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Abstract

The availability of corpora has led to signif-
icant advances in training semantic parsers
in English. Unfortunately, for languages
other than English, annotated data is lim-
ited and so is the performance of the de-
veloped parsers. Recently, pretrained multi-
lingual models have been proven useful for
zero-shot cross-lingual transfer in many NLP
tasks. What else does it require to apply a
parser trained in English to other languages for
zero-shot cross-lingual semantic parsing? Will
simple language-independent features help?
To this end, we experiment with six Dis-
course Representation Structure (DRS) seman-
tic parsers in English, and generalize them
to Italian, German and Dutch, where there
are only a small number of manually anno-
tated parses available. Extensive experiments
show that despite its simplicity, adding Univer-
sal Dependency (UD) relations and Universal
POS tags (UPOS) as model-agnostic features
achieves surprisingly strong improvement on
all parsers. We have publicly released our
code at https://github.com/GT-SALT/

Multilingual-DRS-Semantic-Parsing .

1 Introduction

Semantic parsing is the task of transducing natu-
ral language to meaning representations, which in
turn can be expressed through many different se-
mantic formalisms including Discourse Represen-
tation Theory (DRT) (Kamp and Reyle, 2013), Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), and so on. However, manually anno-
tating meaning representations in a new language
is a painstaking process which explains why there
are only a few datasets available for different for-
malisms in languages other than English. For in-
stance, in the case of DRT, even in the latest re-
lease of the Parallel Meaning Bank (PMB) (v3.0,

†Work done while Federico Fancellu was at the University
of Edinburgh.

Abzianidze et al., 2017), there is no gold training
data available for Italian and Dutch and the few
annotated sentences are used as development and
test data. How can one train a parser when train-
ing data is unavailable? This work answers this
question by looking at what it is required for zero-
shot cross-lingual semantic parsing – learning a
semantic parser for English and testing it on other
languages.

Prior research on cross-lingual semantic pars-
ing leveraged machine translation techniques to
map the semantics from a language to another (Da-
monte and Cohen, 2018). However, these methods
require parallel corpora to extract automatic align-
ments which are often noisy or not available at
all. Other work exploited parameter-shared models,
which are based on language-independent represen-
tations. In particular, cross-lingual word embed-
dings and pretrained multilingual models (Hu et al.,
2020) have been used in various cross-lingual NLP
tasks, including semantic parsing (Oepen et al.,
2020; Sherborne et al., 2020). However, pretrained
multilingual models are computationally expensive
while cross-lingual word embeddings have inferior
performance. To this end, we propose to add simple
language-independent features in zero-shot cross-
lingual semantic parsing, which are lightweight
extensions to all models instead of designing new
architectures with high time and space complexity.

Specifically, we explore cross-lingual syntactic
features, Universal Dependencies (UD) and Uni-
versal POS tags (UPOS) (De Marneffe et al., 2014),
which have been widely annotated in 90 languages.
Since semantic parsers need to understand the syn-
tax of sentences well, and UD relations and UPOS
have been shown to be strong indicators of se-
mantic roles (Reddy et al., 2017), we hypothe-
size that using UD and UPOS as simple language-
independent and model-agnostic features can boost
the performance of zero-shot cross-lingual seman-
tic parsing in all models and languages. To test
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DRS( schläfrig( S1 ) TIME( S1 T1 ) THEME( S1 Z0 ) Speaker( Z0 ) Time( T1 ) EQ( T1 Y0 ) Now( Y0 ) )

DRS( ich( X1 ) bin( X2 ) TIME( E1 T1 ) THEME( E1 X1 ) Time( T1 ) EQ( T1 Y0 ) Now( Y0 ) )

DRS( Person( X1 ) schläfrig( S1 ) TIME( S1 T1 ) THEME( S1 X1 ) Time( T1 ) EQ( T1 Y0 ) Now( Y0 ) )

Gold DRS:

DRS before adding UD:

DRS after adding UD:

Figure 1: The Discourse Representation Structure (DRS) for “Ich bin schläfrig. (I am sleepy.)”, including ground
truth DRS, parsed DRS before and after adding UD relations as features.

our hypothesis, we focus on the PMB, where sen-
tences in English, German, Italian and Dutch are
annotated with their meaning representations. The
annotations in the PMB are based on Discourse
Representation Theory (DRT, Kamp and Reyle,
2013). Figure 1 shows an annotation example usign
DRT for the sentence “Ich bin schläfrig. (I am
sleepy.)”. A Discourse Representation Structure
(DRS) is a nested structure with unary and binary
predicates representing semantic roles, alongside
logic operators (e.g. ¬) and discourse relations (e.g.
CONTINUATION). In this example one can see
that although a parser could understand the coarse
meaning of the whole sentence without UD, it strug-
gles with understanding some lexical-level mean-
ing. However, it successfully identifies “schläfrig”
as the event, based on its UD relation tag “root”.

