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Abstract

Recent advances in neural machine translation
(NMT) have pushed the quality of machine
translation systems to the point where they are
becoming widely adopted for building compet-
itive systems. However, there is still a large
number of languages that are yet to reap the
benefits of NMT. In this paper, we provide the
first large-scale case study of the practical ap-
plication of MT in the Turkic language fam-
ily in order to realize the gains of NMT for
Turkic languages under high-resource to ex-
tremely low-resource scenarios. In addition to
presenting an extensive analysis that identifies
the bottlenecks towards building competitive
systems to ameliorate data scarcity, our study
has several key contributions, including, i) a
large parallel corpus covering 22 Turkic lan-
guages consisting of common public datasets
in combination with new datasets of approx-
imately 2 million parallel sentences, ii) bilin-
gual baselines for 26 language pairs, iii) novel
high-quality test sets in three different transla-
tion domains and iv) human evaluation scores.
All of our data, software and models are pub-
licly available.1

1 Introduction

Having been studied widely over the last few
decades, machine translation (MT) evaluation has
traditionally focused on European languages, due
to limitations of the available technology as well
as resources. Although low-resource MT has re-
cently started to gain more attention and new evalu-
ation benchmarks are becoming available (Guzmán
et al., 2019; Ojha et al., 2020; Fraser, 2020; Ansari
et al., 2020), there are still a large amount of under-
represented languages excluded from MT evalu-
ation. In addition to the cost of preparing such
labor-intensive annotations, the lack of training re-
sources also limits the evaluation of MT models in

1https://github.com/
turkic-interlingua/til-mt

Name Codes Articles Speakers MT?

English en, eng 6,237,470 400M 3

Russian ru, rus 1,694,280 258M 3

Turkish tr, tur 388,641 85.0M 3

Uzbek uz, uzb 139,635 27.0M 3

Azerbaijani az, aze 177,536 23.0M 3

Kazakh kk, kaz 228,123 13.2M 3

Uyghur ug, uig 4,898 10.0M 3

Turkmen tk, tuk 5,876 6.70M 3

Tatar tt, tat 237,332 5.20M 3

Kyrgyz ky, kir 80,738 4.30M 3

Bashkir ba, bak 55,477 1.40M 3

Chuvash cv, chv 45,275 1.04M 3

Karakalpak kaa 1,882 583K 7

Crimean Tatar crh 8,633 540K 7

Sakha (Yakut) sah 13,027 450K 3

Kumyk kum — 450K 7

Karachay-Balkar krc 2,049 310K 7

Tuvan tyv 3,164 280K 7

Urum uum — 190K 7

Gagauz gag 2,737 148K 7

Salar slr — 70K 7

Altai alt — 56K 7

Khakas kjh — 43K 7

Shor cjs — 3K 7

Table 1: Number of Wikipedia articles for Turkic lan-
guages compared to English and Russian along with
number of L1 speakers and two- and three-letter lan-
guage codes. The column MT? indicates if there are
currently available online machine translation systems
for the language. (K: thousand, M: million.)

terms of their applicability across a wide range of
world languages. On the other hand, many studies
have pointed to the limited applicability of promi-
nent methods in MT research including models and
evaluation metrics (Birch et al., 2008; Stanojević
et al., 2015; Bugliarello et al., 2020) in translating
languages with varying linguistic typology.

In order to extend the evaluation of the state-of-
the-art methods in MT (Joshi et al., 2019) and ulti-
mately aid in designing methods with wider range
of applicability, in this paper, we present a large-
scale case study of MT methods in a very challeng-
ing case of the Turkic language family. The Turkic

https://github.com/turkic-interlingua/til-mt
https://github.com/turkic-interlingua/til-mt
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language family consists of around 35 languages
spoken by communities across Eurasia by around
200 million people. Of this number, around 20 are
official languages of a state, or sub-national entity,
with the remaining being minority languages. The
languages are distinct in their highly complex use
of morphology, and thus create extremely sparse vo-
cabularies, presenting a challenging case of evalua-
tion of statistical models, in particular MT systems
(Tantuğ et al., 2008) and n-gram language mod-
els (Bender, 2011; Tsarfaty et al., 2020). Table 1
presents the amount of resources and the number
of speakers in Turkic languages2 which aids our
analysis on the feasibility in crowdsourcing, based
on the approach of Moshagen et al. (2014).

Our study includes the preparation of novel pub-
lic resources covering many languages in the Tur-
kic family, most of which included for the first time
in parallel corpora. We also present new bench-
marks for MT which could be used for assessing
different factors determining the limits of MT meth-
ods in various languages, such as data size, evalu-
ation metrics, translation domain, linguistic typol-
ogy, relatedness, and the writing system. We test
the use of our resources in MT and present the first
evaluation results for many Turkic languages. Our
novel resources consist of i) a large-scale multi-
centric parallel corpus of 75M+ sentence pairs in
22 Turkic languages and their translations into En-
glish, Russian, as well as in-family languages, cov-
ering over 400 translation directions, ii) 3 new test
sets for each translation direction curated from our
corpus in 3 different translation domains, iii) bilin-
gual baselines in 26 different language pairs. Our
baselines are evaluated using automatic metrics as
well as human assessments against commercial or
open-source systems where applicable. We release
our parallel corpora, test sets, and baseline systems
publicly to encourage future research in Turkic lan-
guages.

