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Abstract

Word embeddings are powerful representa-
tions that form the foundation of many natu-
ral language processing architectures, both in
English and in other languages. To gain fur-
ther insight into word embeddings, we explore
their stability (e.g., overlap between the near-
est neighbors of a word in different embedding
spaces) in diverse languages. We discuss lin-
guistic properties that are related to stability,
drawing out insights about correlations with
affixing, language gender systems, and other
features. This has implications for embedding
use, particularly in research that uses them to
study language trends.

1 Introduction

Word embeddings have become an established part
of natural language processing (NLP) (Collobert
et al., 2011; Wang et al., 2020a). Stability, defined
as the overlap between the nearest neighbors of
a word in different embedding spaces, was intro-
duced to measure variations in local embedding
neighborhoods across changes in data, algorithms,
and word properties (Antoniak and Mimno, 2018;
Wendlandt et al., 2018). These studies found that
many common English embedding spaces are sur-
prisingly unstable, which has implications for work
that uses embeddings as features in downstream
tasks, and work that uses embeddings to study spe-
cific properties of language.

However, research to date on word embedding
stability has been exclusively done on English and
so is not representative of all languages. In this
work, we explore the stability of word embeddings
in a wide range of languages. Better understanding
the differences caused by diverse languages will
provide a foundation for building embeddings and
NLP tools in all languages.1

1 Code is available at https://lit.eecs.umich.
edu/downloads.html.

In English and other very high resource lan-
guages, it has become common practice to use
contextualized word embeddings, such as BERT
(Devlin et al., 2019) and XLNet (Yang et al., 2019).
These algorithms require huge amounts of computa-
tional resources and data. For example, it takes 2.5
days to train XLNet with 512 TPU v3 chips. In ad-
dition to requiring heavy computational resources,
most contextualized embedding algorithms need
large amounts of data. BERT uses 3.3 billion words
of training data. In contrast to these large corpora,
many datasets from low-resource languages are
fairly small (Maxwell and Hughes, 2006). To sup-
port scenarios where using huge amounts of data
and computational resources is not feasible, it is im-
portant to continue developing our understanding
of context-independent word embeddings, such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). These algorithms continue to
be used in a wide variety of situations, including
the computational humanities (Abdulrahim, 2019;
Hellrich et al., 2019) and languages where only
small corpora are available (Joshi et al., 2019).

In this work, we consider how stability varies for
different languages, and how linguistic properties
are related to stability—a previously understudied
relationship. Using regression modeling, we cap-
ture relationships between linguistic properties and
average stability of a language, and we draw out
insights about how linguistic features relate to sta-
bility. For instance, we find that embeddings in
languages with more affixing tend to be less stable.
Our findings provide crucial context for research
that uses word embeddings to study language prop-
erties and trends (e.g., Heyman and Heyman, 2019;
Abdulrahim, 2019), which often rely on raw em-
beddings created by GloVe or word2vec. If these
embeddings are unstable, then research using them
needs to take this into account in terms of method-
ologies and error analysis.

https://lit.eecs.umich.edu/downloads.html
https://lit.eecs.umich.edu/downloads.html
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2 Related Work

Word embeddings are low-dimensional vectors
used to represent words, normally in downstream
tasks, such as word sense disambiguation (Scarlini
et al., 2020) and text summarization (Moradi et al.,
2020). They have been shown to capture both syn-
tactic and semantic properties of words, making
them useful in a wide range of NLP tasks (Wang
et al., 2020b). In this work, we explore word em-
beddings that generate one embedding per word,
regardless of the word’s context. We consider two
widely used algorithms: word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014).

Our work analyzes embeddings in multiple lan-
guages, which is important because embeddings
are commonly used across many languages. In par-
ticular, there has been interest in embeddings for
low-resource languages (Chimalamarri et al., 2020;
Stringham and Izbicki, 2020).

In this work, we use stability to measure the
quality of word embeddings. Similar to the work
we present here on stability, other research looks
at how nearest neighbors vary as properties of the
embedding spaces change. Pierrejean and Tanguy
(2018) found that the lowest frequency and the
highest frequency words have the highest variation
among nearest neighbors. Additional research has
explored how semantic and syntactic properties
of words change with different embedding algo-
rithm and parameter choices (Artetxe et al., 2018;
Yaghoobzadeh and Schütze, 2016). Unlike our
work, previous studies only considered English.