We carry out our experiments on 6 DRS parsers
to test different architectures (LSTM vs. Trans-
formers) as well as different decoding strategies
(sequential vs. coarse-to-fine). Whereas the origi-
nal parsers utilize a sequential neural encoder with
monolingual representations, we experiment with
cross-lingual representations (i.e. cross-lingual
word embeddings and a multilingual pretrained
encoder), and language-independent features (i.e.
UPOS, UD relations and structures). We also use
tree-based encoders to replace the sequential en-
coder, in order to assess whether modelling syntax
is beneficial. Results show that adding UD relations
and UPOS as features, despite its frustrating sim-
plicity, leads to surprisingly strong zero-shot cross-
lingual semantic parsers, even when UD are the
only input used during encoding. Also, UD further
boost the performance of strong pretrained multi-
lingual models. Surprisingly, small non-pretrained
well-designed coarse-to-fine decoding models with
UD relations and UPOS even outperform large pre-
trained multilingual models in some languages.

A DRS is usually represented in a nested ‘box‘ structure.
However, the systems we reference in this paper all use a lin-
earization of this box representation. To avoid any confusion,
we only show examples of linearized DRS throughout the
paper.

2 Method

2.1 Models
Our models are all encoder-decoder architectures
that take as input a natural language sentence
S = s1...s|S| and output a linearized DRS L as
a sequence of tokens y1...y|L|. Each model dif-
fer in the particular encoder or decoder used, as
described in the remainder of this section.

Coarse-to-fine Decoding Models: Our first set
of models are based on the coarse-to-fine encoder-
decoder architecture of Liu et al. (2018).

Encoder. We first experiment with a BiLSTM
encoder (C2F-BiLSTM). In cross-lingual settings,
we concatenate cross-lingual embeddings with UD
relation embeddings and optionally Universal POS
embeddings as model input. To model the de-
pendency structure directly, we also test with a
child-sum tree-LSTM (Tai et al., 2015) as an alter-
native to the BiLSTM (C2F-TreeLSTM), where
each word in the input sentence corresponds to a
node in the dependency tree. However, completely
discarding word order and context in TreeLSTM
might hurt performance. Thus, we combine tree-
LSTM and BiLSTM to get C2F-Bi/TreeLSTM,
where tree-LSTM inputs are initialized using the
last layer of a Bi-LSTM (Chen et al., 2017).

Decoder. At decoding time we follow Liu et al.
(2018) in reconstructing the linearized DRS repre-
sentations in three steps coarse-to-fine, each con-
ditioned on the previous one: first, we predict the
outer DRS tags which correspond to the semantic
environment (e.g. the ‘boxes‘) that predicates will
be placed in. Then, the system predicts unary and
binary predicates, and in the last step their argu-
ments. The decoder also makes use of a copying
mechanism to predict those predicates that are also
lemmas in the input sentence (e.g. “schläfrig”). We
refer to the reader to the original paper for more
details.

Sequential Decoding Models: van Noord et al.
(2018) introduced another way of losslessly lin-
earizing DRS, along with a dedicated parser. In-
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Model German Italian Dutch
P R F P R F P R F

PMB
2.1

C2F-BiLSTM-BW 0.608 0.503 0.551 0.619 0.608 0.614 0.555 0.510 0.532
C2F-BiLSTMW,D 0.689 0.651 0.669 0.749 0.727 0.735 0.652 0.620 0.635

C2F-BiLSTMW,P,D 0.728 0.675 0.700 0.774 0.742 0.758 0.694 0.640 0.666
C2F-BiLSTMD 0.652 0.643 0.647 0.711 0.695 0.703 0.624 0.602 0.613