2 Turkic Languages & MT

This section gives a brief overview of Turkic lan-
guages from a linguistic perspective as well as
presenting the previous work on MT of these lan-
guages. In our study, we include 22 Turkic lan-
guages: Altai, Azerbaijani, Bashkir, Crimean Tatar,
Chuvash, Gagauz, Karachay-Balkar, Karakalpak,
Khakas, Kazakh, Kumyk, Kyrgyz, Sakha, Salar,
Shor, Turkmen, Turkish, Tatar, Tuvan, Uyghur,

2https://www.ethnologue.com/

Urum, and Uzbek. There are several other widely
spoken languages that were left out from our study
such as Nogai, Khorasani Turkic, Qashqai, and
Khalaj, due to the lack of any available parallel
corpora. Future work will focus on extending the
corpus to these languages as well.

2.1 Linguistic Typology

The Turkic languages are spoken in a wide area
that stretches from south-eastern Europe to north-
eastern Asia. The languages are of the agglutinative
morphological type and uniformly have Subject-
Object-Verb main constituent order.

Nominal morphology is highly similar between
the languages, with all of them exhibiting inflec-
tion for number, possession, and case. There are
a variable number of cases, but the six-core cases
of nominative, genitive, accusative, dative, loca-
tive, and ablative are extant in the vast majority of
languages. As part of the nominal inflectional sys-
tem, the languages also have a derivational process
whereby locatives and genitives can be pronomi-
nalized and constitute full noun phrases in their
own right. Verbal inflection, on the other hand, is
more heterogeneous between the languages with
each language having a variety of strategies for
encoding tense, aspect, voice, modality, and evi-
dentiality. One common feature however is that
each of the languages has an extensive system of
non-finite forms: verbal adjectives, verbal nouns,
and verbal adverbs. These are full clauses that
can be used as either modifiers (in the case of ver-
bal adjectives and verbal adverbs) or heads (in the
case of verbal nouns). Many of the languages also
have constructions consisting of a non-finite verbal
form and an auxiliary verb which constitute a sin-
gle predicate, with the auxiliary verb giving extra
information about tense or mood (Johanson and
Johanson, 2015).

The modern Turkic languages are written in a
variety of scripts, with Latin, Cyrillic, and Perso-
Arabic being most common. Many of the lan-
guages have been written in several writing sys-
tems over the past century, making collecting texts
more problematic. For example, we can find in-
stances where the same language have texts that
are written in Perso-Arabic before the 1920s, in
Latin until the 1930s, in Cyrillic until the 1990s,
and then in Latin again (Róna-Tas, 2015). In ad-
dition, many languages have gone through several
orthographic norms based on the same script, and
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some languages are currently written in different
scripts depending on which country the speakers
are in. This orthographic diversity makes collect-
ing and collating text resources difficult, as many
texts may be available only in a previously-used
orthography and conversion between orthographic
systems is never deterministic owing to the large
number of loan words in many texts.

2.2 MT of Turkic Languages

The need for more comprehensive and diverse mul-
tilingual parallel corpora has sped up the creation of
such large-scale resources for many language fam-
ilies and linguistic regions (Koehn, 2005; Choud-
hary and Jha, 2011; Post et al., 2012; Nomoto et al.,
2018; Esplà-Gomis et al., 2019; ∀ et al., 2020).
Tiedemann (2020) released a large-scale corpus for
over 500 languages covering thousands of trans-
lation directions. The corpus includes 14 Turkic
languages and provides bilingual baselines for all
translation directions present in the corpus. How-
ever, the varying and limited size of the test sets
does not allow for the extensive analysis and com-
parisons between different model artifacts, linguis-
tic features, and translation domains. Khusainov
et al. (2020) collected a large-scale Russian-Turkic
parallel corpus for 6 language pairs and reports
bilingual baselines using a number of NMT-based
approaches, although the dataset, test sets, and the
models are not released to the public which limits
its use to serve as a comparable benchmark. Alkım
and Çebi (2019) introduces a rule-based MT frame-
work for Turkic languages and demonstrates the
performance with 4 language pairs. Washington
et al. (2019) demonstrates several rule-based MT
systems built for Turkic languages which are avail-
able through the Apertium3 website.

For individual languages in our corpus, there
are several proposed MT systems and linguistic
resources: Azerbaijani (Hamzaoglu, 1993; Fatul-
layev et al., 2008), Bashkir (Tyers et al., 2012),
Crimean Tatar (Gökırmak et al., 2019; Altıntaş,
2001), Karakalpak (Kadirov, 2015), Kazakh (As-
sylbekov and Nurkas, 2014; Sundetova et al.,
2015; Littell et al., 2019; Briakou and Carpuat,
2019; Tukeyev et al., 2019), Kyrgyz (Çetin and Is-
mailova), Sakha (Ivanova et al., 2019), Turkmen
(Tantug et al., 2007), Turkish (Turhan, 1997; El-
Kahlout and Oflazer, 2006; Bisazza and Federico,
2009; Tantuğ et al., 2011; Ataman et al., 2017),

3https://www.apertium.org/

Tatar (Salimzyanov et al., 2013; Khusainov et al.,
2018; Valeev et al., 2019; Gökırmak et al., 2019),
Tuvan (Killackey, 2013), Uyghur (Mahsut et al.,
2004; Nimaiti and Izumi, 2014; Song and Dai,
2015; Wang et al., 2020), Uzbek (Axmedova et al.,
2019). Yet, to our knowledge, there has not been a
study that covers Turkic languages in such a large
extent as ours, both in terms of multi-lingual par-
allel corpora and benchmarks including multi-way
comparable test sets in all languages.

