforementioned constrained
NMT techniques. Compared with TLA, this
framework is more flexible, as it can be applied to
diverse types of NMT architectures and inflection
modules, and facilitates fast adaptation to new
terminologies without retraining the base NMT

model from scratch. This flexibility is enabled by
the cross-lingual nature of the inflection module,
which predicts the inflected form of each target
lemma based on the source context only. This
differs from traditional inflection models that
predict the inflected forms based on pre-specified
morphological tags or monolingual target context.

Based on this framework, this paper makes the
following contributions:

• We construct and release test suites to
evaluate models’ ability to inflect termi-
nology constraints for domain adaptation
(English-German Health) and low-resource

mailto:weijia@cs.umd.edu
mailto:marine@cs.umd.edu
https://github.com/Izecson/terminology-translation
https://github.com/Izecson/terminology-translation
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MT (English-Lithuanian News).
• We show that integrating linguistic knowledge

through a simple rule-based inflection module
improves over its neural counterpart in intrin-
sic and end-to-end MT evaluations.

• Our framework improves autoregressive and
non-autoregressive translation, and outper-
forms the existing TLA approach for inflecting
terminology translation. We open-source the
code to facilitate replication and extensions.

2 Background

Autoregressive NMT with Constraints Termi-
nology constraints can be incorporated in autore-
gressive NMT models via 1) constrained decoding
where constraint terms are incorporated in the beam
search algorithm (Hokamp and Liu, 2017; Post and
Vilar, 2018), or 2) constrained training where NMT

models are trained to incorporate constraints using
synthetic parallel data augmented with constraint
terms on the source side (Song et al., 2019; Dinu
et al., 2019). These approaches all assume that the
constraints are provided in the correct inflected
forms and can be directly copied to the target
sentence. Bergmanis and Pinnis (2021) extended
the constrained training approach of Dinu et al.
(2019) to incorporate lemma-form constraints in an
end-to-end way – the inflected form of the lemma
constraints are predicted jointly during translation.
This approach requires a dedicated NMT model
architecture to integrate constraints as additional
inputs to the encoder, and learns inflection solely
from the parallel data. By contrast, our approach
can be applied to multiple NMT architectures and
uses linguistically motivated rule that generalize
better to rare and unseen terms.

Non-Autoregressive NMT with Constraints In-
stead of generating the output sequence incre-
mentally from left to right, non-autoregressive
NMT generates tokens in parallel (Gu et al., 2018;
van den Oord et al., 2018; Ma et al., 2019) or by iter-
atively editing an initial sequence (Lee et al., 2018;
Ghazvininejad et al., 2019). Architectures differ
with the nature of edit operations: the Levenshtein
Transformer (Gu et al., 2019) relies on insertion
and deletion, while EDITOR (Xu and Carpuat, 2021)
uses insertion and reposition (where each input to-
ken can be repositioned or deleted). Edit-based non-
autoregressive generation provides a natural way
to incorporate constraints in NMT – the constraints

can be put into the initial sequence and edited to
produce the final translation (Susanto et al., 2020;
Xu and Carpuat, 2021; Wan et al., 2020). Our
approach can augment this family of techniques
by inflecting constraints before they are used for
further editing.

Morphological Inflection Morphological inflec-
tion is the process of alternating the morphological
form of a lexeme that adds morpho-syntactic infor-
mation of the word in a sentence (e.g. tense, case,
number). Traditionally, morphological inflection
as computational task is framed as predicting the
inflected form of a word given its lemma and a set
of morphological tags (e.g. N;ACC;PL represents
a plural noun used in accusative case) (Cotterell
et al., 2017). The task was traditionally tackled
using hand-engineered finite state transducer that
relies on linguistic knowledge (Koskenniemi, 1984;
Kaplan and Kay, 1994), while recent work has
shown impressive results by modeling it using neu-
ral sequence-to-sequence models (Faruqui et al.,
2016). More recently, a context-based inflection
task has been proposed where the inflected form
of a lemma is predicted given the rest of the sen-
tence as context (Cotterell et al., 2018). The state-
of-the-art models for the task are neural models
trained on supervised data (Cotterell et al., 2018;
Kementchedjhieva et al., 2018). The inflection
module in our framework differs from those for
the context-based inflection task in that it requires
cross-lingual context-based inflection – it predicts
the inflected form of a target lemma based only on
the source language context.

