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Abstract

Many recent successes in sentence represen-
tation learning have been achieved by sim-
ply fine-tuning on the Natural Language In-
ference (NLI) datasets with triplet loss or
siamese loss. Nevertheless, they share a com-
mon weakness: sentences in a contradiction
pair are not necessarily from different seman-
tic categories. Therefore, optimizing the se-
mantic entailment and contradiction reasoning
objective alone is inadequate to capture the
high-level semantic structure. The drawback
is compounded by the fact that the vanilla
siamese or triplet losses only learn from in-
dividual sentence pairs or triplets, which of-
ten suffer from bad local optima. In this pa-
per, we propose PairSupCon, an instance dis-
crimination based approach aiming to bridge
semantic entailment and contradiction under-
standing with high-level categorical concept
encoding. We evaluate PairSupCon on vari-
ous downstream tasks that involve understand-
ing sentence semantics at different granulari-
ties. We outperform the previous state-of-the-
art method with 10%–13% averaged improve-
ment on eight clustering tasks, and 5%–6% av-
eraged improvement on seven semantic textual
similarity (STS) tasks.

1 Introduction

Learning high-quality sentence embeddings is a
fundamental task in Natural Language Processing.
The goal is to map semantically similar sentences
close together and dissimilar sentences farther apart
in the representation space. Many recent successes
have been achieved by training on the NLI datasets
(Bowman et al., 2015; Williams et al., 2017; Wang
et al., 2018), where the task is often to classify each
sentence pair into one of three categories: entail-
ment, contradiction, or neutral.
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Figure 1: Simultaneoulsy encoding semantic categori-
cal structure and pairwise entailment and contradiction
understanding into embeddings.

Despite promising results, prior work (Con-
neau et al., 2017; Cer et al., 2018; Reimers and
Gurevych, 2019a) share a common weakness: the
sentences forming a contradiction pair may not
necessarily belong to different semantic categories.
Consequently, optimizing the model for semantic
entailment and contradiction understanding alone
is inadequate to encode the high-level categori-
cal concepts into the representations. Moreover,
the vanilla siamese (triplet) loss only learns from
the individual sentence pairs (triplets), which often
requires substantial training examples to achieve
competitive performance (Oh Song et al., 2016;
Thakur et al., 2020). As shown in Section 4.1, the
siamese loss can sometimes drive a model to bad
local optima where the performance of high-level
semantic concept encoding is degraded when com-
pared with its baseline counterpart.

In this paper, we take inspiration from self-
supervised contrastive learning (Bachman et al.,
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2019; He et al., 2020; Chen et al., 2020) and pro-
pose jointly optimizing the pairwise semantic rea-
soning objective with an instance discrimination
loss. We name our approach Pairwise Supervised
Contrastive Learning (PairSupCon). As noticed
by the recent work (Wu et al., 2018; Zhang et al.,
2021), instance discrimination learning can implic-
itly group similar instances together in the repre-
sentation space without any explicit learning force
directs to do so. PairSupCon leverages this implicit
grouping effect to bring together representations
from the same semantic category while, simulta-
neously enhancing the semantic entailment and
contradiction reasoning capability of the model.

Although the prior work mainly focuses on pair-
wise semantic similarity related evaluations, we
argue in this paper that the capability of encoding
the high-level categorical semantic concept into
the representations is an equally important aspect
for evaluations. As shown in Section 4, the previ-
ous state-of-the-art model that performs best on the
semantic textual similarity (STS) tasks results in de-
generated embeddings of the categorical semantic
structure. On the other hand, better capturing the
high-level semantic concepts can in turn promote
better performance of the low-level semantic entail-
ment and contradiction reasoning. This assumption
is consistent with how human categorize objects in
a top-down reasoning manner. We further validate
our assumption in Section 4, where PairSupCon
achieves an averaged improvement of 10%− 13%
over the prior work when evaluated on eight short
text clustering tasks, and yields 5%− 6% averaged
improvement on seven STS tasks.

2 Related Work

Sentence Representation Learning with NLI
The suitability of leveraging NLI to promote better
sentence representation learning is first observed by
InferSent (Conneau et al., 2017), where a siamese
BiLSTM network is optimized in a supervised man-
ner with the semantic entailment and contraction
classification objective. Universal Sentence En-
coder (Cer et al., 2018) later augments an unsuper-
vised learning objective with the supervised learn-
ing on NLI, and shows better transfer performance
on various downstream tasks.

More recently, SBERT (Reimers and Gurevych,
2019b) finetunes a siamese BERT (Devlin et al.,
2018) model on NLI and sets new state-of-the-art
results. However, SBERT as well as the above work

adopt the vanilla siamese or triplet loss, which often
suffer from slow convergence and bad local optima
(Oh Song et al., 2016; Thakur et al., 2020).