C2F-TreeLSTMW 0.513 0.465 0.488 0.581 0.574 0.578 0.551 0.516 0.533
C2F-TreeLSTMW,D 0.702 0.657 0.679 0.749 0.722 0.735 0.678 0.597 0.635

C2F-TreeLSTMW,P,D 0.748 0.684 0.715 0.769 0.716 0.742 0.701 0.615 0.655
C2F-TreeLSTMD 0.666 0.666 0.666 0.723 0.686 0.704 0.652 0.585 0.617

C2F-Bi/TreeLSTMW 0.640 0.566 0.601 0.676 0.628 0.651 0.625 0.552 0.586
C2F-Bi/TreeLSTMW,D 0.670 0.664 0.667 0.741 0.689 0.714 0.641 0.583 0.611

C2F-Bi/TreeLSTMW,P,D 0.726 0.684 0.704 0.763 0.730 0.746 0.675 0.616 0.644
LSTM-NW 0.491 0.514 0.503 0.537 0.583 0.559 0.507 0.519 0.513

LSTM-N W,D 0.617 0.577 0.596 0.675 0.671 0.673 0.597 0.585 0.591
Transformer-NW 0.527 0.543 0.535 0.559 0.628 0.592 0.535 0.574 0.554

Transformer-NW,D 0.599 0.606 0.602 0.651 0.681 0.666 0.602 0.605 0.603
XLM-R-Enc-N 0.645 0.651 0.648 0.647 0.673 0.660 0.687 0.690 0.688

XLM-R-Enc-ND 0.653 0.653 0.653 0.652 0.674 0.663 0.696 0.693 0.695

PMB
3.0

LSTM-NW 0.425 0.457 0.440 0.457 0.507 0.480 0.446 0.495 0.469
LSTM-NW,D 0.474 0.520 0.496 0.517 0.559 0.537 0.482 0.526 0.503

Transformer-NW 0.452 0.448 0.450 0.478 0.541 0.508 0.481 0.514 0.497
Transformer-NW,D 0.480 0.503 0.491 0.545 0.583 0.563 0.524 0.557 0.540

XLM-R-Enc-N 0.678 0.697 0.687 0.658 0.677 0.668 0.732 0.730 0.731
XLM-R-Enc-ND 0.719 0.712 0.715 0.692 0.709 0.701 0.759 0.756 0.757

Table 1: Results of adding language-independent features in various cross-lingual models in PMB 2.1 and 3.0,
where W, P and D are the cross-lingual word embeddings, POS embeddings and Dependency relation embeddings
respectively. Bold fonts indicate the best performance of features with the same model.

stead of a bracketed representation, predicates,
logic operators and discourse relations, along with
their arguments, are represented as a sequence of
tokens separated by a special symbol “|||”. Each
variable argument is represented as a relative in-
dex pointing to its referent, if already introduced.
We refer the reader to the original paper for more
details.

To generate such linearized meaning representa-
tions, we use either a word-level LSTM encoder-
decoder model with copying mechanism (LSTM-
N) or alternatively, we follow Liu et al. (2019) to
replace the LSTM with a Transformer encoder-
decoder architecture with copying mechanism
(Transformer-N). Given the competitive perfor-
mances of multilingual pretrained models in zero-
shot NLP tasks recently (Hu et al., 2020), we also
experiment with XLM-R, a state-of-the-art pre-
trained multilingual model. To adapt such NLU
model in our encoder-decoder semantic parser, we
use XLM-R to initialize encoder and randomly ini-
tialize the Transformer decoder (XLM-R-Enc-N).

2.2 Language-Independent Features

In order to make the model directly transferable
to the German, Italian and Dutch test data, we use
both (1) UD relations and structure (D) based
on UD parses for English, German, Italian and

TT/min PT/s Size/P
XLM-R-Enc-N 300 156 773.3M
C2F-BiLSTMD 9(33x) 25(6.2x) 2.5M(309x)

C2F-BiLSTMW,D 10(30x) 27(5.8x) 168.7M(4.6x)

Table 2: Model size and running time in PMB 2.1,
where TT is training time till convergence, PT is Pars-
ing/Inference time in German test set and Size is the
model size measured with number of Parameters (P).