3 TIL Corpus

Our parallel corpus is collected through unifying
publicly available datasets and additional parallel
data we prepare by crawling public domain re-
sources. Table 2 shows the total amount of sen-
tences in that particular language across the corpus
along with number of sentences that are newly in-
troduced (previously unavailable). This section
describes the details of our data collection process.

3.1 Public Datasets

In our corpus we include the following public data
sets:

• The Tatoeba corpus (Tiedemann, 2020) pro-
vides training and test sets for over 500 lan-
guages and thousands of translation pairs. It
uses the latest version of OPUS4 (Tiedemann
and Nygaard, 2004) as training sets and use
parallel sentences from the Tatoeba project for
testing. Tatoeba consists of 58 language pairs
of interest. For the purposes of our corpus, we
merge the training, development, and test sets
into a single set for all available languages.

• JW300 (Agić and Vulić, 2019) is a public
dataset available for download through OPUS.
Although most of the parallel data in JW300
was provided through the Tatoeba corpus, we
have identified several pairs that were missing
in Tatoeba but present in JW300. To avoid
further data loss, we have obtained the JW300
dataset directly from OPUS and deduplicated
it against the Tatoeba corpus. This dataset
provided data for 59 language pairs of interest
and resulted in 5.2 million parallel sentences.

• GoURMET5 is another dataset available
through OPUS and provides parallel sen-

4http://opus.nlpl.eu/
5https://gourmet-project.eu/

https://www.apertium.org/
http://opus.nlpl.eu/
https://gourmet-project.eu/
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Language Data Script Category New Data
Turkish 52.6M Latin The Underdogs (4) 755.9K
Kazakh 5.3M Arabic, Cyrillic, Latin The Rising Star (3) 201.9K
Uzbek 2.9M Arabic, Cyrillic, Latin The Rising Star (3) 1.7M
Azerbaijani 2.2M Arabic, Cyrillic, Latin The Scraping-Bys (1) 284.8K
Tatar 1.8M Arabic, Cyrillic The Scraping-Bys (1) 192.0K
Kyrgyz 1.8M Arabic, Cyrillic The Scraping-Bys (1) 188.6K
Chuvash 1.5M Cyrillic The Scraping-Bys (1) 191.0K
Turkmen 921.0K Arabic, Cyrillic, Latin The Scraping-Bys (1) 191.7K
Bashkir 893.1K Cyrillic The Scraping-Bys (1) 713.9K
Uyghur 343.0K Arabic, Cyrillic, Latin The Scraping-Bys (1) 187.0K
Karakalpak 253.8K Cyrillic, Latin The Scraping-Bys (1) 274.3K
Khakas 219.0K Cyrillic The Left-Behinds (0) 242.8K
Altai 192.6K Cyrillic The Left-Behinds (0) 190.0K
Crimean Tatar 185.3K Cyrillic, Latin The Scraping-Bys (1) 197.6K
Kumyk 165.6K Cyrillic The Left-Behinds (0) 192.4K
Karachay-Balkar 162.8K Cyrillic, Latin The Scraping-Bys (1) 182.6K
Gagauz 157.4K Cyrillic, Latin The Scraping-Bys (1) 177.1K
Sakha 157.1K Cyrillic The Scraping-Bys (1) 174.8K
Tuvinian 103.2K Cyrillic The Scraping-Bys (1) 148.3K
Shor 2.3K Cyrillic The Left-Behinds (0) 6.9K
Salar 766 Latin The Left-Behinds (0) 1.5K
Urum 491 Greek, Cyrillic, Latin The Left-Behinds (0) 491

Table 2: Corpus details for each Turkic language. Data shows the aggregated amount of sentences across the
corpus. Category refers to the language classes based on data resource according to (Joshi et al., 2020).

tences for 7 language pairs including English-
Turkish and English-Kyrgyz. They are not
available in Tatoeba due to a more recent re-
lease. English-Kyrgyz consists of 14.5 thou-
sand sentence pairs while English-Turkish
contains 1.3 million.

In addition to this, with the permission from
the owners, we include privately owned corpora
for English-Azerbaijani6 containing data from
news articles, English-Uzbek7 containing data from
KhanAcademy website localization, and Bashkir-
Russian8 having a mix of data from news articles
and literary works.

3.2 Data Crawling

We obtained additional parallel data from a few
different public domain websites that contain a
large amount of text translated into many differ-
ent languages. One of these includes TED Talks,9

which contains talks across various domains that
6https://github.com/derintelligence/en-az-parallel-corpus/
7https://uz.khanacademy.org/
8https://github.com/AigizK/bashkort-parallel-corpora
9https://www.ted.com/talks

are translated by volunteers. Qi et al. (2018) com-
piled a dataset for 60 languages, however, only a
few Turkic languages were available at their time
of curation. We have compiled an updated version
of this dataset and obtained sentence pairs for 8
Turkic languages. Bible.is10 is another website that
contains an extensive list of languages into which
religious texts and books are translated. 19 out of
22 Turkic languages were covered in this source
with an average of approximately 8,000 sentence
pairs for each translation direction. Additionally,
we have crawled other public websites, online dic-
tionaries, and resources with parallel data that were
identified by native speakers of these languages.
The full list of online resources we used in our
crawling is given in the Appendices.