Finally, while our work is not a form of embed-
ding evaluation, it is related to the topic (Chiu et al.,
2016; Rogers et al., 2018; Qiu et al., 2018). There
has been extensive work on evaluating word em-
beddings, seen in the recent RepEval workshops
(Rogers et al., 2019), and going back to work com-
paring them with counting based methods (Baroni
et al., 2014). Our findings indicate that work on
embedding evaluation should take into considera-
tion stability, using multiple training runs to con-
firm results. Similarly, stability should be con-
sidered when studying the impact of embeddings
on downstream tasks. Leszczynski et al. (2020)
specifically looked at the downstream instability
of word embeddings, and found that there is a
stability-memory tradeoff, and higher stability can
be achieved by increasing the embedding dimen-
sion.

3 Data

In order to explore the stability of word em-
beddings in different languages, we work with
two datasets, Wikipedia and the Bible. While
Wikipedia has more data, the Bible covers more lan-
guages. Wikipedia is a comparable corpus, whereas
the Bible is a parallel corpus.

Wikipedia Corpus. We use pre-processed
Wikipedia dumps in 40 languages taken from Al-
Rfou’ et al. (2013).2 The size of these Wikipedia
corpora varies from 329,136 sentences (Tagalog)
to 75,241,648 sentences (English), with an average
of 9,292,394 sentences. For all of our experiments,
we downsample each corpus to work with compa-
rably sized data (details in Section 4.2).

Bible Corpus. We consider 97 languages from
the pre-processed Bible corpus (McCarthy et al.,
2020):3 all languages for which at least 75% of the
Bible (≥ 23, 326 verses) is present.4 This excludes
many languages for which there is only a partial
Bible, e.g., just the New Testament, which would
be insufficient for training word vectors. We con-
sider two sets of languages with the Bible corpus:
languages that overlap with the set of Wikipedia
languages (26 languages), and all languages in the
Bible corpus (97 languages).

WALS. To gain linguistic properties of these lan-
guages, we use the World Atlas of Language Struc-
tures (WALS),5 a database of phonological, lex-
ical, and grammatical properties for over 2,000
languages (Dryer and Haspelmath, 2013). This
expert-curated resource contains 192 language fea-
tures. For example, WALS records subject, object,
and verb word order for various languages.

4 Calculating Stability in Many
Languages

The first part of our work is a comparison of stabil-
ity across languages. Before presenting our mea-
surements, we define stability and analyze some
important methodological decisions.

2Available online at https://sites.google.com/
site/rmyeid/projects/polyglot.

3Available by contacting McCarthy et al. (2020).
4To work with a maximum number of languages, we only

consider the complete Protestant Bible (i.e., all of the verses
that appear in the English King James Version of the Bible).

5Available online at https://wals.info.

https://sites.google.com/site/rmyeid/projects/polyglot
https://sites.google.com/site/rmyeid/projects/polyglot
https://wals.info
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Model 1: indie, punk, progressive, pop, roll, band,
blues, brass, class, alternative

Model 2: punk, indie, alternative, progressive, band,
sedimentary, bands, psychedelic, climbing, pop

Model 3: punk, pop, indie, alternative, band, roll,
progressive, folk, climbing, metal

Table 1: Ten nearest neighbors for the word rock
in three GloVe models trained on different subsets of
Large English Wikipedia. Words in all lists are in bold;
words in only two lists are italicized. Models 1 and 2
have 6 words (60%) in common, models 1 and 3 have
7, and models 2 and 3 have 7. Therefore, this word has
a stability of 66.7%, the average word overlap between
the three models.