Dutch and (2) Universal POS tags (P)(Petrov
et al., 2011). Both features are extracted using
UDPipe (Straka and Straková, 2017).

All the models are based on either of the fol-
lowing cross-lingual representations: (1) Cross-
lingual word embeddings(W) where we use the
MUSE (Conneau et al., 2017) pre-trained cross-
lingual word embeddings; (2) Multilingual pre-
trained model where XLM-R (Conneau et al.,
2019) is used , considering that XLM-R performs
better than XLM (Lample and Conneau, 2019),
and mBERT (Wu and Dredze, 2019) in most cross-
lingual NLU tasks.

3 Experiments and Results

Data and Evaluation We use the PMB v.2.1.0
for the first series of experiments, where coarse-to-
fine decoding models can be used. The dataset con-
sists of 4405 English, 1173 German, 633 Italian and



5851

operators non-lexical predicate (u) non-lexical predicate (b) lexical predicate
P R F P R F P R F P R F

German 0.716 0.378 0.495 0.770 0.664 0.713 0.563 0.528 0.545 0.729 0.733 0.731
Italian 0.930 0.385 0.544 0.797 0.773 0.785 0.563 0.612 0.586 0.662 0.771 0.712
Dutch 0.583 0.189 0.286 0.762 0.665 0.710 0.564 0.543 0.553 0.483 0.607 0.538

Table 3: Error analysis of cross-lingual C2F-BiLSTM in PMB 2.1, where u and b represent unary and binary.

583 Dutch sentences. We divide the English sen-
tences into 3072 training, 663 development and 670
testing sentences. We consider all the sentences
in other languages as test set. We also conduct ex-
periments using PMB v.3.0, where presuppositions
and sense tags are considered. However, these ad-
ditional tags are not compatible with the bracketed
structure used in coarse-to-fine decoding models
and therefore we use v.3.0 to evaluate sequential
decoding models. For English, there are 6620 train-
ing, 885 development and 898 testing sentences.
There are 403 German, 547 Italian and 483 Dutch
sentences in test sets. We use Counter (Van No-
ord et al., 2018) to evaluate the performance of our
models. Counter uses a random hill climbing graph-
matching algorithm to look for the best alignment
between the predicted and gold DRS and computes
precision, recall and F1. For further details, the
reader can refer to Van Noord et al. (2018).1

3.1 Using Language-Independent Features in
Coarse-to-fine Decoding Models

To explore the roles of various language-
independent features in zero-shot cross-lingual se-
mantic parsing, we use C2F-BiLSTM as base-
line and compare it to C2F-TreeLSTM and C2F-
Bi/TreeLSTM. We also conducted ablation studies
on the features used. As shown in Table 1, we
found that:

(1) UD relation features are crucial for zero-
shot cross-lingual semantic parsing. Adding UD
relations significantly improves the performance
in all three coarse-to-fine decoding models in all
three languages, compared to using cross-lingual
word-embedding alone. Models using UD rela-
tion embeddings alone (D) perform well, given that
the performance does not drop much after deleting
cross-lingual word embeddings. However, model-
ing UD structure via tree encoders does not help
zero-shot cross-lingual semantic parsing consis-
tently.

(2) UPOS features further boost the perfor-
mance. After adding UPOS (P), all coarse-to-fine

1. Detailed preprocessing and evaluation are in Appendix.

models perform even better, reaching state-of-the-
art, though the improvement is not as large as
adding UD to cross-lingual word embeddings.

3.2 Using UD Relations in All Models

In Table 1, we also examine whether the large im-
provement made by UD relations is agnostic to
models, by adding them in all six baseline models
in German, Italian and Dutch. We found that UD
relations lead to consistent and robust improve-
ments. Results in PMB 2.1 show that adding UD
relation features improves the performance in all
three languages and six models. Although XLM-R-
Enc-N model performs better than non-pretrained
models with only cross-lingual embeddings, simple
non-pretrained coarse-to-fine models with UD fea-
tures outperform that large pretrained multilingual
model in German and Italian. Considering non-
pretrained models require much less model size
and training/inference time in Table 2, using UD
features in deliberately designed non-pretrained
models has its advantage over larger pretrained
multilingual models. As for PMB 3.0, UD relation
features improve the performance in all models
and languages as well, and the improvement is sig-
nificant even in the pretrained multilingual model.
Such improvement is also consistent regardless of
different ways of evaluation and linearizing DRS
meaning representations in PMB 2.1 and 3.0.