3.3 Data Alignment

All crawled documents are aligned using Hunalign
(Varga et al., 2005), with a threshold of either 0.2
or 0.4 depending on the availability of a native
speaker for the language. When crawling pre-
aligned sources such as TED Talks, we noticed

10http://www.bible.is

https://github.com/derintelligence/en-az-parallel-corpus
https://uz.khanacademy.org/
https://github.com/AigizK/bashkort-parallel-corpora 
https://www.ted.com/talks
http://www.bible.is
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serious alignment issues with certain Turkic lan-
guages, especially when the source and target differ
greatly in size. In these cases, we split both sides
into sentences using NLTK sentence tokenizer11

and realign using the Hunalign tool. Specifically
for the Bible dataset, all the data has been aligned
at the verse level first, then split into sentence-level
bitexts whenever possible. This results in paral-
lel texts that are relatively longer while ensuring
higher quality alignments.

3.4 Data Preprocessing
Many of the languages in our dataset are writ-
ten using multiple scripts, which creates consis-
tency problems for building MT systems. There-
fore, we transliterate three of the languages in our
dataset that have a high mix of multiple scripts.
Namely, we transliterate Uzbek into a Latin script,
while all Karakalpak text is converted into Cyrillic.
Although the performance of transliteration tools
(Uzbek12 and Karakalpak13) were not strictly eval-
uated, the tools we have used were recommended
and widely adopted by the native speakers of the
languages. Once we combine the entire corpus data,
we deduplicate the sentences in each language pair.

4 Bilingual Baselines

We train bilingual baselines for 26 language pairs
in three different resource categories: high (¿5M),
medium (100K-5M) and low (¡100K). The choice
of pairs to train was based on multiple factors such
as the availability of test sets, native speakers (for
human evaluation), and other comparable MT sys-
tems.

4.1 Model Details
All models are Transformers (Vaswani et al., 2017)
(transformer-base) whose exact configuration de-
pends on the amount of data available for training.
Models for low-resource pairs use 256-dimensional
embeddings and hidden layers. Models for mid-
resource pairs use 512-dimensonal embeddings and
hidden layers. The models for high-resource pairs
use the same 512-dimensonal embedding and hid-
den layer sizes for the encoder, but for the decoder
both dimensions are increased to 1024. All mod-
els are trained with the Adam optimizer (Kingma
and Ba, 2015) over cross-entropy loss with a maxi-
mum learning rate of 3 ∗ 10−4 and a minimum of

11http://www.nltk.org/api/nltk.tokenize.html
12https://github.com/kodchi/uzbek-transliterator
13http://www.transliteration.kpr.eu/kaa/

1∗10−8, which warms up for the first 4800 training
steps and then decays after reaching the maximum.
We use a training batch size of 4096. We use per-
plexity as our early stopping metric with a patience
of 5 epochs. We set a dropout (Srivastava et al.,
2014) probability of 0.3 in both the encoder and
the decoder. We apply a byte pair encoding (BPE)
(Sennrich et al., 2015; Dong et al., 2015) with a
joint vocabulary size of 4K and 32K for low- and
mid/high-resource scenarios respectively.

All models use the Joey NMT (Kreutzer et al.,
2019) implementation and apex14 where possible
to speed up training. Models were trained on pre-
emptible GPUs freely available on Google Colab.15

4.2 Test Sets

High-quality and diverse test sets are essential in
evaluating the strength and weaknesses of MT sys-
tems. We curate 3 test sets covering 3 translation
domains: religious (Bible), conversational (TED
Talks), and news (X-WMT).

Bible dataset is the main source that exists across
almost all of the 24 language pairs that are included
in our corpus. From this dataset, around 400 to 800
most commonly present sentences for every lan-
guage pair were separated to create a test set. This
allowed having a test set comparable in all language
pairs, which we find essential for a controlled eval-
uation and believe would be a useful resource in
future studies involving multilingual models.

TED Talks is another resource we use for collect-
ing sentences across multiple languages to create
a language-wise comparable test set in the conver-
sational domain. This allows our approach to be
comparable also across different domains. After
deduplication, 3000-5000 sentences per language
pair are picked as a part of our TED Talks test set.

X-WMT is our test set in the news domain based
on the professionally translated test sets in English-
Russian from the WMT 2020 Shared Task (Mathur
et al., 2020). This set contains approximately 1,000
sentences curated both from English and Russian-
centric news sources. Through the engagement of
native speakers and professional translators16, we
partially translate this test set into 8 Turkic lan-
guages (Bashkir, Uzbek, Turkish, Kazakh, Kyrgyz,
Azerbaijani, Karakalpak, and Sakha).

14https://github.com/NVIDIA/apex
15https://colab.research.google.com/
16A total of 22 volunteer translators

http://www.nltk.org/api/nltk.tokenize.html
https://github.com/kodchi/uzbek-transliterator
http://www.transliteration.kpr.eu/kaa/
https://github.com/NVIDIA/apex
https://colab.research.google.com/
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en ru ba tr uz ky kk az sah kaa

en —
ru 1000 —
ba 1000 1000 —
tr 800 800 800 —
uz 900 900 900 600 —
ky 500 500 500 400 500 —
kk 700 700 700 500 700 500 —
az 600 600 600 500 600 500 500 —
sah 300 300 300 300 300 300 300 300 —
kaa 300 300 300 300 300 300 300 300 300 —

Table 3: X-WMT test sets. Bolded entries indicate the
original translation direction.

Table 3 highlights the currently available test
set directions. Bolded entries in the table indi-
cate the original direction of the translation. While
Bashkir and Sakha have been translated by pro-
fessional translators, other languages have been
translated and validated (by another person) by pro-
ficient bilingual speakers of both the source and
target language. The curation of this test set is an
ongoing and growing effort currently covering 88
language directions.

