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Abstract

Language agnostic and semantic-language in-
formation isolation is an emerging research di-
rection for multilingual representations mod-
els. We explore this problem from a novel an-
gle of geometric algebra and semantic space.
A simple but highly effective method “Lan-
guage Information Removal (LIR)” factors out
language identity information from semantic
related components in multilingual represen-
tations pre-trained on multi-monolingual data.
A post-training and model-agnostic method,
LIR only uses simple linear operations, e.g.
matrix factorization and orthogonal projection.
LIR reveals that for weak-alignment multi-
lingual systems, the principal components of
semantic spaces primarily encodes language
identity information. We first evaluate the
LIR on a cross-lingual question answer re-
trieval task (LAReQA), which requires the
strong alignment for the multilingual embed-
ding space. Experiment shows that LIR is
highly effectively on this task, yielding almost
100% relative improvement in MAP for weak-
alignment models. We then evaluate the LIR
on Amazon Reviews and XEVAL dataset, with
the observation that removing language infor-
mation is able to improve the cross-lingual
transfer performance.

1 Introduction

Recently, large-scale language modeling has ex-
panded from English to the multilingual setting
(i.a., Devlin et al. (2019); Conneau and Lample
(2019); Conneau et al. (2020)). Although these
models are trained with language modeling ob-
jectives on monolingual data, i.e. without cross-
lingual information, these multilingual systems ex-
hibit impressive zero-shot cross-lingual ability (Hu
et al., 2020b). These observations raise many ques-
tions and provide insight for multilingual repre-
sentations learning. First, how is the language
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identity information and the semantic information
expressed in the representation? Understanding
their relations and underlying geometric structure
is crucial for insights into designing more effec-
tive multilingual embedding systems. Second, how
can we factor out the language identity information
from the semantic components in representations?
In many application, e.g. cross-lingual semantic
retrieval, we wish to only keep the semantic in-
formation. Third, what is the geometric relation
between different languages? Efforts have been
made to answer these questions, e.g. Artetxe et al.
(2020); Chung et al. (2020); Lauscher et al. (2020).
Such prior work has addressed the problem at train-
ing time. In this work, we systematically explore a
post-training method that can be readily applied to
existing multilingual models.

One of the first attempts in this research area,
Roy et al. (2020), proposed two concepts for lan-
guage agnostic models: weak alignment v.s. strong
alignment. For multilingual systems with weak
alignment, for any item in language L1, the nearest
neighbor in language L2 is the most semantically
“relevant” item. In the case of strong alignment, for
any representation, all semantically relevant items
are closer than all irrelevant items, regardless of
their language. Roy et al. (2020) show sentence rep-
resentations from the same language tend to cluster
in weak-alignment system. Similar phenomena can
be observed on other pre-trained multilingual mod-
els like mBERT, XLM-R (Conneau et al., 2020)
and CMLM (Yang et al., 2020). Roy et al. (2020)
provides carefully-designed training strategies for
retrieval-like model to mitigate this issue in order
to obtain language agnostic multilingual systems.

We systematically explore a simple post-training
method we refer to as Language Information Re-
moval (LIR), to effectively facilitate the language
agnosticism in multilingual embedding systems.
First introduced in Yang et al. (2020) to reduce
same language bias for retrieval tasks, the method
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Figure 1: Language Information Retrieval (LIR) removes language identification information using principle com-
ponents of the original representation space. This mechanism is validated by LIR’s effects demonstrated in Fig. 2.

uses only linear algebra factorization and post-
training operation. LIR can be conveniently ap-
plied to any multilingual model. We show LIR
yields surprisingly large improvements in several
downstream tasks, including LAReQA, a cross-
lingual QA retrieval dataset (Roy et al., 2020);
Amazon Reviews, a zero-shot cross lingual evalua-
tion dataset; XEVAL, a collection of multilingual
sentence embedding tasks. Our results suggest
that the principal components of a multilingual
system with self-language bias primarily encodes
language identification information. Implementa-
tion for LIR is available at https://github.
com/ziyi-yang/LIR.