3.3 Error Analysis

We use C2F-BiLSTM, the best cross-lingual model
in PMB 2.1, to perform error analysis to assess
the quality of the prediction for operators (i.e.
logic operators like “Not” as well as discourse re-
lations “Contrast”), unary non-lexical predicates
(e.g. time(t)), binary non-lexical predicates (e.g.
Agent(e,x)), and lexical predicates (e.g. open(e)).
Results in Table 3 show that predicting operators
and binary predicates is hard, compared to the other
two categories. Prediction of lexical predicates is
relatively good even though most tokens in the test
set were never seen during training. This can be
attributed to the copying mechanism that transfers
tokens from the input directly during predication.
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4 Related work

Previous work have explored two main methods
for cross-lingual semantic understanding. One
method requires parallel corpora to extract align-
ments between source and target languages us-
ing machine translation (Padó and Lapata, 2005;
Damonte and Cohen, 2017; Zhang et al., 2018;
Xu et al., 2020), often followed by projection
of semantic representations (Reddy et al., 2017).
The other method is to use parameter-shared mod-
els based on cross-lingual representations such as
cross-lingual word embeddings (Duong et al., 2017;
Susanto and Lu, 2017; Mulcaire et al., 2018; Her-
shcovich et al., 2019; Cai and Lapata, 2020), pre-
trained multilingual models (Zhu et al., 2020; Li
et al., 2020; Oepen et al., 2020), and universal
POS tags (Blloshmi et al., 2020). Recently, Ozaki
et al. (2020); Samuel and Straka (2020); Dou et al.
(2020) conducted supervised German DRS pars-
ing with pretrained multilingual models, but they
did not explore zero-shot cross-lingual semantic
parsing. Besides, although UD was proven useful
in other cross-lingual tasks (Subburathinam et al.,
2019), it has been under-explored in cross-lingual
semantic parsing.

5 Conclusion

This work proposes to use simple language-
independent features for the task of zero-shot cross-
lingual semantic parsing. We show that simple
UD and UPOS features can significantly improve
the performance of cross-lingual semantic parsers
based on coarse-to-fine decoding techniques or pre-
trained multilingual models. In the future, we plan
to use such features for other semantic formalisms
(e.g. AMR) and other languages (e.g. Chinese).
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Model P R F
C2F-BiLSTMW 0.8698 0.8361 0.8526

C2F-TreeLSTMW 0.8342 0.8016 0.8176
C2F-BiLSTMW,D 0.8764 0.8593 0.8678

C2F-TreeLSTMW,D 0.8569 0.8356 0.8461
C2F-BiLSTMD 0.6629 0.6417 0.6521

C2F-TreeLSTMD 0.6550 0.6589 0.6569
C2F-BiLSTMW,P,D 0.8919 0.8584 0.8748

C2F-TreeLSTMW,P,D 0.8590 0.8362 0.8474
LSTM-N 0.8317 0.8041 0.8177

Transformer-N 0.8264 0.8126 0.8194
XLM-R-Enc 0.8579 0.8283 0.8428

LSTM-N 0.8018 0.7567 0.7786
Transformer-N 0.8109 0.7615 0.7854
XLM-R-Enc 0.8377 0.7955 0.8161

XLM-R-Enc + D 0.8407 0.7988 0.8192

Table 4: Results for monolingual semantic parsing (i.e.
trained and tested in English). PMB 2.1 results are
above solid line, PMB 3.0 results are under solid line.

A Monolingual DRS Parsing

For completeness, along with the results for
the cross-lingual task, we also report results for
monolingual English semantic parsing in Table 4.
Coarse-to-fine models are still state-of-the-art for
monolingual semantic parsing for English in PMB
2.1, where DRS can be converted to tree-based
representations. Dependency features in conjunc-
tion with word and PoS embeddings lead to the
best performance; however, in all settings explored,
treeLSTMs do not outperform BiLSTMs. In PMB
3.0, models with pretrained encoders and Depen-
dency features perform best.