Self-Supervised Instance Discrimination An-
other relevant line of work is self-supervised con-
trastive learning, which essentially solves an in-
stance discrimination task that targets at discrim-
inating each positive pair from all negative pairs
within each batch of data (Oord et al., 2018; Bach-
man et al., 2019; He et al., 2020; Chen et al., 2020).
Owing to their notable successes, self-supervised
instance discrimination has become a prominent
pre-training strategy for providing effective repre-
sentations for a wide range of downstream tasks.

While recent successes are primarily driven by
the computer vision domain, there is an increasing
interest in leveraging variant instance discrimina-
tion tasks to support Pretraining Language Models
(PLMs) (Meng et al., 2021; Giorgi et al., 2020;
Wu et al., 2020; Rethmeier and Augenstein, 2021).
Our proposal can be seen as complementary to this
stream of work, considering that the instance dis-
crimination learning based PLMs provide a good
foundation for PairSupCon to further enhance the
sentence representation quality by further learning
on NLI. As demonstrated in Section 4, by training
a pre-trained BERT-base model for less than an
hour, PairSupCon attains substantial improvement
on various downstream tasks that involve sentence
semantics understanding at different granularities.

Deep Metric Learning Inspired by the pioneer-
ing work of (Hadsell et al., 2006; Weinberger and
Saul, 2009), many recent works have shown signif-
icant benefit in learning deep representations using
either siamese loss or triplet loss. However, both
losses learn from individual pairs or triplets, which
often require substantial training data to achieve
competitive performance. Two different streams of
work have been proposed to tackle this issue, with
the shared focus on nontrivial pairs or triplets opti-
mization. Wang et al. (2014); Schroff et al. (2015);
Wu et al. (2017); Harwood et al. (2017) propose
hard negative or hard positive mining that often
requires expensive sampling. Oh Song et al. (2016)
extends the vanilla triplet loss by contrasting each
positive example against multiple negatives.

Our work leverages the strength of both lines,
with the key difference being the above work re-
quires categorical level supervision for selecting
hard negatives. To be more specific, negative sam-
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(b) Entailment and contradiction samples.

Figure 2: Illustration of PairSupCon. (a): Training framework of PairSupCon. (b): Despite the entailment sample
is more similar to the anchor, both the contradiction and entailment samples are likely from the same semantic
category as the anchor.

ples that have different categorical labels from the
anchor but are currently mapped close to the an-
chor in the representation space, are likely to be
more useful and hence being sampled. However,
there are no categorical labels available in NLI. We
thereby contrast each positive pair against multiple
negatives collected using an unsupervised impor-
tance sampling strategy, for which the hypothesis
is that hard negatives are more likely to locate close
to the anchor. The effectiveness of this assumption
is investigated in Section 4.3.

3 Model

Following SBERT (Reimers and Gurevych, 2019a),
we adopt the SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2017) as our training data,
and refer the combined data as NLI for convenience.
The NLI data consists of labeled sentence pairs and
each can be presented in the form: (premise, hy-
pothesis, label). The premise sentences are selected
from existing text sources and each premise sen-
tence is paired with variant hypothesis sentences
composed by human annotators. Each label indi-
cates the hypothesis type and categorizes semantic
relation of the associated premise and hypothesis
sentence pair into one of three categories: entail-
ment, contradiction, and neural, correspondingly.

Prior work solely optimizes either siamese loss
or triplet loss on NLI. We instead aiming to lever-
age the implicit grouping effect of instance dis-
crimination learning to better capture the high-level
categorical semantic structure of data while, simul-
taneously promoting better convergence of the low-
level semantic textual entailment and contradiction
reasoning objective.

3.1 Instance Discrimination

We leverage the positive (entailment) pairs of NLI
to optimize an instance discrimination objective
which tries to separate each positive pair apart from
all other sentences. LetD =

{
(xj , xj′), yj

}M
j=1

de-
note a randomly sampled minibatch, with yi = ±1
indicating an entailment or contradiction pair. Then
for a premise sentence xi within a positive pair
(xi, xi′), we aim to separate its hypothesis sentence
x′i from all other 2M -2 sentences within the same
batch D. To be more specific, let I = {i, i′}Mi=1

denote the corresponded indices of the sentence
pairs in D, we then minimize the following for xi,

`iID = − log
exp(s(zi, zi′)/τ)∑
j∈I\i exp(s(zi, zj)/τ)

. (1)

In the above equation, zj = h(ψ(xj)) denotes
the output of the instance discrimination head
in Figure 2, τ denotes the temperature parame-
ter, and s(·) is chosen as the cosine similarity,
i.e., s(·) = zTi zi′/‖zi‖‖zi′‖. Notice that Equation
(1) can be interpreted as a (2M–1)-way softmax
based classification loss of classifying zi as z′i.