Morphologically-Aware Translation In phrase-
based MT, modeling morphological compounds on
the source (Koehn and Knight, 2003) and target
sides (Cap et al., 2014) improves translation qual-
ity. In NMT, morphologically-aware segmentation
is also useful when translating from or into mor-
phologically complex languages (Huck et al., 2017;
Ataman and Federico, 2018; Banerjee and Bhat-
tacharyya, 2018). Tamchyna et al. (2017) propose
to overcome data sparsity caused by inflection by
training NMT models to predict the lemma form and
morphological tag of each target word. Different
from prior work, we incorporate grammatical and
morphological knowledge in an inflection module
for terminology constraints in NMT.
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3 Inflecting Target Lemmas Given the
Source Context

We introduce a modular framework for inflecting
terminology constraints for NMT, where we first
build an inflection module that predicts the in-
flected form of each target lemma term based on the
source sentence and then incorporate the inflected
constraints in NMT using any of the aforementioned
techniques. By framing the problem this way, we
assume that the inflected forms can be inferred
based only on the source context and integrated in
a fluent translation by NMT models. In cases where
there are multiple possible inflected forms corre-
sponding to different ways of translating the source,
the inflection module can predict one of the possi-
ble forms, and the NMT model can generate a trans-
lation conditioned on the predicted forms of the
constraints. Compared with Bergmanis and Pinnis
(2021), our framework is more flexible – it can be
combined with any NMT model that enables transla-
tion with constraints and can leverage diverse types
of morphological inflection modules in which lin-
guistic knowledge can be easily incorporated.

Formally, given a source sequence x and k tar-
get lemma words z̄ = (z̄1, z̄2, ..., z̄k) that need
to be inflected, the inflection module Θ predicts
the inflected form of each target lemma z =
(z1, z2, ..., zk) independently:

p(z |x, z̄; Θ) =
k∏

i=1

p(zi |x, z̄i; Θ) (1)

3.1 Rule-Based Inflection Module
One can predict the inflected form of a target word
given its lemma and the source context in two steps:
first predict the morphological tag of the target
word based on the source context, and then predict
the inflected form based on the lemma and mor-
phological tag. The second step can be modeled
using traditional inflection models (Cotterell et al.,
2017), while the first step can be performed using
rule-based inference based on linguistic knowledge.
McCarthy et al. (2020) present a universal morpho-
logical (UniMorph) paradigm with universal mor-
phological tags for hundreds of world languages.
In UniMorph, the morphological tag of a verb in-
cludes information about the tense (past, present, or
future), mood (indicative, conditional, imperative,
or subjunctive), the number (singular or plural) and
person (first, second, or third person) of the subject.
The tag of a noun or adjective includes information

about gender (masculine or feminine), number, and
grammatical case. Some of these can be inferred
from the target lemma (e.g. the gender of a noun)
or the source term (e.g. the number of a noun),
while some others need to be inferred based on
the grammatical function of the source term in the
sentence (e.g. grammatical case) or the sentence-
level semantics (e.g. mood). Many of the inference
rules are shared across a wide range of languages,
except for the tense and mood of verbs, as well as
the gender and some grammatical cases of nouns
and adjectives.

In our rule-based inflection module, we extract
the morphological features, part-of-speech tags,
and dependency parsing tree of the source sen-
tence using pre-trained Stanza models2 and infer
the aforementioned classes based on grammar rules
and validation examples. The tense and mood of a
verb are inferred from the morphological form of
the corresponding source term,3 while the number
and person of its subject are inferred based on the
morphological form of its subject. For nouns and
adjectives, the number can be inferred from the
morphological form of the source term or modified
noun, while the gender can be determined based on
the target lemma.

To infer the grammatical case of a noun or ad-
jective, one needs to infer about the grammatical
role of the source term in the sentence. For ex-
ample, in Lithuanian, there are seven main cases,
including nominative, genitive, dative, accusative,
instrumental, locative, and vocative cases. Figure 1
shows examples of how the case of a Lithuanian
noun can be inferred from the dependency pars-
ing tree of the source sentence. Some of the cases
can be easily distinguished from the others, while
some are more difficult to infer. In this example,
the nominative case is comparatively easy to infer
– the noun should be in the nominative case when
the corresponding source term is the root or subject
of the sentence. However, to distinguish between
dative, accusative, instrumental, and locative cases,
one needs to infer based on the grammatical and
semantic role of the source term. In our rule-based
module, we only take into account the most com-
mon scenarios.4

