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Abstract

Codifying commonsense knowledge in ma-
chines is a longstanding goal of artificial in-
telligence. Recently, much progress toward
this goal has been made with automatic knowl-
edge base (KB) construction techniques. How-
ever, such techniques focus primarily on the
acquisition of positive (true) KB statements,
even though negative (false) statements are
often also important for discriminative rea-
soning over commonsense KBs. As a first
step toward the latter, this paper proposes
NegatER, a framework that ranks potential
negatives in commonsense KBs using a con-
textual language model (LM). Importantly, as
most KBs do not contain negatives, NegatER
relies only on the positive knowledge in the
LM and does not require ground-truth nega-
tive examples. Experiments demonstrate that,
compared to multiple contrastive data aug-
mentation approaches, NegatER yields neg-
atives that are more grammatical, coherent,
and informative—leading to statistically sig-
nificant accuracy improvements in a challeng-
ing KB completion task and confirming that
the positive knowledge in LMs can be “re-
purposed” to generate negative knowledge.

1 Introduction

Endowing machines with commonsense, which
is knowledge that members of a culture usually
agree upon but do not express explicitly, is a ma-
jor but elusive goal of artificial intelligence (Min-
sky, 1974; Davis et al., 1993; Liu and Singh, 2004;
Davis and Marcus, 2015). One way to capture such
knowledge is with curated commonsense knowl-
edge bases (KBs), which contain semi-structured
statements of “everyday” human knowledge. As
such KBs are increasingly being used to augment
the capabilities of intelligent agents (Hwang et al.,
2021), automatically expanding their scope has be-
come crucial (Li et al., 2016; Davison et al., 2019;
Bosselut et al., 2019; Malaviya et al., 2020).

Table 1: Out-of-KB statements are less meaningful
as negative examples when sampled at random versus
ranked with our NEGATER framework. The random
examples are taken from the test split of the Concept-
Net benchmark introduced by Li et al. (2016).

Method Negative statement

Random sampling
(“tickle”, HASSUBEVENT, “supermarket”)
(“lawn mower”, ATLOCATION, “pantry”)
(“closet”, USEDFOR, “play baseball”)

NEGATER ranking
(“ride horse”, HASSUBEVENT, “pedal”)
(“zoo keeper”, ATLOCATION, “jungle”)
(“air ticket”, USEDFOR, “get onto trolley”)

Previous research in this direction focuses pri-
marily on the acquisition of positive knowledge,
or that which is true about the world. However,
understanding what is true about the world often
also requires gathering and reasoning over explic-
itly untrue information. Humans routinely rely on
negative knowledge—that is, what “not to do” or
what “not to believe”—in order to increase cer-
tainty in decision-making and avoid mistakes and
accidents (Minsky, 1994). Similarly, discrimina-
tive models that operate over structured knowledge
from KBs often require explicit negative examples
in order to learn good decision boundaries (Sun
et al., 2019; Ahrabian et al., 2020; Ma et al., 2021).

The main challenge with machine acquisition of
structured negative knowledge, commonsense or
otherwise, is that most KBs do not contain nega-
tives at all (Safavi and Koutra, 2020; Arnaout et al.,
2020). Therefore, for KB-related tasks that require
both positive and negative statements, negatives
must either be gathered via human annotation, or
else generated ad-hoc. Both of these approaches
entail distinct challenges. On one hand, human
annotation of negatives can be cost-prohibitive at
scale. On the other, automatic negative generation
without good training examples can lead to unin-
formative, even nonsensical statements (Table 1),
because the prevailing approach is to randomly
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sample negatives from the large space of all out-of-
KB statements (Li et al., 2016).