Similarly, for the hypothesis sentence (xi′) we
also try to discriminate its premise (xi) from all the
other sentences in D. We denote the corresponding
loss as `i

′
ID that is defined by exchanging the roles

of instances xi′ and xi in Equation (1), respectively.
In summary, the final instance discrimination loss
is averaged over all positive pairs in D,

LID =
1

PM

M∑
i=1

1yi=1 ·
(
`iID + `i

′
ID

)
. (2)



5789

Here, 1(·) denotes the indicator function, and PM is
the number of positive pairs inD. As demonstrated
in Section 4, optimizing the above loss not only
helps implicitly encode categorical semantic struc-
ture into representations, but also promotes better
pairwise semantic reasoning capability, though no
pairwise supervision except the true entailment la-
bels are present to the model.

3.2 Learning from Hard Negatives
Notice that Eq (1) can be rewritten as

`iID =

log

1 +
∑
j 6=i,i′

exp

[
s(zi, zj)− s(zi, zi′)

τ

] .

It can be interpreted as extending the vanilla triplet
loss by treating the other 2M–2 samples within the
same minibatch as negatives. However, the nega-
tives are uniformly sampled from the training data,
regardless of how informative they are. Ideally,
we want to focus on hard negatives that are from
different semantic groups but are mapped close
to the anchor, i.e., zi, in the representation space.
Although the categorical level supervision is not
available in NLI, we approximate the importance
of the negative samples via the following,

`iwID = (3)

log

1 +
∑
j 6=i,i′

exp

[
αjs(zi, zj)− s(zi, zi′)

τ

] .

Here αj =
exp(s(zi,zj)/τ)

1
2M−2

∑
k 6=i,i′ exp(s(zi,zk)/τ)

, which can

be interpreted as the relative importance of zj
among all 2M -2 negatives of anchor zi. The as-
sumption is that hard negatives are more likely to
be those that are located close to the anchor in
the representation space. Although there might ex-
ists false negatives, i.e., those located close to the
anchor zi but are from the same category, the prob-
ability is low as long as the underlying number of
categories of the training data is not too small and
each minibatch D is uniformly sampled.

3.3 Entailment and Contradiction Reasoning
The instance discrimination loss mainly focuses
on separating each positive pair apart from the
others, whereas there is no explicit force in dis-
criminating contradiction and entailment. To this
end, we jointly optimize a pairwise entailment and

contradiction reasoning objective. We adopt the
softmax-based cross-entropy to form the pairwise
classification objective. Let ui = ψ(xi) denote
the representation of sentence xi, then for each la-
beled sentence pair (xi, xi′ , yi) we minimize the
following,

`iC = CE (f(ui, ui′ , |ui − ui′ |), yi) . (4)

Here f denotes the linear classification head in Fig-
ure 1, and CE is the cross-entropy loss. Different
from Reimers and Gurevych (2019b), we exclude
the neural pairs from the original training set and
focus on the binary classification of semantic entail-
ment and contradiction only. Our motivation is that
the concept semantic neural can be well captured
by the instance discrimination loss. Therefore, we
drop the neural pairs from the training data to re-
duce the functional redundancy of the two losses
in PairSupCon and improve the learning efficiency
as well.

Overall loss In summary, our overall loss is

L =
M∑
i=1

`iC + β1yi=1 ·
(
`iwID + `i

′
wID

)
, (5)

where `iC and `iwID, `
i′
wID are defined in Equations

(4) and (3), respectively. In the above equation, β
balances between the capability of pairwise seman-
tic entailment and contradiction reasoning, and the
capability of the high-level categorical semantic
structure encoding. We dive deep into the trade-off
between these two aspects by evaluating PairSup-
Con with different β values in Section 4.3, and
show how different β values can benefit different
downstream tasks. Unless otherwise specified, we
set β = 1 in this paper for the purpose of provid-
ing effective representations to various downstream
tasks instead of being tailored to any specific ones.