4.1 Defining Stability

Stability is defined as the percent overlap between
nearest neighbors in an embedding space. To calcu-
late stability, given a word W and two embedding
spaces A and B, take the ten nearest neighbors
(measured using cosine similarity) of W in both
A and B. The stability of W is the percent over-
lap between these two lists of nearest neighbors.6

100% stability indicates perfect agreement between
the two embedding spaces, while 0% stability in-
dicates complete disagreement. Table 1 shows a
simple example. This definition of stability can be
generalized to more than two embedding spaces
by considering the average overlap between pairs
of embedding spaces. Let X and Y be two sets
of embedding spaces. Then, for every pair of em-
bedding spaces (x, y), where x ∈ X and y ∈ Y ,
take the ten nearest neighbors of W in both x and
y and calculate percent overlap. Let the stability
be the average percent overlap over every pair of
embedding spaces (x, y).

Previous work has explored stability for English
word embeddings. For instance, it was found that
the presence of certain documents in the train-
ing corpus affects stability (Antoniak and Mimno,
2018), and that training and evaluating embeddings
on separate domains is less stable than training and
evaluating on the same domain (Wendlandt et al.,
2018). In this work, we expand this analysis to a
more diverse set of languages.

6While alternative definitions of stability are possible, e.g.,
considering a vector of similarities with a large set of words,
we chose to use a prior definition of stability that has been
rigorously studied. Similarly, sets of nearest neighbors smaller
and larger than ten have been tried previously, with compara-
ble results (Wendlandt et al., 2018).

4.1.1 The Effect of Downsampling on
Stability

Stability measures how changes to the input data
or training algorithm affect the resulting embed-
dings. Sometimes we make changes with the goal
of shifting the embeddings, such as increasing the
context window size to try to get embeddings that
capture semantics more than syntax. In other cases,
we would hope a change would not substantially
change embeddings, such as changing the random
seed for the algorithm. For our experiments, we
consider a previously unstudied source of instabil-
ity: different data samples from the same distribu-
tion. This is a case where we hope embeddings
remain stable, given a sufficiently large sample.

We generate data samples by downsampling a
corpus to create multiple smaller corpora; we then
measure stability across these downsamples. The
choice of sampling with or without replacement,
and the size of the sample are subtle methodolog-
ical choices. In this section, we consider whether
stability across downsamples produces consistent
results that we can compare across languages.

First, we consider downsampling with replace-
ment, shown in Figure 1a. We use data drawn
from an English Wikipedia corpus of 5,269,686
sentences (denoted “Large English Wikipedia").7

We randomly sample five sets of 500,000 sentences
multiple times, controlling the amount of overlap
between downsamples (from 10% to 60% shared
across all five samples). For a specific overlap
amount X%, X% of 500,000 sentences is randomly
sampled and included in all of the five downsam-
ples. The remaining (100-X)% sentences are ran-
domly sampled for each downsample.

Stability is calculated using GloVe embeddings
and the words that occur in every downsample for
every overlap percentage. In Figure 1a, we group
stability into buckets of size 5% (i.e., 0-5%, 5-10%,
etc). This allows us to see patterns in stability that
are not visible from a single statistic, such as the
overall average. We see that while stability trends
are similar for different overlap amounts, stabil-
ity is consistently higher as the overlap amount
increases. This means that if we use downsam-
pling with replacement, we cannot reliably com-
pare stability across multiple corpora of varying
sizes (e.g., Wikipedia and the much smaller Bible
corpus). The overlap amount would change de-

7This data was used in Tsvetkov et al. (2016) and is avail-
able by contacting the authors of that paper.
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Experiment Machine Timing

Training one w2v embedding on one Wikipedia corpus (Section 4) Machine 1 13 sec.
Training one GloVe embedding on one Wikipedia corpus (Section 4) Machine 1 12 min.
Calculating stability on one Wikipedia corpus (Section 4) Machine 1 17 sec.
Training one w2v embedding on one Bible corpus (Section 4) Machine 1 5 sec.
Calculating stability on one Bible corpus (Section 4) Machine 1 12 sec.
Training regression model (Section 5) Machine 2 < 7 sec.
Leave-one-out cross-validation (Section 6) Machine 2 < 4 sec.

Table 2: Runtimes for different experimental portions of this work. Machine 1 is four Intel(R) Xeon(R) CPU
E5-1603 v3 @ 2.80 GHz processors. Machine 2 is a 2.9GHz Dual-Core Intel Core i5.
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(a) Sampling with replacement, varying percentage over-
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(b) Sampling without replacement, varying sample size.