2https://github.com/stanfordnlp/stanza
3We ignore tense and mood types that cannot be inferred

from the source term.
4Our code only includes a few simple inference rules writ-

ten by non-expert based on the grammar knowledge from
Wikipedia pages.

https://github.com/stanfordnlp/stanza
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Source: It was a violin
Reference: Tai buvo smuikas
Constraints: violin -> smuikas

violin

It

nsubj

was a

cop
det

(a) Nominative Case

Source: They bought the violin
Reference: Jie nusipirko smuiką
Constraints: violin -> smuikas

bought

They violin

the

nsubj obj

det

(b) Accusative Case

Source: He plays violin
Reference: Jis groja smuiku
Constraints: violin -> smuikas

plays

He violin

nsubj obj

(c) Instrumental Case

Figure 1: Examples showing how the grammatical case of a target lemma is inferred from the dependency parsing
tree of the source sentence. In each example, the reference usage of the target constraint is underlined, and its
corresponding source term is boldfaced and highlighted in the yellow, outlined box in each dependency tree. Fig-
ure (a) shows an example where the constraint term “smuikas” is used in nominative case in the reference, since its
the root in the dependency tree. In Figure (b), the same constraint term is used in accusative case in the reference,
since it is the object of the root verb “bought”. However, not all objects should be used in accusative case. As
shown in Figure (c), “smuikas” is used in instrumental case, since it serves the instrument with which the subject
performs the action.

Finally, given a lemma and its morphological tag,
one can look up its inflected form in a morphologi-
cal dictionary. We use DEMorphy (Altinok, 2018)
for German and Wiktionary5 for Lithuanian. Since
most Lithuanian nouns follow a set of declension
rules,6 we inflect Lithuanian nouns based on the
rules for lemmas unseen in the dictionary.

3.2 Neural Inflection Module
As prior work shows that BERT-style architec-
tures (Devlin et al., 2019) can encode morphologi-
cal information in their hidden representations and
disambiguate morphologically ambiguous forms
via contextualized encoding (Edmiston, 2020), we
build the neural-based inflection module as a sub-
stitution model and base it on the encoder-decoder
Transformer architecture, which embeds the source
sentence through the encoder and the target lem-
mas through the decoder. Next, the decoder pre-
dicts the inflected form of each target word in
parallel. The inflection module resembles the
architecture of the conditional masked language
model (CMLM) (Ghazvininejad et al., 2019) but
differs in decoder input and output: CMLM takes
the target sentence with some tokens masked out
as input and is trained to predict only the masked
tokens conditioned on unmasked ones, while our in-
flection module takes target tokens in their lemma
forms as input and predicts their inflected forms.

CMLM only allows for one-to-one substitution
of subwords. However, in the case of inflection,
the number of subwords that constitute a lemma

5https://www.wiktionary.org/
6https://en.wikipedia.org/wiki/

Lithuanian_declension

and its inflected form may differ. To facilitate
varying-length substitution, we construct the de-
coder input by inserting K placeholders at the end
of each target lemma. Next, the model predicts
the token t ∈ V ∪ {[PLH]} to be inserted at each
input position. If t = [PLH], we delete the token
at this position, otherwise we replace the token at
this position with t.7

4 Evaluation Test Suites

To evaluate the models’ ability to incorporate di-
verse types of lemma constraints in different con-
text, we choose the two morphologically complex
languages – German and Lithuanian – as the target
languages, both of which are fusional languages
with strong suffixing. We create two test suites –
the English→German health test suite8 to evalu-
ate models in the domain adaptation scenario and
English→Lithuanian news test suite to test mod-
els in the low-resource setting. Different from
the automotive test suite of Bergmanis and Pinnis
(2021), which contains short sentences (15 tokens
per source sentence on average) annotated with lim-
ited types of constraints (mostly nouns and proper
nouns), our test suites contains longer sentences (20
and 25 tokens per source sentence on average) and
diverse types of constraints including adjectives,
nouns, proper nouns, and verbs. Different from
the upcoming WMT21 terminology task9 where

7So for instance, given the input “freeze [PLH] [PLH]”,
the model could predict the output “fro@@ zen [PLH]”.

8To the best of our knowledge, there is no public health (or
any non-news) domain MT test set for English→Lithuanian.