4 Experiments

Baselines In this section, we mainly investigate
the effective strategies of leveraging the labeled
NLI data to enhance the sentence representations of
the pre-trained language models (PLMs). We com-
pare PairSupCon against the vanilla BERT (Devlin
et al., 2018; Sanh et al., 2019) models and the pre-
vious state-of-the-art approach, SBERT (Reimers
and Gurevych, 2019a). We noticed a concurrent
work SimCSE (Gao et al., 2021) when we were
preparing this submission. Although SimCSE also
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AG SS SO Bio Tweet G-TS G-S G-T Avg.
BERTdistil·base 85.8 68.4 20.7 32.0 47.5 63.2 56.8 50.0 53.1
SBERT♦distil·base 61.1 54.9 32.2 32.6 45.9 56.7 50.7 48.2 47.8
SimCSE♠ - - - - - - - - -
PairSupCondistil·base 82.5 71.5 63.6 39.0 54.2 69.1 63.6 59.7 62.9

BERTbase 79.7 64.0 21.8 32.3 45.1 61.0 55.8 46.7 50.8
SBERT♦base 65.8 62.5 29.6 31.9 45.6 56.5 50.2 49.3 48.9
SimCSE♠ 82.4 67.3 49.0 37.5 56.1 68.1 63.2 59.6 60.4
PairSupConbase 83.0 73.6 63.8 38.8 55.7 69.4 64.5 60.4 63.7

BERTlarge 83.1 66.5 26.4 31.4 44.3 62.3 55.8 46.4 52.0
SBERT♦large 66.6 63.7 37.7 34.6 47.7 59.1 53.8 49.5 51.6
SimCSE♠ 82.7 66.3 49.0 40.5 57.9 68.1 62.4 60.8 61.0
PairSupConlarge 84.2 75.7 63.9 41.8 55.8 70.4 64.8 61.3 64.7

Table 1: Clustering accuracy reported on eight shorttext clustering datasets. The results are averaged over 10
clustering runs using KMeans with independent seeds. ♦ and ♠: results evaluated on the checkpoints provided by
Reimers and Gurevych (2019a) and Gao et al. (2021), respectively.

leverages the instance discrimination learning to
improve the sentence embeddings, it shares a dif-
ferent motivation and focus than ours. We compare
PairSupCon against SimCSE to show how different
instance discrimination based approaches enhance
the sentence representations differently, while our
contribution is claimed over the previous SOTA
models. Please refer to Appendix A for the details
of our implementation.

Dataset N W C L S
AgNews (AG) 8K 23 4 2K 2K
StackOverflow (SO) 20K 8 20 1K 1K
Biomedical (Bio) 20K 13 20 1K 1K
SearchSnippets (SS) 12K 18 8 2.66K .37K
GooglenewsTS (G-TS) 11K 28 152 430 3
GooglenewsS (G-S) 11K 22 152 430 3
GooglenewsT (G-T) 11K 6 152 430 3
Tweet (Tweet) 5K 8 89 249 1

Table 2: Statistics of eight short text clustering datasets.
N : number of text examples; W : average number of
words contained in each text example; C number of
clusters; L: the size of the largest cluster; and S: the
size of the smallest cluster.

4.1 Clustering
Motivation Existing work mainly focuses on the
semantic similarity (a.k.a STS) related tasks. We
argue that an equally important aspect of sentence
representation evaluation – the capability of encod-
ing the high-level categorical structure into the rep-
resentations, has so far been neglected. Desirably,
a model should map the instances from the same
category close together in the representation space

while mapping those from different categories far-
ther apart. This expectation aligns well with the
underlying assumption of clustering and is consis-
tent with how human categorizes data. We evaluate
the capabilities of categorical concept embedding
using K-Means (MacQueen et al., 1967; Lloyd,
1982), given its simplicity and the fact that the al-
gorithm itself manifests the above expectation.

We consider eight benchmark datasets for short
text clustering. As indicated in Table 21, the
datasets present the desired diversities of both the
size of each cluster and the number of clusters
of each dataset. Furthermore, each text instance
consists of 6 to 28 words when averaged within
each dataset, which well covers the spectrum of
NLI where each instance has 12 words on aver-
age. Therefore, we believe the proposed datasets
can provide an informative evaluation on whether
an embedding model is capable of capturing the
high-level categorical concept.

Evaluation Results The evaluation results are
summarized in Table 1. We run K-Means with the
scikit-learn package (Pedregosa et al., 2011) on
the representations provided by each model and
report the clustering accuracy 2 averaged over 10
independent runs. 3 As Table 1 indicates, in com-

1Please refer to Appendix B for more details.
2We computed the clustering accuracy using the Hungarian

algorithm (Munkres, 1957).
3We randomly select 10 independent seeds and fix them

for all evaluations
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STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Avg.
BERTdistil·base 43.4 64.9 54.1 66.6 68.5 63.5 57.2 59.8
SBERT♦distil·base 69.8 72.2 70.7 79.9 75.4 74.5 78.4 74.4
SimCSE♠ - - - - - - - -
PairSupCondistil·base 73.6 84.1 78.3 84.4 81.8 77.8 82.3 80.3