Figure 1: Measuring the impact of data sampling pa-
rameters on stability measurements. Results when sam-
pling with replacement consistently increase as overlap
increases (a). This poses a problem, as results may re-
flect corpus size rather than intrinsic stability. Results
when sampling without replacement do show a consis-
tent pattern, even when the sample is only 50,000 sen-
tences, a tenth of the largest sample size (b).

pending on the size of the corpus, changing our
stability measurement.

Instead of downsampling with replacement,
we consider downsampling without replacement,
shown in Figure 1b for different downsample sizes.
We see that varying the size of the downsample
does not have a large effect on the patterns of sta-
bility. Particularly when looking at lower stability,
the trends are remarkably consistent, even when
the downsample size varies from 50,000 sentences
to 500,000 sentences. The pattern grows less con-

sistent when looking at higher stability, especially
with smaller downsample sizes.

This comparison (Figures 1a and 1b) shows that
downsampling without replacement produces more
consistent (and thus comparable) stability results
than downsampling with replacement. Thus, we
only consider downsampling without replacement.

4.2 Stability for Wikipedia and the Bible

Our first study, shown in Figure 2, considers sta-
bility across the 26 languages included in both
Wikipedia and the Bible. These results show three
settings for Wikipedia: (1) Stability of GloVe em-
beddings across five downsampled corpora, (2)
Stability of word2vec (w2v) embeddings across
five downsampled corpora, and (3) Stability of
word2vec embeddings using five random seeds on
one downsampled corpus. For the Bible, we only
show the third case, since it is too small for down-
sampling.

Each downsampled corpus is 100,000 sentences,
and words that occur with a frequency less than five
are ignored. Previous work (Pierrejean and Tanguy,
2018) has indicated that words that appear this in-
frequently will be very unstable. We use standard
parameters for both embedding algorithms.8 For
each embedding, we calculate the ten nearest neigh-
bors of every word using FAISS9 (Johnson et al.,
2019). Finally, for each language, we calculate the
stability for every word in that language across all
five embedding spaces. Experimental runtimes are
listed in Table 2.

Figure 2 shows bucketed stability for both
Wikipedia and the Bible. Most languages have
the same overall trend: a large number of relatively
unstable word embeddings, then a fairly flat distri-

8For GloVe (Pennington et al., 2014), we use 100 itera-
tions, 300 dimensions, a window size of 5, and a minimum
word count of 5; these parameters led to good performance in
Wendlandt et al. (2018). For word2vec (Mikolov et al., 2013),
we use 300 dimensions, a window size of 5, and a minimum
word count of 5.

9We use exact, not approximate, search.
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Figure 2: Percentage of words that occur in each stability bucket for four different methods, three on Wikipedia
and one on the Bible. The 26 languages in common are shown here. The average stability for each method is
shown on the individual graphs.

bution between 25% and 75%, and a sharp drop
at high stability. This indicates that the conclu-
sions from prior work on English apply to other
languages as well. In particular, it means that any
work that uses embeddings to study a language
should train multiple embedding spaces to ensure
robust findings.

Some languages have substantially more stable
embeddings than others. Comparing GloVe down-
samples on Wikipedia, Vietnamese has the most

stable embeddings (avg. 2.46%), while Korean has
the least stable embeddings (avg. 0.58%). The plot
for Vietnamese has a different trend than many of
the other plots in Figure 2. Vietnamese is the only
Austro-Asiatic language in our dataset, so there
could be multiple distinctives that are related to
it exhibiting different patterns than the other lan-
guages.