To strike a balance between expert annotation,
which is costly but accurate, and random sam-
pling, which is efficient but inaccurate, we pro-
pose NEGATER, a framework for unsupervised
discovery of Negative Commonsense Knowledge
in Entity and Relation form. Rather than randomly
sampling from the space of all out-of-KB state-
ments to obtain negatives, NEGATER ranks a selec-
tion of these statements such that higher-ranking
statements are “more likely” to be negative. Rank-
ing is done with a fine-tuned contextual language
model (LM), building upon studies showing that
LMs can be trained to acquire a degree of common-
sense “knowledge” (Petroni et al., 2019).

Importantly, because we do not assume the pres-
ence of gold negative examples for training the
LM, we devise techniques that make use of positive
KB statements only. This distinguishes NEGATER
from supervised generative commonsense KB con-
struction techniques that require abundant gold ex-
amples, usually obtained via human annotation, for
fine-tuning (Bosselut et al., 2019; Hwang et al.,
2021; Jiang et al., 2021). Our realistic assumption
means that we do not have any explicit examples
of true negatives and therefore cannot guarantee
a minimum true negative rate; indeed, obtaining
true negatives in KBs is a hard problem in gen-
eral (Arnaout et al., 2020). However, we show in
detailed experiments that NEGATER strikes a deli-
cate balance between several factors that contribute
to high-quality negative knowledge, including task-
specific utility, coherence, and the true negative
rate. Our contributions are as follows:

• Problem definition: We provide the first rig-
orous definition of negative knowledge in
commonsense KBs (§ 2), which as far as we
are aware has not been studied before.

• Framework: We introduce NEGATER (§ 3),
which ranks out-of-KB potential negatives
using a contextual language model (LM).
As KBs typically do not contain gold nega-
tives, we devise an approach that relies only
on the LM’s positive beliefs. Specifically,
NEGATER first fine-tunes the LM to acquire
high-quality positive knowledge, then ranks
potential negatives by how much they “con-
tradict” the LM’s positive knowledge, as mea-
sured by its classification scores or gradients.

• Evaluation: In keeping with the novelty of

the problem, we conduct multiple evaluations
that address the fundamental research ques-
tions of negative commonsense. First, we
measure the effectiveness of our LM fine-
tuning approach and the utility of NEGATER-
generated negatives in KB completion tasks
(§ 4, 5). Next, we study the intrinsic qual-
ity of the generated negatives (§ 6). When
considering all such factors, NEGATER out-
performs numerous competitive baselines.
Most notably, training KB completion models
with highly-ranked negative examples from
NEGATER results in statistically significant
accuracy improvements of up to 1.90%. Code
and data are available at https://github.
com/tsafavi/NegatER.

2 Problem definition

As the problem of negative knowledge has not yet
been addressed in the commonsense KB comple-
tion literature, we begin by defining meaningful
negatives in commonsense KBs.

2.1 Positive knowledge
A commonsense knowledge base (KB) consists
of triples {x+} = {(Xh, r,Xt)

+}, where the
superscript denotes that all in-KB triples are as-
sumed to be positive or true. In each triple, the
first and third terms are head and tail entities
in the form of phrases Xh = [w1, . . . , wh] and
Xt = [w1, . . . , wt] drawn from a potentially infi-
nite vocabulary. The relation types r are symbolic
and drawn from a finite dictionary R. Figure 1
provides examples of positive statements from the
ConceptNet KB (Speer and Havasi, 2012), e.g.,
(Xh=“horse”, r=ISA, Xt=“expensive pet”).

2.2 Negative knowledge
We denote a negative triple as x− 6∈ {x+}. As the
space of negatives is evidently much larger than the
space of positives, we define negative knowledge
to exclude trivial negatives, for example simple
negations or nonsensical statements. Specifically,
drawing from the literature on procedural nega-
tive expertise in humans (Minsky, 1994; Gartmeier
et al., 2008), we define negative knowledge as non-
viable or explicitly false knowledge that is heuris-
tically valuable with respect to a given task, goal,
or decision. In the context of KBs, we devise three
requirements that, combined, satisfy this definition:

R1 Negative knowledge must resemble positive

https://github.com/tsafavi/NegatER
https://github.com/tsafavi/NegatER
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Figure 1: NEGATER consists of two steps: (1) Fine-tuning an LM on the input KB to obtain strong positive
beliefs; and (2) Feeding a set of out-of-KB candidate statements to the fine-tuned LM and ranking them by the
LM’s classification scores or gradients. Here, the KB is a fragment of ConceptNet (Speer and Havasi, 2012).

knowledge in structure. This means that nega-
tive statements should obey the grammatical
rules (parts of speech) of their relation types.