9http://statmt.org/wmt21/
terminology-task.html

https://www.wiktionary.org/
https://en.wikipedia.org/wiki/Lithuanian_declension
https://en.wikipedia.org/wiki/Lithuanian_declension
http://statmt.org/wmt21/terminology-task.html
http://statmt.org/wmt21/terminology-task.html
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Source Constraints Reference

En-De Health

The routine use of abdominal
drainage to reduce postoperative
complications after appendectomy
for complicated appendicitis is
controversial.

abdominal
abdominell
appendectomy
Appendektomie
appendicitis
Appendizitis

Die routinemäßige Verwendung
von abdomineller Drainage zur
Verminderung postoperativer
Komplikationen nach einer
Appendektomie bei komplizierter
Appendizitis ist umstritten.

En-Lt News

A fire in 1939 left the building badly
damaged, but as Father Johnson’s
parishioners made plans to rebuild ,
they commissioned the carillon.

Johnson
Johnsonas
carillon
karilionas

1939 m. kilęs gaisras smarkiai
apgadino pastatą, tačiau Tėvo
Johnsono parapijiečiai planavo jį at-
statyti, todėl užsakė karilioną.

The expert who played the carillon
in July called it something else: “A
cultural treasure” and “an irreplace-
able historical instrument”.

carillon
karilionas

Liepos mėnesį karilionu grojęs
ekspertas pavadino jį kitaip:
“kultūros lobiu” ir “nepakeičiamu
istoriniu instrumentu”.

Table 1: Examples from the English→German (En-De) health and English→Lithuanian (En-Lt) news test suites.
For En-Lt, we select two examples from the same document. The annotated source terms are boldfaced and the
target constraint terms are underlined. Some terms can be copied to the target (e.g. “Lymphödem” and “klinisch”
in En-De), while some others need to be inflected in the target sentence (italicized).

#Sent #Const #Const.Inf

Health 3000 4589 802
News 823 374 132

Table 2: Number of sentences (#Sent), con-
straints (#Const), and constraints that need to be in-
flected (#Const.Inf ) in the health and news test suites.

the terminology translation table includes different
forms for a given source term, our test suites only
provides terminology translations in lemma forms.

Health Test Suite We construct the health test
suite to test the models’ ability to integrate ter-
minology translations for fast domain adaptation.
The test set contains English health information
text annotated with domain-specific terminology
translations and the human-translated sentences in
German. We extract English→German test exam-
ples from the Himl Test Set,10 which consists of
English health information texts manually trans-
lated into German. We extract keyphrases from
each source sentence using Yet Another Keyword
Extractor (YAKE) (Campos et al., 2020)11 and fil-
ter out phrases with high or medium frequency in
the training corpora since they are mostly com-
mon and domain-generic phrases.12 We extract

10http://www.himl.eu/test-sets
11YAKE extracts n-grams as keyphrases based on word cas-

ing, frequency, position, and their sentence context.
12We filter out keyphrases with frequency > 100 in the

WMT news training data.

terminology translations from WikiTitles13 and an
online English-German dictionary,14 and annotate
the keyphrases whose dictionary translations match
the reference translation. As shown in Table 1,
each source sentence in the test set is annotated
with health-related terminology translations in the
lemma forms, some of which can be directly copied
to the final translation while some need to be in-
flected based on the context.

News Test Suite The news test suite simulates
the scenario where a user looks up keyphrases
of a document in a bilingual dictionary and
pick the top translation for each keyphrase as
a constraint to help low-resource MT. We
choose English→Lithuanian as an example of
low-resource translation. The test suite is con-
structed from English→Lithuanian test examples
from WMT 2019 news test sets. We first ex-
tract keyphrases from each source document us-
ing YAKE. Then, we find the top translation of
each keyphrase (for many terms there’s only one
translation available) in an online dictionary.15 We
filter out the keyphrases whose translations do not
match the reference. Table 1 shows two exam-
ples from the same document in the test suite. All
occurrences of a keyphrase in one document are

13http://data.statmt.org/wikititles/v1/
and http://data.statmt.org/wikititles/v2/

14https://www.dict.cc/
15https://lithuanian.english-dictionary.

help

http://www.himl.eu/test-sets
http://data.statmt.org/wikititles/v1/
http://data.statmt.org/wikititles/v2/
https://www.dict.cc/
https://lithuanian.english-dictionary.help
https://lithuanian.english-dictionary.help
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annotated with its target translation to encourage
consistent translation of keyphrases within a doc-
ument.16 Table 2 shows the number of sentences
and constraints in each test suite.