BERTbase 30.9 59.9 47.7 60.3 63.7 58.2 47.3 52.6
SBERT♦base 71.0 76.5 73.2 79.1 74.3 72.9 77.0 74.9
SimCSE♠ 75.3 84.7 80.2 85.4 80.8 80.4 84.3 81.6
PairSupConbase 74.3 84.4 79.0 84.8 81.4 79.0 82.6 80.8

BERTlarge 27.7 55.8 44.5 51.7 61.9 53.9 47.0 48.9
SBERT♦large 72.3 78.5 74.9 81.0 76.3 73.8 79.2 76.5
SimCSE♠ 75.8 86.3 80.4 86.1 80.9 81.1 84.9 82.2
PairSupConlarge 74.2 85.8 79.5 85.5 81.7 80.4 83.7 81.5

Table 3: Spearman rank correlation between the cosine similarity of sentence representations and the ground truth
labels on seven Semantic Textual Similarity (STS) tasks. ♦ and ♠: results evaluated on the checkpoints provided
by Reimers and Gurevych (2019a) and Gao et al. (2021), respectively.

parison with the vanilla BERT models, SBERT
results in degenerated embedding of the categor-
ical semantic structure by simply optimizing the
pairwise siamese loss. One possible reason is that
SBERT uses a large learning rate (2e-05) to opti-
mize the transformer, which can cause catastrophic
forgetting of the knowledge acquired in the original
BERT models. We find using a smaller learning
rate for the backbone can consistently improve the
performance of SBERT (see the performance of
BERT-base with "Classificaiton" in Table 4).

Nevertheless, PairSupCon leads to an averaged
improvement of 10.8% to 15.2% over SBERT,
which validates our motivation in leveraging the im-
plicit grouping effect of the instance discrimination
learning to better encode the high-level semantic
concepts into representations. Moreover, PairSup-
Con also attains better performance than SimCSE,
and we suspect this is because PairSupCon better
leverages the training data. Specifically, PairSup-
Con aims to discriminate an positive (entailment)
sentence pair apart from all other sentences, no
matter they are premises or hypotheses. In contrast,
SimCSE only separates a premise from the other
premises through their entailment and contradic-
tion hypotheses, while there is no explicit instance
discrimination force within the premises or the hy-
potheses alone. Considering the statistic data dif-
ference (Williams et al., 2017) between premises
and hypotheses, PairSupCon can potentially better
capture categorical semantic concepts by leverag-

ing additional intrinsic semantic properties of the
premises or the hypotheses that are undiscovered
by SimCSE.

4.2 Semantic Textual Similarity

Next, we asses the performance of PairSupCon on
seven STS tasks, namely STS 2012-2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016), STS Bench-
mark (Cer et al., 2017), and SICK-Relatedness
(Marelli et al., 2014). These datasets include pairs
of sentences with a fine-grained gold semantic simi-
larity score ranges from 0 to 5. To enable a fair com-
parison, we follow the setup in SBERT (Reimers
and Gurevych, 2019a), and compute the Spearman
correlation4 between cosine similarity of sentence
embeddings and the ground truth similarity scores
of each pair.

The evaluation results are reported in Table 3.
PairSupCon substantially outperforms both the
vanilla BERT and SBERT models. This validates
our assumption that, by implicitly encoding the
high-level categorical structure into the representa-
tions, PairSupCon promotes better convergence of
the low-level semantic entailment reasoning ob-
jective. This assumption is consistent with the
top-down categorization behavior of humans. Al-
though SimCSE leverages STS-Benchmark as the
development set while PairSupCon is fully blind

4Same as SBERT (Reimers and Gurevych, 2019a) and
SimCSE (Gao et al., 2021), we concatenate all the topics and
report the overall Spearman’s correlation.
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Figure 3: Ablation study of PairSupCon. First Row: Spearman correlation evaluated on the STS tasks. Second
Row: visualization of the StackOverflow (Xu et al., 2017) representations using t-SNE (Maaten and Hinton, 2008).

to the downstream tasks5, we hypothesize the per-
formance gain of SimCSE on STS is mainly con-
tributed by explicitly merging the entailment and
contradiction separation into the instance discrim-
ination loss. On the other hand, as we discussed
in Section 4.1, PairSupCon achieves more obvious
performance gain on the clustering tasks through
a bidirectional instance discrimination loss. There-
fore, developing a better instance discrimination
based sentence representation learning objective by
incorporating the strengths of both SimCSE and
PairSupCon could be a promising direction.