Finally, varying the training algorithm has a
smaller impact than changing the dataset. Keeping



5896

0 25 50 75 100
% Stability (bucketed)

10 2

10 1

100

101

102
%

 o
f w

or
ds

 (l
og

 sc
al

e)
Elberfelder 1871
Elberfelder 1905
Elberfelder 1905
Grunewalder
Luther 1545
Letztehand
Luther 1545
Luther 1912
Neue
Pattloch
Schlacter
Tafelbibel
Textbibel
Zuercher

(a) German

0 25 50 75 100
% Stability (bucketed)

10 2

10 1

100

101

102

%
 o

f w
or

ds
 (l

og
 sc

al
e)

Bonnet
Crampon
Darby
David Martin
Jerusalem 2004
King James
Louis Segond
Ostervald 1867
Parole de Vie
Perret
Pirot Clamer

(b) French

Figure 3: Percentage of words that occur in each stabil-
ity bucket for different Bible translations.

the dataset fixed (Wikipedia) and varying the algo-
rithm, we see similar trends. Keeping the algorithm
fixed (w2v random seeds) and varying the dataset,
we often see substantial shifts. This means that in
order to compare languages we need to carefully
control for the content of the corpus (which the
Bible data allows us to do). While the Bible is too
small to support downsampling, these results on
Wikipedia suggest that experiments varying the ran-
dom seed lead to similar variations to experiments
varying the data sample.

To confirm this finding, we consider two lan-
guages with multiple Bible translations: German
and French. We average stability across five
word2vec embeddings using five random seeds on
one downsampled corpus. The downsampled cor-
pus is 100,000 sentences, randomly sampled. Fig-
ure 3 shows the stability patterns for each. The
results are very consistent, indicating that varia-
tions in translator behavior do not impact stability
the way shifting from one corpus to another does.
The largest shift is for the French Parole de Vie
translation (top line in yellow in Figure 3b), which
intentionally uses simpler, everyday language. For
further experiments on languages with multiple
Bible translation, we choose the Bible translation

with the highest average stability.
It is difficult to infer more from these figures

alone. In the next section, we use regression mod-
eling to identify patterns in the results. Based on
the observations above, we use results from GloVe
across five downsampled corpora for Wikipedia,
and results across five random seeds for the Bible.

5 Regression Modeling

We now explore linguistic factors that correlate
with stability. To draw conclusions about specific
linguistic features, we use a ridge regression model
(Hoerl and Kennard, 1970)10 to predict the average
stability of all words in a language given features
reflecting language properties. Regression models
have previously been used to measure the impact
of individual features (Singh et al., 2016). Ridge
regression regularizes the magnitude of the model
weights, producing a more interpretable model than
non-regularized linear regression. We experiment
with different regularization strengths and use the
best-performing value (α = 10).11 We choose to
use a linear model here because of its interpretabil-
ity. While more complicated models might yield
additional insight, we show that there are interest-
ing connections to be drawn from a linear model.

5.1 Model Input and Output

Our model takes linguistic features of a language as
input and predicts stability as output. Since WALS
properties are categorical, we turn each property
into a set of binary features. If a particular language
does not have a known value for a given property,
then all of these features are marked zero.

In order to draw out important correlations be-
tween linguistic features and stability, we filter the
languages and WALS properties that we consider.
We only include languages that have at least 25%
of all WALS properties. Then, we only consider
WALS properties that cover at least 25% of the
filtered languages. We remove all WALS proper-
ties that do not have at least two features that each
include at least five languages. Note that because
all of our input features are binary, all weights are
easily comparable. After this filtering, we end up

10Run using the Python package sklearn.linear.
model.Ridge (Pedregosa et al., 2011) with default parame-
ters except α = 10.

11We run leave-one-language-out cross-validation, de-
scribed in Section 5.2, using the α values of 0.0001, 0.001,
0.01, 0.1, 1, 10, 100, and 1000, choosing the α value with the
lowest average absolute error.
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with 37 languages,12 and 97 WALS properties.
We also group highly correlated WALS features.

We create the groupings by combining features
with a Pearson correlation greater than 0.8. A fea-
ture is included in a particular grouping if it corre-
lates highly with any of the features already in the
group. Each grouped feature is marked as one if
any of the included features are marked as one.

For each model, we bootstrap over the input fea-
tures 1, 000 times, allowing us to calculate standard
error for the R2 score and the model weights. Cal-
culating significance for each feature allows us to
discard highly variable weights and focus on fea-
tures that consistently contribute to the regression
model, giving us more confidence in the results.