5 Evaluation

Automatic evaluation metrics are very common-
place in MT research, and there has been a recent
line of work exploring better metrics that capture
translation quality beyond the syntactic and lexical
features (Zhang et al., 2019; Sellam et al., 2020; Rei
et al., 2020). Methods relying on contextual embed-
dings to capture the semantic similarity between
the hypothesis and references fall short in terms of
their language coverage. This is largely due to the
pretraining of these evaluation models that require
a significant of monolingual data which most of
the low-resource languages lack. In this study, we
evaluate our systems using both automatic metrics
and human evaluation of translations.

5.1 Automatic Metrics for MT

We employ two widely adopted metrics: BLEU (Pa-
pineni et al., 2002) and ChrF (Popović, 2015).
BLEU utilizes modified n-gram precision where
the consecutive n-grams of the system translation
are compared with the consecutive n-grams of the
reference translation. We use the standard Sacre-
BLEU implementation (Post, 2018). ChrF applies
the same method at the level of character n-gram
and we use the original implementation from the
paper as provided through NLTK library.17

17https://github.com/m-popovic/chrF

5.2 Human Evaluation

To perform a more holistic analysis of MT sys-
tems, it is critical to involve native speakers in the
evaluation process. We conducted a human evalu-
ation campaign using a randomly sampled subset
of 250 sentences from X-WMT or Bible (when-
ever X-WMT was not available) for evaluating the
outputs of 14 bilingual baseline models. Our as-
sessment is based on Direct Assessment (DA) test
(Nießen et al., 2000; Papineni et al., 2002; Dodding-
ton, 2002), where annotators were asked to rate a
translation according to adequacy and fluency on a
5 point Likert scale. All participants of the study
were bilingual speakers of the source and target
language. To better understand the importance of
directionality (e.g. English-X vs X-English) and
avoid variance in scores, we ensure that both direc-
tions of the same pair are evaluated by the same
annotator (whenever possible). While reporting,
we average the scores for each pair but report ade-
quacy and fluency separately. Adequacy is defined
as how much information is preserved in the transla-
tion. A score of 1 would mean that the translation is
meaningless and has no correlation with the target
sentence. A score of 5 would mean the translation
retains all of the information. Fluency is defined as
how grammatically, syntactically, and stylistically
correct the translation is. A score of 1 would mean
the sentence makes no sense grammatically or syn-
tactically. A score of 5 would mean the sentence is
perfectly correct.

6 Results & Discussion

The upper section of Table 4 highlights the bilin-
gual baselines for high-resource pairs and their
evaluation scores in the three domains. Despite the
large training size, both models perform relatively
modestly on the Bible and TED Talks with the en-tr
model slightly better than ru-tr. Our hypothesis is
that the domain of the Bible test set is far from the
rest of the training set for both pairs, as most of the
training data for Turkish comes from OpenSubti-
tles.18 Another likely bottleneck is the suboptimal
model size and hyperparameters, which were not
tuned due to limited computational resources.

Baseline results for the mid- and low-resource
pairs are in the lower part of Table 4. While there
are a lot of fluctuations in the results, it is impor-
tant to note the large disparities in BLEU scores

18http://www.opensubtitles.org/

https://github.com/m-popovic/chrF
http://www.opensubtitles.org/
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Pair Train size Test size Bible Test size Ted Talks Test size X-WMT
BLEU ChrF BLEU ChrF BLEU ChrF

en-tr 39.9m 416 7.15 0.30 5.2k 12.32 0.43 800 19.87 0.51
ru-tr 16.8m 455 7.44 0.33 5.1k 8.64 0.38 800 8.81 0.41

ru-uz 1.22M 684 6.01 0.41 2.7K 4.51 0.76 800 5.95 0.39
uz-ru 1.22M 684 9.84 0.51 2.7K 7.57 0.73 800 7.45 0.37
en-az 784K 455 10.56 0.24 3.3K 10.58 0.29 600 8.88 0.41
az-en 784K 455 21.17 0.45 3.3K 17.01 0.17 600 12.14 0.42
en-ky 733K 451 6.47 0.32 - - - 500 3.18 0.19
ky-en 733K 451 13.08 0.43 - - - 500 4.30 0.40
tr-az 634K 606 13.78 0.65 3.6K 20.50 0.40 500 9.68 0.33
az-tr 634K 606 11.66 0.71 3.6K 24.20 0.95 500 11.53 0.49
en-kk 601K 453 3.62 0.61 3.6K 6.31 0.29 700 6.99 0.38
kk-en 601K 453 11.22 0.27 3.6K 9.78 0.30 700 9.75 0.46
en-uz 555K 465 5.23 0.40 3.2K 5.89 0.20 800 6.60 0.42
uz-en 555K 465 16.20 0.63 3.2K 11.61 0.18 800 12.32 0.48
tr-uz 161K 486 6.50 0.14 2.9K 4.28 0.20 700 1.58 0.23
uz-tr 161K 486 7.40 0.32 2.9K 3.92 0.26 700 1.73 0.22

kk-ky 6.4K 696 2.39 0.33 - - - 500 0.14 0.09
ky-kk 6.4K 696 2.53 0.24 - - - 500 0.11 0.13
en-krc 6.5K 374 5.57 0.25 - - - - - -
krc-en 6.5K 374 11.57 0.22 - - - - - -
kk-tt 7.7K 678 4.13 0.22 - - - - - -
tt-kk 7.7K 678 3.75 0.17 - - - - - -
ru-sah 8K 759 2.48 0.27 - - - 300 0.08 0.20
sah-ru 8K 759 2.44 0.23 - - - 300 0.31 0.16
uz-kaa 8.9K 772 9.90 0.71 - - - 300 5.39 0.41
kaa-uz 8.9K 772 9.58 0.60 - - - 300 5.24 0.44