Loss Func. Downstream
STS Clustering

Classification 76.0 52.9
InstanceDisc 79.0 65.5
PairSupCon
β = 0.5 81.0 61.6
β = 1 80.8 63.7
β = 2 80.4 64.6
β = 4 80.0 65.0
β = 4 79.5 65.4

Table 4: Ablation study of PiarSupCon on BERT-base.
We underline the setting used for all our experiments.

4.3 Ablation Study
We run extensive ablations to better understand
what enables the good performance of PairSup-

5We also evaluate PairSupCon with STS-Benchmark as
the development set in Appendix C.

Loss Func. Downstream
STS Clustering

InstanceDisc
w/o HardNegSample 78.4 64.3
w/ HardNegSample 79.0 65.5
PairSupCon
w/o HardNegSample 80.2 62.1
w/ HardNegSample 80.8 63.7

Table 5: Ablation of hard negative sampling. We
choose BERT-base as backbone.

Con. For notational convenience, we name the
pairwise semantic relation classification objective
in PairSupCon as Classification, and the instance
discrimination objective as InstanceDisc.

PairSupCon versus. Its Components In Figure
3, we compare PairSupCon against its two compo-
nents, namely Classification and InstanceDisc. As
it shows, InstanceDisc itself outperforms Classi-
fication on both STS and categorical concept en-
coding. The result matches our expectation that
contrasting each positive pair against multiple neg-
atives, despite obtained through unsupervised sam-
pling, yields better performance than simply learn-
ing from each individual pair. By jointly optimiz-
ing both objectives, PairSupCon leverages the im-
plicit grouping effect of InstanceDisc to encode
the high-level categorical structure into represen-
tations while, simultaneously complementing In-
stanceDisc with more fine-grained semantic con-
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MR CR SUBJ MPQA SST TREC MRPC
BERTdistil·base 61.4(4.0) 69.0(2.6) 86.2(1.8) 67.4(3.8) 67.3(4.2) 59.2(6.3) 59.8(6.9)
SBERT♦distil·base 69.8(1.9) 83.3(1.9) 80.4( 2.8) 81.9(1.5) 78.8(1.2) 39.8(4.2) 60.4(3.4)
SimCSE♠ - - - - - - -
PairSupCondistil·base 65.6 (6.4) 80.5(1.5) 82.7 (3.3) 83.8(1.1) 79.9(1.6) 52.5(3.2) 59.7(2.0)

BERTbase 61.8(4.3) 68.2(3.1) 87.4(1.6) 63.6(5.2) 68.0(1.7) 58.4(2.1) 56.5(12.1)
SBERT♦base 72.9(1.7) 81.2(4.9) 81.9(1.1) 80.7(2.4) 78.0 (6.1) 45.8(1.9) 60.0(3.9)
SimCSE♠ 71.8(1.8) 82.9(1.5) 85.9(2.0) 79.0(4.2) 80.0(3.7) 54.5(4.0) 57.8(5.1)
PairSupConbase 72.8(2.0) 81.8(2.6) 85.7(1.9) 82.7(1.2) 80.2(3.2) 49.3(3.9) 61.4(4.4)

BERTlarge 64.4(4.4) 70.9(2.9) 86.6(3.0) 62.9(4.6) 73.1(3.0) 57.2(2.9) 63.4(9.2)
SBERT♦large 78.5(0.9) 85.1(6.3) 79.8(3.6) 83.3(1.6) 82.5(4.8) 43.5(4.9) 58.8(4.7)
SimCSE♠ 75.4(2.3) 84.5(3.0) 85.5(2.8) 84.0(1.9) 84.9(2.2) 52.4(3.4) 59.6(2.4)
PairSupConlarge 74.8(2.6) 84.8(4.1) 84.6(2.3) 85.2(1.3) 83.7(1.7) 50.4(5.7) 62.6(5.3)

Table 6: Few-shot learning evaluation on SentEval. For each task, we randomly sample 16 labeled instances
per class and report the mean (standard deviation) performance over 5 different training sets. ♦ and ♠: results
evaluated on the checkpoints provided by Reimers and Gurevych (2019a) and Gao et al. (2021), respectively.

cept reasoning capability via Classification.
Table 4 indicates a trade-off between the high-

level semantic structure encoding and the low-level
pairwise entailment and contradiction reasoning
capability of PairSupCon. Focusing more on the
pairwise classification objective, i.e., using smaller
β values, can hurt the embeddings of the high-level
semantic structure. This result is not surprising,
especially considering that sentences forming a
contradiction pair are not necessarily belong to
different semantic groups. On the other hand, In-
stanceDisc only focuses on separating each posi-
tive pair from all other samples within the same
minibatch, and an explicit force that discriminates
semantic entailment from contradiction is neces-
sary for PairSupCon to achieve competitive perfor-
mance on the more fine-grained pairwise similarity
reasoning on STS. As indicated in Table 4, we can
tune the β values to attain effective representations
for specific downstream tasks according to their
semantic granularity focuses. We set β = 1 for
all our experiments with the goal to provide effec-
tive universal sentence representations to different
downstream tasks.