The output of our model is the average stability
of a language, which is calculated by averaging to-
gether the stability of all of the words in a language.
If a language is present in both corpora, we average
the stabilities from the two corpora.

5.2 Evaluation

We evaluate our model in two ways. First, we
measure goodness of fit using the coefficient of
determination R2.13 This measures how much vari-
ance in the dependent variable y (average stability)
is captured by the independent variables x (WALS
properties). A model that always predicts the ex-
pected value of y, regardless of the input features,
will have an R2 score of 0. The highest possible
R2 score is 1, and R2 can be negative. Second,
in addition to the R2 score, we run leave-one-out
cross-validation across all languages, and report ab-
solute error on the left-out language. We compare
this to a baseline of choosing the average stability
over all training languages.

We use the individual feature weights to measure
how much a particular feature contributes to the
overall model. When reporting weights, we train
the model using all 37 languages. Because we
are primarily using regression modeling to learn
associations between certain features and stability,
no test data are necessary. The emphasis is on the
model itself and the feature weights it learns, not

12Bengali, Bulgarian, Cherokee, Comanche, English, Esto-
nian, Finnish, Haitian, Haitian Creole, Hebrew, Hindi, Hmong
Njua, Hungarian, Indonesian, Italian, Japanese, Korean, Latin,
Latvian, Linda, Lithuanian, Ma’di, Mam, Mandarin, Maybrat,
Norwegian, Persian, Pohnpeian, Polish, Portuguese, Russian,
Somali, Spanish, Swedish, Thai, Turkish, Ukrainian, Viet-
namese

13Measured using the Python package
sklearn.linear_model.Ridge.score.
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Figure 4: Affixing properties compared using box-and-
whisker plots.

on the model’s performance on a task.

6 Results and Discussion

Our regression model has a high R2 score of
0.96± 0.00, indicating that the model fits the data
well. Significant weights with the highest magni-
tude are shown in Table 3. Running leave-one-out
cross-validation across all languages, we get an
average absolute error of 0.62± 0.53.14 For com-
parison, using the average stability gives an average
absolute error of 0.86± 0.55. (A two sample t-test
comparison gives a p-value of 0.060.)

Table 4 breaks down the regression results by
broad WALS category, listing both the number of
binary features per category, as well as the average
magnitude of weights for features in that category.
The two most important groups of features are
Nominal Categories and Verbal Categories. Both
of these categories have a large number of features
and a high average magnitude. While the Lexicon
category has a high average magnitude, it contains

14Cross-validation has an average R2 score of 0.92 on the
training data.
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Cat. WALS Attribute Weight

VC,
M

Suffixing Grouping:
·Prefixing vs. Suffixing in Inflectional Morphology: Strongly Suffixing;
·Position of Tense-Aspect Affixes: Tense-aspect suffixes

−0.14± 0.0

L Hand and Arm: Different −0.11± 0.0
CS Relativization on Obliques: Gap −0.10± 0.0
VC Overlap between Situational & Epistemic Modal Marking: Overlap for both possibility & neces-

sity
−0.09± 0.0

NC Ordinal Numerals: First, second, three-th −0.08± 0.0
NC Comitatives and Instrumentals: Differentiation −0.08± 0.0
P Rhythm Types: Trochaic −0.08± 0.0
WO Order of Adjective and Noun: Adjective-Noun −0.07± 0.0
WO Order of Adposition and Noun Phrase: Postpositions −0.07± 0.0

NC

No Gender Grouping:
· Systems of Gender Assignment: No gender;
· Sex-based and Non-sex-based Gender Systems: No gender;
· Gender Distinctions in Independent Personal Pronouns: No gender distinctions;
· Number of Genders: None

0.05± 0.0

P Voicing and Gaps in Plosive Systems: Other 0.06± 0.0
M Prefixing vs. Suffixing in Inflectional Morphology: Little affixation 0.06± 0.0
CS ‘Want’ Complement Subjects: Subject is expressed overtly 0.06± 0.0
VC The Morphological Imperative: No second-person imperatives 0.06± 0.0
CS Purpose Clauses: Balanced 0.06± 0.0

WO

Prepositions Grouping:
·Order of Adposition and Noun Phrase: Prepositions;
·Relationship between the Order of Object and Verb and the Order of Adposition and Noun Phrase:
VO and Prepositions

0.06± 0.0

WO Order of Demonstrative and Noun: Noun-Demonstrative 0.07± 0.0
NC Position of Case Affixes: No case affixes or adpositional clitics 0.11± 0.0

Table 3: Weights with the highest magnitude in the regression model. Negative weights correspond with low
stability, and positive weights correspond with high stability.