5 Experimental Settings

Training Data For English→German (En-De),
we use the training corpora from WMT14 (Bojar
et al., 2014) and newstest2013 for validation. For
English→Lithuanian, we use the training data from
WMT19 (Barrault et al., 2019) and newsdev2019
as the validation set. For preprocessing, we apply
normalization, tokenization, true-casing, and
BPE (Sennrich et al., 2016).17

Baselines We compare our model with the fol-
lowing baselines:

• Auto-Regressive (AR) baseline without inte-
grating terminology constraints.

• AR with Constrained Decoding (CD) to in-
corporate hard constraints (Post, 2018).

• AR with Target Lemma Annotation (TLA)
that integrates lemma constraints as an
additional input stream on the source
side (Bergmanis and Pinnis, 2021).

• Non-AutoRegressive (NAR) baseline based
on the EDITOR model (Xu and Carpuat, 2021).

• NAR with constraints (NAR+C) that inte-
grates constraints as the initial sequence in
EDITOR without explicit inflection.

MT Models All models are based on the base
Transformer (Vaswani et al., 2017).18 All models
are trained with the Adam optimizer (Kingma and
Ba, 2015) with initial learning rate of 0.0005 and
effective batch sizes of 32k tokens for AR models
and 64k tokens for NAR models for maximum 300k
steps.19 We select the best checkpoint based on
validation perplexity. NAR models are trained via
sequence-level knowledge distillation (Kim and
Rush, 2016). For decoding, we use beam search
with a beam size of 4 for AR and AR with TLA,
while for AR with CD we use a beam size of 20

16Interestingly, in Lithuanian, the masculine foreign names
are usually translated by appending a suffix to the name to
reflect their inflection forms. In this example, the foreign
name “Johnson” is translated into “Johnsonas” in the nomina-
tive form in the dictionary, while in the reference it becomes
“Johnsono” in the genitive form.

17See preprocessing details and data statistics in Appendix.
18See more details in Appendix.
19As shown in prior work (Zhou et al., 2020), the batch

sizes for training NAR models are typically larger than the AR
model.

as suggested in prior work (Post and Vilar, 2018).
To enhance constraint usage in NAR models, we
adopt the techniques by Susanto et al. (2020): we
prohibit deletions on constraint tokens or insertions
within the constraint segments.

Neural Inflection Model Its synthetic training
data is derived from the MT parallel data. We first
lemmatise and part-of-speech tag the target sen-
tences using Stanza. We then randomly select ad-
jectives, verbs, nouns, and proper nouns from each
target sentence and train the inflection module to
predict their inflected forms based on their lemma
forms and the source sentence. Following Bergma-
nis and Pinnis (2021), we draw the proportion of
words selected in each target sentence randomly
from the uniform distribution between (0, 0.4].For
training, we initialize its encoder parameters us-
ing the NAR baseline encoder and train it using
Adam optimizer with a batch size of 32k tokens for
maximum 200k steps.

Evaluation We evaluate translation quality us-
ing sacreBLEU (Post, 2018). To evaluate how
well the translation preferences are incorporated
in the translation outputs, we measure lemma us-
age rate by first lemmatising the translation output
and then computing the percentage of lemma terms
that appear in the lemmatised output. To evalu-
ate whether the terms are inflected correctly, we
measure term usage accuracy by matching each
lemma constraint with its inflected form in the ref-
erence and computing the percentage of reference
inflected terms that appear in the translation output.

6 Results and Discussion

Intrinsic Inflection Accuracy To evaluate the
quality of the inflection modules, we first compare
the inflection accuracy of neural-based and rule-
based inflection modules against the term usage ac-
curacy of the TLA model. The rule-based inflection
module achieves higher inflection accuracy than the
neural-based module on both test suites: the neural-
based module obtains 81.2% accuracy on En-De
health set and 15.4% accuracy on En-Lt news set,
while the rule-based module achieves 87.6% accu-
racy on En-De and 77.4% accuracy on En-Lt. The
rule-based module achieves close accuracy to TLA

on En-De (89.2% term usage accuracy) and higher
accuracy on En-Lt (67.9% term usage accuracy).