2 Language Information Removal for
Self Language Bias Elimination

In this section we describe Language Information
Removal (LIR) to address the self language bias in
multilingual embeddings (Yang et al., 2020). The
first step is to extract the language identity infor-
mation for each language space. Given a multi-
lingual embedding system E, e.g. multilingual
BERT, and a collection of multilingual texts {tiL},
where tiL denotes the ith phrase in the collection
for the language L. We construct a language matrix
ML ∈ Rn×d for language L, where n denotes the
number of sentences in language L and d denotes
the dimension of the representation. The row i of
ML is the representation of tiL computed by E.

Second, we extract language identification com-
ponents for each language. One observation in
multilingual systems is that representations from
the same language tend to cluster together (w.r.t rep-
resentations in other languages), even though these
representations have different semantic meanings.
This phenomenon is also known as “weak align-
ment” (Roy et al., 2020). The mathematical expla-
nation for this clustering phenomenon is that repre-
sentations in the same language have shared vector
space components. We propose that these shared
components essentially represent the language iden-
tification information. Removing these language

components should leave semantic-related informa-
tion in the representations.

To remove the shared components, or the
language identification from the representations,
we leverage singular value decomposition (SVD)
which identifies the principal directions of a space.
We use SVD instead of PCA since SVD is more sta-
ble numerically (e.g. for Läuchli matrix). Specif-
ically, the SVD of a language matrix is ML =
ULΣLV

T
L , where the columns of VL ∈ Rd×d are

the right singular vectors of ML. We take first r
columns of VL as the language identification com-
ponents, denoted as cL ∈ Rd×r. Different values
of r are explored in the next experiments section.
Language identification components are removed
as follows. Given a multilingual representation eL
in language L, we subtract the projection of eL
onto cL from eL, i.e.

eL := eL − cL
cTLeL
‖eL‖2

(1)

3 Experiments

In the following experiments, sentences used for
extracting principle components are sampled from
Wiki-40B (Guo et al., 2020). We use 10,000 sen-
tences per language. We notice performance ini-
tially increases as more sentences are used but
then is almost unchanged after n > 10, 000. We
tried different samplings of {tiL} and text resources
other than Wiki-40B, e.g., Tatoeba (Artetxe and
Schwenk, 2019). The minimal differences in per-
formance suggest language components are stable
over different domains.

3.1 Cross-lingual Answer Retrieval

We first examine LIR on LAReQA, a cross-lingual
answer retrieval dataset containing 11 languages
(Roy et al., 2020). LAReQA consists of two re-
trieval sub-datasets: XQuAD-R and MLQA-R.
XQuAD-R is built by translating 240 paragraphs
in the SQuAD v1.1 dev set into 10 languages
and converting them to retrieval tasks following

https://github.com/ziyi-yang/LIR
https://github.com/ziyi-yang/LIR
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the procedure from ReQA (Ahmad et al., 2019).
Similarly, MLQA-R is constructed by converting
MLQA (Lewis et al., 2020) to QA retrieval. In
other words, each question in LAReQA has 11 rel-
evant answers, one in each language. Two retrieval
models with self language bias are presented in
the LAReQA original paper, i.e. “En-En” and “X-
X”. Specifically, the multilingual model “En-En”
finetunes mBERT for QA retrieval on the 80,000
English QA pairs from the SQuAD v1.1 train set
using a ranking loss. The model “X-X” trains on
the translation (into 11 languages) of the SQuAD
train set. In one training example, the question and
answer are in the same language. Since given a
question query, all positive examples are within-
language, “En-En” and “X-X” exhibit strong self-
language bias and weak-alignment property.

For evaluation, we first compute the language
identification components with “En-En” and “X-
X” models released by LAReQA. For testing, lan-
guage identification components are removed from
question and answer embeddings following Eq. (1).
Results are shown in Table 1 and the evaluation
metric is mean average precision (MAP) of re-
trieval. Detailed results for each language are pro-
vided in the appendix (Table 5). Simply applying
LIR results in significant improvements, almost
100% relatively for “X-X” model on XQuAD-R.
This huge boost reveals the algebraic structure
for multilingual representation space: in weak-
alignment multilingual system, the principal com-
ponents primarily encode language information. In
LAReQA, each language has one of the relevant
answers. The performance improvement itself al-
ready indicates less language bias.