Hard Negative Sampling Helps In Table 5,
we compare both PairSupCon and InstanceDisc
against their counterparts where the negatives in
the instance discrimination loss are uniformly sam-
pled from data. As it shows, the hard negative
sampling approach proposed in Section 3.2 leads
to improved performance on both STS and clus-
tering tasks. We associate this performance boost
with our assumption that hard negatives are likely
located close to the anchor. A properly designed

distance-based sampling approach can drive the
model to better focus on hard negative separation
and hence lead to better performance.

On the other hand, hard negative sampling with-
out any supervision is a very challenging problem,
especially considering that samples within the lo-
cal region of an anchor are also likely from the
same semantic group as the anchor. As a conse-
quence, a solely distance-based sampling approach
can induce certain false negatives and hurt the per-
formance. To tackle this issue, leveraging proper
structure assumption or domain-specific knowledge
could be potential directions, which we leave as
future work.

4.4 Transfer Learning

In order to provide a fair and comprehensive com-
parison with the existing work, we also evaluate
PairSupCon on the following seven transferring
tasks: MR (Pang and Lee, 2005), CR (Hu and
Liu, 2004), SUBJ (Pang and Lee, 2004), MPQA
(Wiebe et al., 2005), SST (Socher et al., 2013),
TREC (Li and Roth, 2002), and MRPC (Dolan
et al., 2004). We follow the widely used evaluation
protocol, where a logistic regression classifier is
trained on top of the frozen representations, and
the testing accuracy is used as a measure of the
representation quality. We adopt the default config-
urations of the SentEval (Conneau and Kiela, 2018)
toolkit and report the evaluation results in Table 7
in Appendix D. As we can see, the performance
gap between different methods are relatively small.

We suspect the reason is that the transfer learning
tasks do not present enough complexities to fully
uncover the performance gap between different ap-
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proaches, especially considering that most tasks
are binary classification with a large amount of la-
beled training examples. To further examine our
hypothesis, we extend the evaluation to the setting
of few-shot learning, where we uniformly sample
16 labeled instances per class for each task. We
report the mean and standard deviation of the eval-
uation performance over 5 different sample sets in
Table 6. Although we observe more obvious perfor-
mance gap on each specific task, there is no consis-
tent performance gap between different approaches
when evaluated across different tasks. Therefore,
to better evaluate the transfer learning performance
of sentence representations, more complex and di-
verse datasets are required.

5 Discussion and Conclusion

In this paper, we present a simple framework for
universal sentence representation learning. We
leverage the implicit grouping effect of instance
discrimination learning to better encoding the high-
level semantic structure of data into representa-
tions while, simultaneously promoting better con-
vergence of the lower-level semantic entailment
and contradiction reasoning objective. We substan-
tially advance the previous state-of-the-art results
when evaluated on various downstream tasks that
involve understanding semantic concepts at differ-
ent granularities.

We carefully study the key components of our
model and pinpoint the performance gain con-
tributed by each of them. We observe encouraging
performance improvement by using the proposed
hard negative sampling strategy. On the other hand,
hard negative sampling without any supervision is
an crucial, yet significantly challenging problem
that should motivate further explorations. Possible
directions include making proper structure assump-
tion or leveraging domain-specific knowledge. The
substantial performance gain attained by our model
also suggests developing explicit grouping objec-
tives could be another direction worth investigation.
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MR CR SUBJ MPQA SST TREC MRPC Avg.
BERTdistil·base 80.0 85.7 95.0 88.9 85.4 90.6 74.1 85.7
SBERT♦distil·base 80.9 88.2 92.7 89.5 87.4 83.6 75.2 85.4
SimCSE♠ - - - - - - - -
PairSupCondistil·base 80.6 87.8 94.7 89.9 86.5 89.0 74.4 86.1

BERTbase 81.5 86.7 95.2 88.0 85.9 90.6 73.7 86.0
SBERT♦base 83.6 89.4 94.4 89.9 89.0 89.6 76.0 87.4
SimCSE♠ 82.9 89.2 94.8 89.7 87.3 88.4 73.5 86.5
PairSupConbase 82.7 88.8 95.2 90.3 87.6 88.8 74.3 86.8

BERTlarge 84.3 89.2 95.6 86.9 89.3 91.4 71.7 86.9
SBERT♦large 84.6 90.9 94.5 90.2 90.7 86.8 76.6 87.7
SimCSE♠ 85.4 90.8 95.3 90.3 90.3 90.6 76.3 88.4
PairSupConlarge 84.5 90.1 95.7 90.6 90.7 92.4 75.3 88.5

Table 7: Transfer learning results evaluated on SentEval. ♦ and ♠: results evaluated on the checkpoints provided
by Reimers and Gurevych (2019a) and Gao et al. (2021), respectively.