R2 The head and tail phrases must be themati-
cally or topically consistent. For example,
given the head phrase Xh=“make coffee,” a
consistent tail phrase is one that is themati-
cally related but still nonviable with respect
to the whole statement, for example (“make
coffee”, HASSUBEVENT, “buy tea”).

R3 Negative knowledge must be informative for
a given task, goal, or decision. We consider
a statement as informative if, when taken as
true, it is counterproductive or contradic-
tory to the goal at hand, e.g., (“make coffee”,
HASSUBEVENT, “drop mug”).

3 Framework

We propose the NEGATER framework to match
our definition of negative knowledge. As shown in
Figure 1, NEGATER consists of two steps: First, a
pretrained LM is fine-tuned on a given common-
sense KB using a contrastive approach to acquire
strong positive beliefs. Then, a set of grammatical
(R1) and topically consistent (R2) out-of-KB can-
didate statements are fed to the LM and ranked by
the degree to which they “contradict” the LM’s fine-
tuned positive beliefs (R3), such that the higher-
ranking statements are more likely to be negative.
We emphasize that ground-truth negative examples
are not required at any point, which means that
we trade off some accuracy (i.e., the true negative
rate) for cost efficiency (i.e., the cost of gather-
ing ground-truth negative examples for training via
expert annotation).

We describe each step in detail in the remainder

of this section.

3.1 Fine-tuning for positive knowledge

The first step of NEGATER is to minimally fine-
tune a language model on a given commonsense
KB using contrastive learning (step 1, Figure 1),
such that it acquires strong positive beliefs. We
focus on encoder-only BERT-based models (Devlin
et al., 2019; Liu et al., 2019), as we will ultimately
use their fine-tuned encodings to represent triples.

LM input and output We input a KB triple
(Xh, r,Xt) to the LM by concatenating BERT’s
special [CLS] token with a linearized version of
the triple, delineating the head tokens Xh, the rela-
tion r, and the tail tokens Xt with BERT’s special
[SEP] token. At the output of the encoder, we ap-
ply a semantic-level pooling operation (e.g., any of
those proposed by Reimers and Gurevych (2019))
to obtain a single contextual representation of the
triple, and pass it through a classification layer
W ∈ RH , where H is the hidden layer dimension.

Supervision strategy Since the goal of fine-
tuning is to endow the LM with strong positive
beliefs, we use a common contrastive data aug-
mentation technique for positive KB triple clas-
sification (Li et al., 2016; Malaviya et al., 2020).
Specifically, for each positive x+, we construct a
contrastive corrupted version where the head, rela-
tion, or tail has been replaced by a random phrase
or relation from the KB. We minimize binary cross-
entropy loss between the positive training examples
and their corrupted counterparts. We learn a deci-
sion threshold θr per relation r on the validation set
to maximize validation accuracy, such that triples
of relation r scored above θr are classified as posi-
tive.
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3.2 Ranking out-of-KB statements
Now that we have an LM fine-tuned to a given
commonsense KB, we feed a set of out-of-KB can-
didate statements to the LM in the same format as
was used during fine-tuning, and rank them by the
degree to which they “contradict” the LM’s positive
beliefs (step 2, Figure 1).