B Preprocessing and Evaluation of PMB
2.1 and PMB 3.0

PMB data can be downloaded from https://pmb.

let.rug.nl/data.php.
Unlike other work on the PMB (e.g. van No-

ord et al., 2018), Liu et al. (2018) does not deal
with presupposition due to constraints in convert-
ing DRS meaning representation to tree-based rep-
resentations. In PMB 2.1, presupposed variables
are extracted from a main box and included in a
separate one. We revert this process so to ignore
presupposed boxes. Similarly, we also do not deal
with sense tags. For fair comparison, all other mod-
els are using the same preprocessed meaning repre-
sentation in PMB 2.1.

In PMB 3.0, presuppositions and sense tags are
considered. Thus, coarse-to-fine decoding models
can not be used.

Note that lexical predicates in PMB are in En-
glish, even for non-English languages. Since

this is not compatible with copying mechanism
in coarse-to-fine decoding models, LSTM-N and
Transformer-N, we revert predicates to their origi-
nal language in PMB 2.1 by substituting them with
the lemmas of the tokens they are aligned to. In
PMB 3.0, we do not conduct such reversion, which
is compatible with XLM-R-Enc-N, where there is
no copying mechanism.

C Model Details

Coarse-to-fine models are based on the coarse-
to-fine encoder-decoder architecture of Liu et al.
(2018). In order to be used as input to the parser,
Liu et al. (2018) first convert the DRS into tree-
based representations, which are subsequently lin-
earized into PTB-style bracketed sequences. We
use the same conversion. For further details about
the conversion and the model, we refer the reader
to the original paper.

LSTM-N, Transformer-N and XLM-R-Enc is
based on van Noord et al. (2018)’s way of losslessly
linearizing DRS meaning representations and the
corresponding parser. Clauses in DRS are repre-
sented as sequences without changing the order,
where a special symbol “|||” is used to start a new
clause and variables in clauses are represented as
relative indices. Based on sentences and such lin-
earized meaning representations, we use word-level
encoder-decoder models to generating parses. We
refer the reader to the original paper for further
details.

D Training Details

In all models, UD relation embeddings (D) and
POS tag embeddings (P) are randomly initialized
and updated during training. Cross-lingual word
embeddings are fixed during training and XLM-R
is updated.

We adapted OpenNMT (Klein et al., 2017) for
LSTM-N and Transformer-N models, while used
fairseq (Ott et al., 2019) to implement XLM-R-Enc
model.

We manually tune the hyper-parameters. For
coarse-to-fine LSTM models, we use two layer
BiLSTM or TreeLSTM in the encoder side. We
use dropout with 0.5 as dropout rate and Adam
optimizer with a learning rate of 5e-4. For LSTM-
N, we use batch size 12 and the SGD optimizer with
an initial learning rate of 0.7. The learning rate is
decayed by 0.7 every 1500 steps. For Transformer-
N, we use 6-layer Transformer. We also use a batch

https://pmb.let.rug.nl/data.php
https://pmb.let.rug.nl/data.php
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size of 512 tokens and the Adam optimizer with
an initial learning rate of 1e-3. The learning rate is
decayed by 0.9 every 1000 steps.

In the XLM-R-Enc-N model, we use XLM-R
base model to initialize the encoder and randomly
initialize a 12-layer transformer decoder. We use
Adam as optimizer. Inspired by Liu and Lapata
(2019), we use a larger learning rate on the de-
coder side, in order to solve the discrepancy be-
tween pretrained encoder and non-pretrained de-
coder. Specifically, in the encoder side, we use a
polynomial learning rate scheduler with 2e-5 as
max learning rate and 5000 warmup steps. In the
decoder side, we use a polynomial learning rate
scheduler with 5e-5 as max learning rate and 2500
warmup steps. Total update steps are all 50000. We
use a label smoothing rate 0.1 and dropout rate 0.1.

We train all models on GPU GeForce RTX
2080. The training time for Coarse-to-fine models,
Transformer-N and LSTM-N models are all within
2 hours. The training time for XLM-R-Enc-N is 5-6
hours. The number of parameters in Coarse-to-fine
models, Transformer-N and LSTM-N models are
similar to the parameters of C2F-BiLSTM shown
in Table 2 in the paper. The number of parame-
ters in XLM-R-Enc-N is shown in Table 2 in the
paper. We use English development data for evalu-
ation, where the validation performance is similar
to the performance in the English test set reported
in Table 1.