To investigate why the neural-based inflection
underperforms the rule-based one, we examine how
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BLEU
Lemma Usage Term Usage

All No Inf Inf All No Inf Inf

En-De Health
AR baseline 31.9 61.2 61.1 61.6 56.7 59.6 43.0
AR w/ CD 33.4 98.6 99.1 96.3 82.6 99.1 4.5
AR w/ TLA 33.8 96.6 97.0 95.0 89.2 94.6 63.6
NAR baseline 31.0 56.1 56.4 54.7 52.8 55.2 41.3
NAR+C 31.1 99.0 99.1 98.5 82.0 99.1 1.4

AR w/ CD + neural 33.3 95.6 95.9 91.1 81.0 91.1 33.3
AR w/ TLA + neural 33.6 94.5 95.1 91.9 85.5 90.2 63.5
NAR+C + neural 30.9 95.6 95.8 94.9 81.1 91.1 33.8

AR w/ CD + rule 33.7 96.8 96.8 97.0 87.3 95.0 51.0
AR w/ TLA + rule 33.9 95.2 95.5 94.1 87.9 92.1 68.0
NAR+C + rule 31.7 97.1 97.0 97.5 87.1 95.0 49.5

En-Lt News
AR baseline 14.1 64.7 76.9 42.4 55.3 74.0 21.2
AR w/ CD 13.8 89.8 99.6 72.0 65.2 98.8 3.8
AR w/ TLA 14.4 81.5 90.1 65.9 67.9 88.0 31.1
NAR baseline 14.3 59.4 69.0 41.7 52.7 67.8 25.0
NAR+C 14.3 89.8 99.2 72.7 64.7 98.3 3.0

AR w/ CD + neural 13.5 82.4 85.1 77.3 57.2 75.2 24.2
AR w/ TLA + neural 14.2 81.6 86.8 72.0 63.1 78.5 34.8
NAR+C + neural 14.0 83.7 88.0 75.8 58.0 77.7 22.0

AR w/ CD + rule 13.9 93.0 97.5 84.8 75.9 94.2 42.4
AR w/ TLA + rule 14.3 85.3 90.5 75.8 70.3 87.2 39.4
NAR+C + rule 14.3 93.3 97.1 86.4 75.7 94.2 41.7

Table 3: BLEU, lemma, and term usage rates on the En-De health and En-Lt news test suites. For lemma and term
usage, we report scores on all constraints (All), constraints that require no inflection (No Inf ), and constraints that
require inflection (Inf ). We boldface the highest scores and their ties based on the paired bootstrap significance
test (Clark et al., 2011) with p < 0.05.

the training and validation perplexity changes over
the number of training epochs (see Appendix). On
both languages, the validation perplexity stops de-
creasing after a few training epochs (10 epochs for
En-De and 20 epochs for En-Lt) while the training
perplexity decreases very slowly. The final training
perplexity remains at around 5.1 on En-De and 5.7
on En-Lt, which is high considering the number of
possible inflection forms given a German or Lithua-
nian lemma. This indicates that the neural-based
module does not learn generalizable inflection rules
from the data effectively.

End-to-End MT Evaluation Table 3 shows the
impact of rule-based and neural-based inflection
modules on top of a range of AR and NAR base-
lines. NAR baselines without constraints achieves
competitive BLEU to the AR baseline on En-Lt
and slightly lower BLEU on En-De, as in Xu and
Carpuat (2021). Given lemma constraints, AR with

CD without inflection obtains lower term usage ac-
curacy and lower BLEU than AR with TLA, as in
Bergmanis and Pinnis (2021). Similar to AR with
CD, NAR+C without inflection obtains lower term
usage and close or lower BLEU than AR with TLA.

Adding rule-based inflection helps all models
leverage lemma constraints more accurately.
On En-De, it significantly improves term usage
accuracy of AR with CD by +4.7% and NAR+C

models by +5.1%.20 On En-Lt, it significantly
improves both the lemma usage rate and term
usage accuracy of AR with CD (+3.2% on
lemma usage and +10.7% on term usage) and
NAR+C (+3.5% on lemma usage and +11.0%
on term usage). Remarkably, it also improves
the term accuracy of En-Lt AR with TLA, which
is already trained to inflect the target lemma
constraints. When evaluating only on constraints

20All mentions of significance are based on the paired boot-
strap test (Clark et al., 2011) with p < 0.05.
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that require inflection, the rule-based modules
improves by 4.4–8.3% on TLA, 38.6–46.5% on
CD, and 38.7–48.1% on NAR+C. As expected
based on inflection accuracy results, rule-based
modules outperform neural-based ones across the
board. These improvements in term usage preserve
or slightly improve BLEU.21, as can be expected
since the constraints only constitute a small portion
of the tokens in the translation outputs. Overall,
these results indicate that our proposed framework
is model-agnostic and supports our hypothesis that
the lemma constraints can be effectively inflected
based on the source context alone.