Out-of-KB candidate generation To gather out-
of-KB candidate statements, we use a dense k-
nearest-neighbors retrieval approach. The idea here
is that the set of all out-of-KB statements is ex-
tremely large and most such statements are not
likely to be meaningful, so we narrow the candi-
dates down to a smaller set that is more likely to be
grammatical (R1) and consistent (R2).

For each positive triple x+ = (Xh, r,Xt)
+,

we retrieve the k nearest-neighbor phrases to
head phrase Xh using a maximum inner product
search (Johnson et al., 2019) over pre-computed
embeddings of the KB’s entity phrases. While any
choice of embedding and distance measure may
be used, we use Euclidean distance between the
[CLS] embeddings output by a separate pretrained
BERT model for its empirical good performance.
We then replace Xh in the head slot of the original
positive x+ by each of its neighbors X̃h in turn,
yielding a set of candidates

{x̃}ki=1, x̃ = (X̃h, r,Xt).

We discard any candidates that already appear in
the KB and repeat this process for the tail phrase
Xt, yielding up to 2k candidates x̃ per positive x+.
We also filter the candidates to only those for which
the retrieved head (tail) phrase X̃h (X̃t) appears in
the head (tail) slot of relation r in the KB.

Meeting R1, R2, and R3 Our filtering process
discards candidate triples whose head/tail entities
have not been observed to co-occur with relation r,
which preserves the grammar (R1) of the relation.
Notice that by retrieving the nearest neighbors of
each head and tail phrase by semantic similarity,
we also preserve the topical consistency (R2) of
the original positive statements.

Finally, to meet requirement R3, we rank the
remaining out-of-KB candidates by the degree to
which they “contradict” the positive beliefs of the
fine-tuned LM. These ranked statements can be
then taken in order of rank descending as input
to any discriminative KB reasoning task requir-
ing negative examples, with the exact number of

negatives being determined by the practitioner and
application. We propose two independent ranking
strategies:

3.2.1 NEGATER-θr: Ranking with scores
Our first approach, NEGATER-θr, relies on the de-
cision thresholds θr set during the validation stage
of fine-tuning. We feed the candidates x̃ to the LM
and take only those that the LM classifies below the
respective decision threshold θr. Per relation r, the
candidates are ranked descending by their scores at
the output of the classification layer, such that the
higher-ranking candidates look more plausible—
that is, “almost positive”—to the LM.

3.2.2 NEGATER-∇: Ranking with gradients
The premise of our second approach, NEGATER-
∇, is that the candidates that most “surprise” the
LM when labeled as true are the most likely to
be negative, because they most directly contradict
what the LM has observed during fine-tuning.

We quantify “surprisal” with the LM’s gradi-
ents. Let L(x̃; ỹ) be the binary cross-entropy loss
evaluated on candidate x̃ given a corresponding
label ỹ ∈ {−1, 1}. We feed each x̃ to the LM and
compute the magnitude of the gradient of L with
respect to the LM’s parameters Θ, given a positive
labeling of x̃:

M̃ =

∥∥∥∥∂L(x̃; ỹ = 1)

∂Θ

∥∥∥∥ , (1)

and rank candidates in descending order of gradient
magnitude M̃ . Here, M̃ signifies the amount to
which the LM’s fine-tuned beliefs would need to
be updated to incorporate this candidate as positive.
Therefore, the higher the M̃ , the more directly x̃
contradicts or negates the LM’s positive beliefs.

Faster computation Because NEGATER-∇ re-
quires a full forward and backward pass for each
candidate x̃, it can be costly for a large number
N of candidates. We therefore propose a simple
(optional) trick to speed up computation. We first
compute M̃ for an initial sample of n� N candi-
dates. We then use the contextual representations
of these n candidates and their gradient magnitudes
M̃ as training features and targets, respectively, to
learn a regression function ˜fM : RH → R. Fi-
nally, we substitute the LM’s fine-tuning layer with
˜fM , allowing us to skip the backward pass and

feed batches of candidates x̃ to the LM in forward
passes. In our experiments, we will show that this
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approach is an effective and efficient alternative to
full-gradient computation.