Table 4: Bilingual baselines separated by high-res., mid-res., and low-res. pairs (K: thousand, M: million).

between models when translated in and out of non-
Turkic languages. However, these differences are
not as prominent when evaluated using ChrF, which
is a character-level metric. This can partially be
attributed to the complex morphology of Turkic
languages which penalizes lexical mispredictions
at a much higher rate than in English for example
(Tantuğ et al., 2008). This in return would lead to
lower BLEU scores. To examine this phenomena
in more detail, we compare the results of X-WMT
against human evaluations for the translations these
models produced in Section 6.1.

Another notable aspect is the importance of
scripts in the performance of the models. Language
pairs with more than one script consistently under-
perform (both in automatic and human evaluations)
the ones where both the source and target language
use the same script. In fact, the best 6 models on
the X-WMT test sets all have Latin scripts in both
the source and target language. A suboptimal per-
formance in the face of a script disparity is a known
phenomenon (Anastasopoulos and Neubig, 2019;
Murikinati et al., 2020; Aji et al., 2020; Amrhein

and Sennrich, 2020), where techniques such as
transliteration show to improve performance. This
is mostly attributable to model’s inability to repre-
sent both languages in a shared space effectively
when they do not share the same script, which can
be damaging for the downstream performance.

6.1 Comparing Human Evaluations to BLEU

Using the Direct Assessment (DA) surveys de-
scribed in Section 5.2, we obtain average scores
of adequacy and fluency for almost all baseline
models. Figures 1 show the scores for BLEU/ChrF
and adequacy/fluency respectively. Comparing the
scores from native speakers of these languages, it
is quite evident that the disparities in BLEU scores
between two translation directions are exaggerated
and, even misleading (e.g. en-az vs az-en). Re-
sults in the human evaluations for mid-resource
pairs seem a lot more closely clustered than in the
BLEU/ChrF figure. These results further empha-
size the pitfalls of automatic metrics of MT evalu-
ation and emphasize the role of native speakers in
the MT process.



5883

Pair Test size Baseline Google Translate Yandex Translate Apertium
BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF

en–tr 800 19.87 0.51 69.24 0.83 40.03 0.69 – –
ru–tr 800 8.81 0.41 24.79 0.54 16.64 0.44 – –
tr–uz 700 1.58 0.23 27.25 0.60 6.58 0.42 – –
uz–tr 700 1.73 0.22 28.03 0.58 5.58 0.38 4.31 0.33
en–uz 800 6.60 0.42 48.50 0.72 15.66 0.51 – –
uz–en 800 12.32 0.48 32.35 0.39 6.93 0.41 – –
en–kk 700 6.99 0.38 26.60 0.55 5.51 0.39 – –
kk–en 700 9.75 0.46 22.50 0.47 23.2 0.50 – –
tr–az 500 9.68 0.33 36.78 0.65 5.53 0.38 – –
az–tr 500 11.53 0.49 32.67 0.62 11.75 0.44 – –
en–ky 500 3.18 0.19 26.97 0.56 5.21 0.36 – –
ky–en 500 4.30 0.40 21.66 0.50 3.89 0.20 – –
en–az 600 8.88 0.41 78.54 0.89 6.59 0.40 – –
az–en 600 12.14 0.42 39.42 0.65 12.54 0.46 – –
ru–uz 800 5.95 0.39 22.26 0.56 13.19 0.50 – –
uz–ru 800 7.45 0.37 19.00 0.48 10.87 0.43 – –
kk–tt* 678 4.13 0.22 5.45 0.35 1.58 0.24 2.77 0.28
tt–kk* 678 3.75 0.17 5.44 0.35 1.41 0.22 – –
ru–sah 300 0.08 0.20 – – 8.27 0.40 – –
sah–ru 300 0.31 0.16 – – 24.93 0.54 – –
uz–kaa 300 5.39 0.41 – – – 11.71 0.42
kaa-uz 300 5.24 0.44 – – – – 5.22 0.30
kk-ky 500 0.14 0.09 20.56 0.51 4.78 0.35 9.12 0.35
ky-kk 500 0.11 0.13 20.57 0.52 3.52 0.34 6.55 0.34

Table 5: Bilingual Baseline Compared to online MT Systems on X-WMT (Pair with * uses Bible Data).

Adequacy Fluency

BLEU ChrF BLEU ChrF
Turkic 0.62 0.71 0.75 0.67
Non-Turkic 0.75 0.68 0.83 0.86

Table 6: Correlation between scores from human evalu-
ation and automatic metrics for translating into Turkic
and non-Turkic. Correlation is measured using Pear-
son’s r.

6.2 Turkic Languages on the target side

Even though BLEU scores do not offer a holistic
way to compare two MT systems, they are effec-
tive in telling which system performs better. As
seen clearly from the results in Table 4, the per-
formance of the baseline system as measured by
the BLEU metric when translating into a Turkic
language from English is substantially worse than
when translating into English from a Turkic lan-
guage. Translating into the Turkic language is typi-
cally twice as bad in terms of BLEU as translating
from the Turkic language. The reliability of the
BLEU score also decreases especially in the case
of translating into morphologically-rich languages,

which has indeed been shown to correlate poorly
with human judgments in Turkic languages (Ma
et al., 2018, 2019). Table 6 shows the correlation
between BLEU/Chrf and adequacy/fluency scores.
BLEU seems to correlate with adequacy/fluency a
lot better when the target side is a non-Turkic lan-
guage, which emphasizes our earlier points regard-
ing the language morphology. ChrF’s correlation
to adequacy scores is about the same regardless of
the target language.