We now compare our framework against TLA.
Rule-based inflection combined with NAR+C

achieves close lemma and term usage rates (∆ ≤
2%) to TLA on En-De, +11.8% higher lemma us-
age, and +7.8% higher term usage accuracy on
En-Lt (the improvements are significant). On En-
Lt, the largest improvements are on constraints
that require inflection: +20.5% on lemma usage
and +10.6% on term usage. Incorporating the
constraints preserves translation quality, with no
significant difference in BLEU. Overall, these re-
sults show the benefits of integrating linguistic
knowledge via rule-based inflection over purely
data-driven approaches. Our approach is also more
adaptive, as NAR+C with rule-based inflection does
not require re-training the whole NMT model to
incorporate new lemma terms. Instead, new terms
can be incorporated by updating the morphological
dictionary used in the inflection module.

Cost Trade-offs Implementing the rule-based in-
flection module for the first target language (Lithua-
nian) took around 6 hours (including the time for
learning the grammar knowledge from Wikipedia)
by a computer scientist without prior knowledge
of the target language nor formal linguistics train-
ing.The second language (German) implementa-
tion took only 3 hours, since some rules are shared
across languages. By contrast, the neural-based
module was implemented in about 3 hours but took
around 38 hours to train a single model for one
language pair on 2 GeForce GTX 1080 Ti GPUs.
While these numbers do not provide a controlled
comparison, they highlight that the rule-based mod-
ule is relatively simple to build, as it can be done
for both languages in 7-15% of the time required
to train the neural model.

21The improvements on BLEU is statistically significant for
NAR+C on En-De, but not for other models.
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Figure 2: Term usage accuracy of TLA, CD + rule, and
NAR+C + rule binned by training set frequency.

Term Frequency We analyze where rule-based
inflection helps the most by computing the term
usage accuracy on terms in different frequency
bucket. As shown in Figure 2, the trends are dif-
ferent on En-De and En-Lt. On En-De, CD + rule
slightly improves TLA on terms with frequency
between [5, 100) instead of the rare terms. One rea-
son is that the German morphological dictionary
that we use to determine the gender of a word and
its inflection forms only covers around 70% of the
constraint terms in the health test suite. In addition,
NAR+C + rule underperforms CD + rule on some
constraint terms with frequency between [30, 100).
This might be a side effect of knowledge distilla-
tion, which yields frequent errors for words that
are rare in the training data (Ding et al., 2021). In
En-Lt test set, 68% of the constraint terms are used
in the inflection forms that are unseen in the train-
ing data. As shown in the figure, both CD + rule
and NAR+C + rule bring substantial improvements
over TLA on terms that are unseen in the training
data. This is because most Lithuanian nouns and
adjectives are inflected based on a fixed set of rules,
thus even when the target lemma is unseen in the
training data or morphological dictionary, it can
still be inflected correctly. As a result, the rule-
based inflection module can effectively incorporate
linguistic knowledge in translation models and thus
generalizes better to rare and unseen terms.
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source
Jim Furyk’s side need eight points from Sunday’s 12 singles matches
to retain the trophy.

reference
Jimo Furyko komandai reikia gauti aštuonis taškus sekmadienio 12
vienetų mačuose, kad išsaugotų trofėjų.

constraints trophy: trofėjus
reference inflection trophy: trofėjų (singular, accusative)

TLA
Jim Furyk ’s pusėje reikia aštuonių taškų iš sekmadienio 12 pažintys
rungtynes išlaikyti trofėjus.

TLA + rule
Jim Furyk ’s pusėje reikia aštuonių taškų iš sekmadienio 12 pažintys
rungtynes išlaikyti trofėjų.

source In December 2017, he was accused of assaulting his father, Todd Palin.

reference
2017 m. gruodžio mėnesį jis buvo apkaltintas smurtu prieš savo tėvą
Toddą Paliną.

constraints Palin: Palinas
reference inflection Palin: Paliną (singular, accusative)

NAR+C
2017 m. gruodžio mėn. jis buvo apkaltintas užpuolimu jo tėvas Toddas
Palinas.