XQuAD-R MLQA-R
En-En X-X En-En X-X

w/o LIR 27.8 23.3 35.7 26.0
r = 1 36.7 45.2 37.0 42.4
r = 2 36.7 45.6 36.2 41.6
r = 3 36.5 45.9 36.3 41.6
r = 4 36.4 45.7 36.1 41.4

Table 1: Mean average precision (MAP) of model “En-
En” and “X-X” with and without LIR.

To further illustrate the effect of LIR, we plot
the 2D PCA projection of questions and candidates
in Chinese and English for the XQuAD-R dataset.
Without LIR, as plotted on the left of Fig. 2, Chi-
nese and English embeddings are separated while
questions and candidates in the same language are
clustering together1. This weak-alignment prop-

1Note these two subfigures on the left are reproduced by

En-En w/o LIR En-En with LIR

X-X w/o LIR X-X with LIR

Question English Candidate English

Question Chinese Candidate Chinese

Figure 2: PCA projections of English and Chinese em-
beddings on the XQuAD-R dataset, with and without
LIR. The two subfigures on the left are reproduced by
authors to follow Figure 5 in Roy et al. (2020).

erty is especially prominent for model “X-X”. Af-
ter applying LIR, the separation between the two
languages vanishes. Questions and candidates em-
beddings, no matter which language they are in,
group together. Both model “En-En” and “X-X”
now exhibit strong cross-lingual alignment.

3.2 Amazon Reviews

We further evaluate LIR on zero-shot transfer learn-
ing with Amazon Reviews Dataset (Prettenhofer
and Stein, 2010). In this subsection, we use multi-
lingual BERT (Devlin et al., 2019) as the embed-
ding model. Following Chidambaram et al. (2019),
the original dataset is converted to a classification
benchmark by treating reviews of more than 3 stars
as positive and negative otherwise. We split 6000
English reviews in the original training set into 90%
for training and 10% for development. A logistic
classifier is trained on the English training set and
then evaluated on English, French, German and
Japanese test sets (each has 6000 examples) using
the same trained model, i.e. the evaluation is zero-
shot. The weights for mBERT are fixed. The repre-
sentation of a sentence/phrase is computed as the
average pooling of the transformer encoder outputs.
LIR is applied in both training and evaluation stage
using the corresponding language components.

Results presented in Table 2 show that removing
the language components from multilingual repre-
sentation is beneficial for cross-lingual zero-shot

authors to imitate Figure 5 in Roy et al. (2020) in order to
better demonstrate the effects of LIR
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transfer learning of mBERT. LIR is expected to
leave only semantic-related information in the rep-
resentation so that the logistic classifier trained on
English should be conveniently transferred to other
languages. Another interesting observation is that
unlike semantic retrieval, the peak performance
usually occurs at r > 1.

en de fr jp Avg.

w/o LIR 80.0 70.4 73.1 71.7 73.8
r = 1 80.2 70.9 74.6 72.6 74.6
r = 2 80.5 70.9 75.6 73.1 75.0
r = 3 80.2 70.8 75.4 71.8 74.5
r = 5 80.2 70.8 76.1 72.0 74.8
r = 8 80.2 71.1 75.2 70.8 74.3
r = 10 80.3 71.0 76.0 71.2 74.6
r = 12 80.0 70.9 76.0 71.4 74.6

Table 2: Classification accuracy on Amazon Reviews
Dataset.

3.3 XEVAL

We have tested LIR on cross-lingual benchmarks
in previous sections. In this section, we apply LIR
in XEVAL, a collection of multilingual sentence
representation benchmark (Yang et al., 2020). The
training set and test set of XEVAL are in the same
language (i.e. the evaluation is not cross-lingual).
Benchmarks on XEVAL include Movie Reviews
(Pang and Lee, 2005), binary SST (sentiment
analysis, Socher et al. (2013)), MPQA (opinion-
polarity, Wiebe et al. (2005)), TREC (question-
type, Voorhees and Tice (2000)), CR (product
reviews, Hu and Liu (2004)), SUBJ (subjectiv-
ity/objectivity, Pang and Lee (2004)) and SICK
(both entailment and relatedness (Marelli et al.,
2014)). For this evaluation, we use mBERT as
the base multilingual encoder. Still the weights of
mBERT are fixed during training and only down-
stream neural structures are trained. The train-
ing, cross-validation and evaluation uses SentEval
toolkit (Conneau and Kiela, 2018).