6.3 Comparison to Existing Systems

Table 5 compares our baselines to three
commercial/open-source MT systems: Google
Translate,19 Yandex Translate,20 and Apertium
(Forcada et al., 2011). Google Translate results are
significantly higher than our baselines and other
MT systems. There are quite a few reasons for the
score disparities. First, commercial systems have
access to more data for training and possibly also in-
clude the public data we exclude from our test sets.
Moreover, several test-set translators used Google
Translate to do the translations and performed post-

19https://translate.google.com/
20https://translate.yandex.com/

https://translate.google.com/
https://translate.yandex.com/
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(a) BLEU and ChrF scores for select pairs. Note: ChrF
scores were multiplied by 20 for better visibility.

(b) Adequacy and Fluency scores (1-5) obtained from
human evaluations.

Figure 1: Comparison between BLEU/ChrF scores and Adequacy/Fluency scores. Best viewed in color.

edits afterwards (e.g. en-uz) which creates a bias
favoring sentences generated by Google’s service.
A safer comparison of the baselines is achieved
with Yandex Translate, which despite the lower
performance also supports more Turkic languages
(8 in Google and 9 in Yandex). However, it is im-
portant to note that their API yielded worse results
than their web interface. Apertium is a rule-based
MT framework that supports several Turkic-Turkic
pairs and we include the results whenever one is
available. For those pairs, the results are compara-
ble with our baselines and Yandex Translate.

7 Conclusion & Future Work

In this paper, we introduce a large parallel corpus
covering 22 Turkic languages along with in-domain
and out-of-domain evaluation sets. We also train
the first baseline models for several language pairs
and take the initial steps to address the challenges
associated with machine translation in the Turkic
languages. This study was carried out as in a par-
ticipatory research setting by a diverse community
of researchers, engineers, language specialists, and
native speakers of Turkic languages. Future work
will focus on studies of methods for effective cross-
lingual transfer, extending of the coverage of the
corpus to more languages and domains, and in-
creasing the size of the test sets to provide more
comprehensive benchmarks.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post, Chris Callison-Burch, and Miles Osborne.
2012. Constructing parallel corpora for six indian
languages via crowdsourcing. In Proceedings of the
Seventh Workshop on Statistical Machine Transla-
tion, pages 401–409.

Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sar-
guna Janani Padmanabhan, and Graham Neubig.
2018. When and Why are Pre-trained Word Embed-
dings Useful for Neural Machine Translation?