NAR+C + rule 2017 m. gruodžio mėn. jis buvo apkaltintas užpuolęs tėvą Toddą Paliną.

Table 4: Translation examples comparing TLA + rule against TLA, and NAR+C + rule against NAR+C on En-Lt.
We boldface the source terms with translation constraints and underline the target constraint terms used in the
reference and translation outputs.

Qualitative Analysis We examine a few ran-
domly selected translation examples from TLA,
NAR+C, and their counterparts with rule-based in-
flection. As shown in Table 4, TLA tends to copy
constraint terms that are infrequent in the train-
ing data, and adding the rule-based inflection mod-
ule helps TLA inflect the term correctly instead.
In NAR+C models, the inflection module also im-
proves the translation of the context around con-
straint terms, while the vanilla NAR+C model is
prone to compounding errors caused by the unin-
flected constraints.

7 Conclusion

We introduced a modular framework for leveraging
terminology constraints provided in lemma forms
in neural machine translation. The framework is
based on a novel cross-lingual inflection module
that inflects the target lemma constraints given
source context and an NMT model that integrates
the inflected constraints in the output. We showed
that our framework can be flexibly applied to
different types of inflection modules, including
rule-based and neural-based ones, and different
NMT models, including autoregressive and
non-autoregressive ones, with minimal training
costs. Results on the English-German health
and English-Lithuanian test suites showed that
the linguistically motivated rule-based inflection

module helps NMT models incorporate terminology
constraints more accurately than both neural-based
inflection and the existing end-to-end approach to
incorporating lemma constraints. This work opens
future avenues for further improving the inflection
module by combining linguistic knowledge with
data-driven approaches. Future work is needed
to explore the strengths and weaknesses of this
framework for languages with a broader range of
morphological properties.
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A Data Preprocessing

For preprocessing, we apply normalization, tok-
enization, true-casing, and BPE (Sennrich et al.,
2016) with 37, 000 and 24, 500 merging operations
for En-De and En-Lt. Table 5 shows the prove-
nance and statistics of the preprocessed data.

B Model and Training Details

All models are based on the base Trans-
former (Vaswani et al., 2017) with dmodel =
512, dhidden = 2048, nheads = 8, nlayers = 6,
and pdropout = 0.3. We tie the source and target
embeddings with the output layer weights (Press
and Wolf, 2017; Nguyen and Chiang, 2018). We
add dropout to embeddings (0.1) and label smooth-
ing (0.1). All models are trained with the Adam
optimizer (Kingma and Ba, 2015) with initial learn-
ing rate of 0.0005 and effective batch sizes of 32k
tokens for AR models and 64k tokens for NAR mod-
els for maximum 300, 000 steps.22 We select the
best checkpoint based on validation perplexity. Fol-
lowing Xu and Carpuat (2021), we train NAR mod-
els using sequence-level knowledge distillation: we
replace the reference sentences in the training data
with translation outputs from the AR models. To
train the neural-based inflection module, we initial-
ize its encoder parameters using the NAR baseline
encoder and train it using Adam optimizer with a
batch size of 32k tokens for maximum 200, 000
steps. Models are trained on 2 GeForce GTX 1080
Ti GPUs. Table 6 shows the number of parameters
in each model.

Train Valid Provenance
En-De 3,961k 3,000 WMT14
En-Lt 1,612k 1,964 WMT19

Table 5: Number of sentence pairs and provenance of
the training and validation data.

C Evaluation Metric

We evaluate translation quality using sacre-
BLEU (Post, 2018).23

22As shown in prior work, the batch sizes for training
non-autoregressive models are typically larger than the AR
model (Zhou et al., 2020).

23BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.2.11

Model Size (M)

En-De
AR 65
AR w/ CD 65
AR w/ TLA 65
NAR 91
rule-based inflection 0
neural-based inflection 86

En-Lt
AR 57
AR w/ CD 57
AR w/ TLA 58
NAR 84
rule-based inflection 0
neural-based inflection 72

Table 6: Model sizes (M) for the AR, NAR, and inflec-
tion models.

D Learning Curves

Figure 3 shows the learning curves of En-De and
En-Lt neural-based inflection modules in terms
training and validation perplexity.
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Figure 3: Training and validation perplexity of the En-
De and En-Lt neural-based inflection modules.