Results are presented in Table 3. The metric is
the averaging performance across 9 datasets men-
tioned above. Introducing LIR is beneficial on
German, Spanish, French and Chinese. We also
notice that for English dataset, removing principal
components actually hurts the performance. This
observation also echoes with findings in previous
English sentence embedding works, e.g. Yang et al.
(2019b). We speculate this is because English data
are dominant in mBERT training data. Therefore
mBERT representations exhibit similar behaviors
with monolingual English sentence embeddings.

en de es fr zh Avg.

w/o LIR 80.8 78.1 78.8 79.1 79.3 79.2
r = 1 80.4 78.2 79.0 79.1 79.3 79.2
r = 2 80.7 78.5 79.4 79.3 79.4 79.5
r = 5 80.6 78.0 79.4 78.9 79.3 79.2
r = 10 80.2 78.4 79.0 79.0 78.9 79.1

Table 3: Results of applying LIR to XEVAL dataset.
The metric is the average of 9 downstream tasks.

3.4 Application to Models without
Self-Language Bias

In previous sections, we have shown the great ef-
fectiveness of LIR on weak-alignment systems. As
an additional analysis, we examine LIR on multilin-
gual models without self language bias, i.e. models
“X-X-mono” and “X-Y” introduced in the original
LAReQA paper. Model “X-X-mono” is modified
from “X-X” by ensuring that each training batch
is monolingual so that in-batch negative and posi-
tive examples are in the same language. In model
“X-Y”, questions and answers are allowed to be
translated to different languages, which directly en-
courage the model to regard answers in different
languages from the question as correct. With such
designs in training, “X-X-mono” and “X-Y” are
shown to be without self-language bias, i.e. seman-
tically relevant representations are closer than all
irrelevant items, regardless of their languages.

The evaluation process is similar as in Sec-
tion 3.1. Results are presented in Table 4. Applying
LIR leads to a slight performance decrease for X-
X-mono. While the drop in X-Y is notable and
we suspect this is because the training process for
X-Y avoids, by design, self-language bias. Rather,
the principal components of X-Y contain essential
semantic-related information for the retrieval task.
This result is not negative and actually support our
argument, since for “strong alignment” multilin-
gual systems, principal components should both
contain semantic and language-related information.
Then removing principal components will hinder
the semantic retrieval. For weak-alignment mod-
els, removing just the first component should be
adequate for cross-lingual retrieval (table 1). For
tasks like classification and sentiment analysis (ta-
bles 2 and 3), the optimal number of components
to remove seems to vary on different datasets.

4 Related Work & Our Novelty

Different training methods have been proposed to
obtain language agnostic representations. LASER
(Artetxe and Schwenk, 2019) leverages translation
pairs and BiLSTM encoder for multilingual sen-
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XQuAD-R MLQA-R
X-X-mono X-Y X-X-mono X-Y

w/o LIR 50.8 62.6 48.6 48.5
r = 1 50.6 59.5 48.8 46.2
r = 2 49.8 58.1 48.0 45.5
r = 3 49.3 57.1 47.8 44.8
r = 4 48.9 56.5 47.4 44.2

Table 4: Mean average precision (MAP) of “X-X-
mono” and “X-Y” models without language bias.

tence representation learning. Multilingual USE
(Yang et al., 2019a) uses training data such as trans-
lated SNLI, mined multilingual QA and translation
pairs to learn multilingual sentence encoder. AM-
BER (Hu et al., 2020a) aligns contextualized rep-
resentations of multilingual encoders at different
granularities. LaBSE (Feng et al., 2020) finetunes a
pretrained language model with the bitext retrieval
task and mined cross-lingual parallel data to ob-
tain language agnostic sentence representations. In
contrast, LIR does not require any parallel data for
semantic alignment.