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. arXiv preprint arXiv:2009.09025.
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alt az ba cjs crh cv en gag kaa kjh kk krc kum ky ru sah slr tk tr tt tyv ug uum uz
alt 9.8K 11.8K 48 6.8K 9.9K 11.3K 6.6K 6.8K 6.8K 6.8K 6.8K 6.7K 11.2K 6.8K 6.6K 61 9.7K 11.3K 11.3K 4.5K 6.8K 10.5K
az 9.8K 33.0K 48 6.9K 82.3K 787.6K 6.7K 6.9K 6.9K 8.0K 6.9K 6.7K 220.1K 389.0K 6.9K 52 123.4K 636.5K 215.1K 13.6K 6.9K 227.4K
ba 11.8K 33.0K 6.8K 34.4K 64.5K 6.6K 6.8K 6.7K 6.8K 6.8K 6.7K 35.9K 36.2K 6.6K 30.2K 65.4K 67.2K 16.5K 6.7K 27.5K
cjs 48 48 49 57 48 31 47 46 47 2.4K 48 44 47 50 50 53 48
crh 6.8K 6.9K 6.8K 49 6.7K 16.4K 6.8K 6.9K 7.0K 6.9K 6.9K 6.7K 6.7K 12.3K 6.7K 52 6.7K 13.9K 8.3K 7.0K 7.3K
cv 9.9K 82.3K 34.4K 6.7K 156.4K 6.5K 6.7K 6.7K 6.8K 6.8K 6.6K 83.1K 82.9K 6.7K 78.6K 158.2K 160.0K 15.1K 6.6K 59.9K
en 11.3K 787.6K 64.5K 57 16.4K 156.4K 6.8K 7.3K 7.0K 614.5K 7.0K 6.8K 625.6K 47.1M 7.1K 837 250.4K 39.9M 572.5K 29.0K 111.2K 507 559.7K
gag 6.6K 6.7K 6.6K 48 6.8K 6.5K 6.8K 6.7K 6.8K 6.7K 6.7K 6.6K 6.6K 6.7K 6.6K 55 6.5K 6.7K 6.6K 6.8K 7.1K
kaa 6.8K 6.9K 6.8K 31 6.9K 6.7K 7.3K 6.7K 6.8K 6.9K 6.9K 6.7K 6.7K 7.3K 6.7K 32 6.6K 6.9K 6.8K 6.8K 9.8K
kjh 6.8K 6.9K 6.7K 47 7.0K 6.7K 7.0K 6.8K 6.8K 6.8K 7.7K 6.7K 6.7K 6.8K 8.1K 52 6.6K 6.8K 6.7K 7.0K 7.3K
kk 6.8K 8.0K 6.8K 46 6.9K 6.8K 614.5K 6.7K 6.9K 6.8K 6.9K 6.7K 7.0K 4.5M 7.0K 48 6.6K 65.9K 8.4K 6.8K 124.9K
krc 6.8K 6.9K 6.8K 6.9K 6.8K 7.0K 6.7K 6.9K 7.7K 6.9K 6.8K 6.7K 6.9K 7.6K 6.6K 6.9K 6.8K 6.8K 7.3K
kum 6.7K 6.7K 6.7K 6.7K 6.6K 6.8K 6.6K 6.7K 6.7K 6.7K 6.8K 6.6K 6.8K 6.6K 6.5K 6.7K 6.6K 6.7K 7.1K
ky 11.2K 220.1K 35.9K 47 6.7K 83.1K 625.6K 6.6K 6.7K 6.7K 7.0K 6.7K 6.6K 309.3K 6.7K 50 122.5K 549.0K 232.4K 15.0K 6.7K 127.0K
ru 6.8K 389.0K 36.2K 2.4K 12.3K 82.9K 47.1M 6.7K 7.3K 6.8K 4.5M 6.9K 6.8K 309.3K 8.7K 122.5K 16.8M 296.7K 54.6K 1.2M
sah 6.6K 6.9K 6.6K 48 6.7K 6.7K 7.1K 6.6K 6.7K 8.1K 7.0K 7.6K 6.6K 6.7K 8.7K 51 6.5K 6.9K 6.9K 6.6K 7.3K
slr 61 52 44 52 837 55 32 52 48 50 51 56 59 32 59 48
tk 9.7K 123.4K 30.2K 47 6.7K 78.6K 250.4K 6.5K 6.6K 6.6K 6.6K 6.6K 6.5K 122.5K 122.5K 6.5K 56 244.1K 235.4K 14.0K 6.6K 7.2K
tr 11.3K 636.5K 65.4K 50 13.9K 158.2K 39.9M 6.7K 6.9K 6.8K 65.9K 6.9K 6.7K 549.0K 16.8M 6.9K 59 244.1K 531.2K 29.2K 64.4K 254.8K
tt 11.3K 215.1K 67.2K 50 8.3K 160.0K 572.5K 6.6K 6.8K 6.7K 8.4K 6.8K 6.6K 232.4K 296.7K 6.9K 32 235.4K 531.2K 15.0K 6.7K 136.3K
tyv 4.5K 13.6K 16.5K 15.1K 29.0K 15.0K 14.0K 29.2K 15.0K 10.8K
ug 6.8K 6.9K 6.7K 53 7.0K 6.6K 111.2K 6.8K 6.8K 7.0K 6.8K 6.8K 6.7K 6.7K 54.6K 6.6K 59 6.6K 64.4K 6.7K 19.5K
uum 507
uz 10.5K 227.4K 27.5K 48 7.3K 59.9K 559.7K 7.1K 9.8K 7.3K 124.9K 7.3K 7.1K 127.0K 1.2M 7.3K 48 7.2K 254.8K 136.3K 10.8K 19.5K

Table 7: Parallel corpora size for each language pair.
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Source Link Languages Size
Tatoeba Challenge
(OPUS+Tatoeba+
Gourmet+JW300)

https://github.

com/Helsinki-NLP/

Tatoeba-Challenge

az, ba, crh, cv, gag,
kjh, kk, krc, kum, ky,
sah, tk, tr, tt, tyv, ug,
uz, ru, en

∼40m

UDHR https://www.ohchr.org/EN/

UDHR/Pages/SearchByLang.

aspx

alt, ba, az, cv, cjs,
crh, gag, kaa, kjh, kk,
ky, sah, slr, tk, tt, tr,
ug, uz, ru, en

∼100 per direction

Bible https://www.

faithcomesbyhearing.com/

audio-bible-resources/

recordings-database

alt, ba, az, cjs,cv, crh,
en, gag, kaa, kjh, kk,
ky, sah, tk, tt, ug, uz,
tr

∼9k per direction

Ted Talks https://www.ted.com/

participate/translate/

our-languages

az, en, kk, ky, ru, tt,
tr, tt, uz, ug

∼600k

Mozilla az, ba, cv, en, kk, ky,
sah, tk, tt, ug, uz, tr,
ru

∼300 per direction

Azerbaijani News https://github.com/

derintelligence/

en-az-parallel-corpus

az, en ∼68k

Uzbek/English News https://data.gov.uz

https://president.uz

https://uz.usembassy.gov

https://www.gov.uz

uz, en ∼60k

Uzbekistan Legislative
Dataset (Law)

https://lex.uz/ uz, ru, en ∼1.5m

KhanAcademy Project
Translations(Math/Science)

https://uz.khanacademy.

org/

uz, en ∼200k

Karakalpak News https://kknews.uz

https://www.gov.uz

http://karakalpakstan.uz

https://www.qrstat.uz/kk

kaa, uz, ru, en ∼60k

Bashkir-Russian Corpus https://github.

com/AigizK/

bashkort-parallel-corpora

ba,ru ∼600k

Salar Language Materials http://www.sino-platonic.

org/complete/spp043_

salar_language.pdf

slr,en ∼700

Urum Language Materials https://web.archive.org/

web/20180919233848/http:

//projects.turkmas.uoa.

gr/urum/

urum, en ∼500

Russian-Shor
Online Dictionary

http://tili.tadarlar.ru/

tadar/rus-shor.html

ru,cjs ∼300

Table 8: Sources and links for resources and websites used.
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