B Short Text Clustering Datasets

SearchSnippets is extracted from web search
snippets, which contains 12340 snippets associated
with 8 groups Phan et al. (2008).

StackOverflow is a subset of the challenge data
published by Kaggle6, where 20000 question titles
associated with 20 different categories are selected
by Xu et al. (2017).

Biomedical is a subset of PubMed data dis-
tributed by BioASQ7, where 20000 paper titles
from 20 groups are randomly selected by Xu et al.
(2017).

AgNews is a subset of news titles (Zhang and
LeCun, 2015), which contains 4 topics selected by
Rakib et al. (2020).

Tweet consists of 89 categories with 2472 tweets
in total (Yin and Wang, 2016).

GoogleNews contains titles and snippets of
11109 news articles related to 152 events (Yin
and Wang, 2016). We name the full dataset
as GoogleNews-TS while, GoogleNews-T and
GoogleNews-S are obtained by extracting the titles
and the snippets, respectively.

6https://www.kaggle.com/c/predict-closed-questions-on-
stackoverflow/download/train.zip

7http://participants-area.bioasq.org

C Leveraging STS-Benchmark as the
Development Set

To better understand the underlying causes of the
performance gap between PairSupCon and Sim-
CSE on STS, we also train PairSupCon by using
STS-Benchmark as the development set. We sum-
marize the corresponding evaluation results in Ta-
ble 8, which indicates that PairSupCon does not
benefit from leveraging the STS-Benchmark. We
thereby hypothesize the performance gain of Sim-
CSE is mainly attributed by merging the entailment
and contradiction discrimination into the instance-
wise contrastive learning objective.

On the other hand, as discussed in Section 4.1,
SimCSE can be roughly interpreted as an uni-
directional instance-wise contrastive learning. In
contrast, PairSupCon utilizes the training data in a
more efficient way through a bidirectional instance
discrimination loss, and hence achieves more ob-
vious performance gain on the clustering tasks.
Therefore, developing a better instance discrimina-
tion based sentence representation learning objec-
tive by incorporating the strengths of both SimCSE
and PairSupCon could be a promising direction.

D Transfer Learning

To provide a fair and more comprehensive compar-
ison with the existing work, we also evaluate Pair-
SupCon on the seven transferring tasks using the
SentEval toolkit (Conneau and Kiela, 2018). We
follow the widely used evaluation protocol, where a
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PairSupCon STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Avg.
DistilBasew/ STS-B 73.4 83.8 78.2 84.2 81.9 77.7 82.2 80.2
DistilBasew/o STS-B 73.6 84.1 78.3 84.4 81.8 77.8 82.3 80.3

BertBasew/ STS-B 74.2 84.5 79.0 84.7 81.4 78.9 82.6 80.8
BertBasew/o STS-B 74.3 84.4 79.0 84.8 81.4 79.0 82.6 80.8

BertLargew/ STS-B 74.3 85.7 79.1 84.8 81.7 80.2 83.3 81.3
BertLargew/o STS-B 74.2 85.8 79.5 85.5 81.7 80.4 83.7 81.5

Table 8: Investigation on the effectiveness of leveraging STS-Benchmark as the development set for training
PairSupCon. The training of our proposed PairSupCon model is fully blind to the downstream tasks. This table
indicates that, different from SimCSE (Gao et al., 2021), no obvious performance gain is attained by PairSupCon
when using STS-B as the development set.

logistic regression classifier is trained on top of the
frozen representations, and the testing accuracy is
used as a measure of the representation quality. We
report the evaluation results in Table 7. As we can
see, the performance gap between different models
are small, yet still not consistent across different
tasks. As discussed in Section 4.4, one possible
explanation is that the transfer learning tasks do
not present enough complexities to discriminate
the performance gap between different approaches,
since most tasks are binary classification with a
large amount of labeled training examples.

Although we observe more obvious performance
gap by extending the evaluation to the setting of
few-shot learning (Table 6), there is no consistent
performance gain across different tasks attained
by any specific model investigated in this paper.
Moving forward, having more complex and diverse
datasets to evaluate the transfer learning perfor-
mance could better direct the development of uni-
versal sentence representation learning.