Faruqui and Dyer (2014) propose a canonical
correlation analysis (CCA) based method to add
multilingual context to monolingual embeddings.
The method is post-processing and requires bilin-
gual word translation pairs to determine the projec-
tion vectors. In contrast, LIR is post-training and
does not require labeled data. Mrkšić et al. (2017)
build semantically specialized cross-lingual vector
spaces. Like CCA, their methods requires the ad-
ditional training to adjust the original embeddings
using supervised data: cross-lingual synonyms and
antonyms. Libovickỳ et al. (2019) propose that
the language-specific information of mBERT is
the centroid of each language space (the mean of
embeddings). Zhao et al. (2021) propose several
training techniques to obtain language-agnostic rep-
resentations, including segmenting orthographic
tokens in training data and aligning monolingual
spaces by training. In contrast, LIR is post-training
and model-agnostic. Critically, this means LIR can
be conveniently and easily applied to any trained
multilingual systems without further training.

Previous explorations on principal components
of the semantic space for sentence embeddings in-
clude Arora et al. (2017) and Yang et al. (2019b),
whereby principal component removal is investi-
gated for monolingual models and the evaluation
is only conducted on semantic similarity bench-
marks. In contrast, our work investigates the multi-
lingual case and the evaluation is more diverse, e.g.
cross-lingual transfer learning. Mu and Viswanath

(2018) explore removing top components from En-
glish representations. However, it was unclear
prior to our work what purpose is served by re-
moving principal components within multilingual
and cross-lingual settings. We demonstrate these
principal components represent language informa-
tion for weak-alignment multilingual models.

Compared with Yang et al. (2020), the novelty
of this work is two-fold. First, it is unclear in Yang
et al. (2020) whether the assumption (i.e. prin-
cipal components contain language information)
holds true for both weak and strong-alignment mul-
tilingual models. In this work we clearly show
that it is is valid for weak-alignment models (Sec-
tion 3.1). However, for strong-alignment systems,
the assumption is not quite true (Table 4). Sec-
ond, in Yang et al. (2020), the evaluation is only
conducted on Tatoeba, a semantic retrieval dataset.
While in this work, evaluations are more compre-
hensive. Besides the cross-lingual retrieval dataset
LAReQA, our experiments include cross-lingual
zero-shot learning (Section 3.2) and monolingual
transfer learning (Section 3.3). These extra results
establish the effectiveness of LIR beyond the do-
main of semantic retrieval.

5 Conclusion

In this paper, we investigate the self-language bias
in multilingual systems. We explore a simple
method “Language Identity Removal (LIR)”. This
method identifies and removes the language in-
formation in multilingual semantic space by sin-
gular value decomposition and orthogonal projec-
tion. Although as a simple and linear-algebra-only
method, LIR is highly effective in several down-
stream tasks, including zero-shot transfer learn-
ing, sentiment analysis, etc. Especially for cross-
lingual retrieval, introducing LIR increases the per-
formance of weak-alignment multilingual systems
by almost 100% relatively in MAP.
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A Experimental results for each
language of model “X-X” on LAReQA

Here we provide the detailed experiment results
of each language on the XQuAD-R dataset. The
multilingual encoder is model “X-X”.

w/o LIR r = 1 r = 2 r = 3 r = 4

ar 20.5 40.5 40.4 40.4 40.0
de 27.5 48.3 49.8 49.7 49.6
el 20.9 43.5 43.9 44.1 44.2
en 27.3 55.1 55.0 55.3 55.3
es 27.6 52.6 52.8 52.7 52.6
hi 18.6 36.5 36.8 37.5 37.3
ru 24.9 48.2 49.6 49.6 49.4
th 16.8 34.7 35.1 34.9 34.6
tr 23.8 45.3 45.4 46.3 46.2
vi 24.8 49.2 48.9 48.9 48.6
zh 24.7 43.8 43.8 45.3 45.2

Table 5: Experimental results for each language of
model “X-X” on the XQuAD-R dataset.