WALS Category Num. Avg.
Features Magnitude

Simple Clauses (SC) 30 0.019
Nominal Syntax (NS) 2 0.021
Other (O) 2 0.023
Complex Sentences (CS) 11 0.028
Morphology (M) 18 0.031
Word Order (WO) 32 0.031
Phonology (P) 21 0.032
Nominal Categories (NC) 40 0.036
Verbal Categories (VC) 27 0.036
Lexicon (L) 6 0.039

Table 4: Number of binary features and average magni-
tude of weights in the regression model for different
WALS categories. Grouped features are included in
each category that they cover.

very few features. To further explore these results,
we highlight a few WALS property in more detail.

Suffixes and prefixes. Table 3 shows that three
of the top features are related to affixes (suffixes
and prefixes). Specifically, three main properties
deal with affixes: Position of Case Affixes (Dryer,
2013a), Prefixing vs. Suffixing in Inflectional Mor-
phology (Dryer, 2013c), and Position of Tense-
Aspect Affixes (Dryer, 2013b). Distributions of

these features in the 37 languages used for the re-
gression model are shown in Figure 4 (categories
with fewer than five languages are not shown).

For all three of these properties, more affixing is
associated with lower stability. When considering
word embeddings, this result makes intuitive sense.
Affixes cause there to be many different word vari-
ations (e.g., walk, walked, walking, walker), which
may not be handled consistently by the embedding
algorithm, leading to lower average stability.

Gendered Languages. Table 3 also highlights a
grouping of WALS properties related to whether
a language is gendered or not. Four WALS prop-
erties are relevant to this: Systems of Gender As-
signment (Corbett, 2013c), Sex-based and Non-
sex-based Gender Systems (Corbett, 2013b), Gen-
der Distinctions in Independent Personal Pronouns
(Siewierska, 2013), and Number of Genders (Cor-
bett, 2013a). In general, a language is considered
to have a gender system if different parts-of-speech
are required to agree in gender (as opposed to sim-
ply having gendered nouns). Distributions of these
features are shown in Figure 5.

For all of these properties, languages with no
gender system tend to have higher average stability.
Again, this result makes sense in the context of
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0 1 2 3
% Average Stability

Gender Grouping
(9 languages)

No Gender Grouping
(12 languages)

(a) Systems of Gender Assignment; Sex-based and Non-
sex-based Gender Systems (Gender Grouping: No gender;
Sex-based)

0 1 2 3
% Average Stability

3rd person singular only
(7 languages)

No Gender Grouping
(12 languages)

(b) Gender Distinctions in Independent Personal Pronouns

0 1 2 3
% Average Stability

Two
(5 languages)

No Gender Grouping
(12 languages)

(c) Number of Genders

Figure 5: Gender properties compared using box-and-
whisker plots. Note, the 12 languages with “No Gender
Grouping” are not the same across the three plots.

word embeddings. Languages with gender systems
will have more word forms (e.g., both male and
female word forms), which may not be handled
consistently by the embedding algorithm.

7 Conclusion

In this paper, we considered how stability varies
across different languages. This work is important
because algorithms such as GloVe and word2vec
continue to be effective methods in a wide vari-
ety of scenarios (Arora et al., 2020), particularly
the computational humanities and languages where
large corpora are not available. We studied the rela-
tionship between linguistic properties and stability,
something that has been previously understudied.
We drew out several aspects of this relationship,
including that languages with more affixing tend to
have less stable embeddings, and languages with
no gender systems tend to have more stable embed-
dings. These insights can be used in future work
to inform the design of embeddings in many lan-
guages. For example, this work suggests that future
embedding space designs need to take into account
gendered words and morphologically rich words

with affixes.
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