Gradients versus losses On the surface, it might
seem that NEGATER-∇ could be made more ef-
ficient by ranking examples descending by their
losses, instead of gradients. However, notice that
the binary cross-entropy loss L(x̃; ỹ = 1) is low
for candidates x̃ that receives high scores from the
LM, and high for candidates that receive low scores.
Due to the contrastive approach that we used for
fine-tuning, candidates with the lowest losses are
mainly true statements, and candidates with the
highest losses are mainly nonsensical statements.
Therefore, the losses do not directly correlate with
how “contradictory” the candidate statements are.
By contrast, the gradient-based approach quantifies
how much the LM would need to change its be-
liefs to incorporate the new knowledge as positive,
which more directly matches requirement R3.

4 Fine-tuning evaluation

In this section, we evaluate the efficacy of the fine-
tuning step of NEGATER (§ 3.1). In the following
sections, we will evaluate the efficacy of the rank-
ing step of NEGATER (§ 3.2) from quantitative and
qualitative perspectives.

4.1 Data

The goal of this experiment is to evaluate whether
our fine-tuning strategy from § 3.1 endows
LMs with sufficiently accurate positive knowl-
edge. For this, we use the English-language
triple classification benchmark introduced by Li
et al. (2016), which consists of 100K/2400/2400
train/validation/test triples across 34 relations and
78,334 unique entity phrases from ConceptNet
5 (Speer and Havasi, 2012). The evaluation met-
ric is accuracy. In the evaluation splits, which
are balanced positive/negative 50/50, the negatives
were constructed by swapping the head, relation,
or tail of each positive x+ with that of another ran-
domly sampled positive from the KB. Note that
while the test negatives were generated randomly
and are therefore mostly nonsensical (Table 1), we
use this benchmark because it mainly tests models’
recognition of positive knowledge, which matches
the goals of our fine-tuning procedure. Ultimately,
however, a more difficult dataset will be needed,
which we will introduce in the next section.

Table 2: Our fine-tuned BERT reaches state-of-the-art
accuracy on the ConceptNet benchmark from (Li et al.,
2016). Baseline results are reported directly from the
referenced papers.

Acc.

Bilinear AVG (Li et al., 2016) 91.70
DNN AVG (Li et al., 2016) 92.00
DNN LSTM (Li et al., 2016) 89.20
DNN AVG + CKBG (Saito et al., 2018) 94.70
Factorized (Jastrzębski et al., 2018) 79.40
Prototypical (Jastrzębski et al., 2018) 89.00
Concatenation (Davison et al., 2019) 68.80
Template (Davison et al., 2019) 72.20
Template + Grammar (Davison et al., 2019) 74.40
Coherency Ranking (Davison et al., 2019) 78.80
KG-BERTBERT-BASE (Shen et al., 2020) 93.20
KG-BERTGLM(RoBERTa-LARGE) (Shen et al., 2020) 94.60

Fine-tuned BERT (ours) 95.42
Fine-tuned RoBERTa (ours) 94.37

Human estimate (Li et al., 2016) 95.00

4.2 Methods

We fine-tune BERT-BASE-UNCASED (Devlin et al.,
2019) and RoBERTa-BASE (Liu et al., 2019). We
compare our LMs to all published results on the
same evaluation splits of which we are aware.
Our baselines include both KB embeddings (Li
et al., 2016; Jastrzębski et al., 2018) and contex-
tual LMs (Davison et al., 2019; Shen et al., 2020).
Appendix A provides implementation details.

4.3 Results

The results in Table 2 confirm the effectiveness
of our fine-tuning approach, as our BERT reaches
state-of-the-art accuracy on ConceptNet. It even
outperforms KG-BERTGLM(RoBERTa-LARGE) (Shen
et al., 2020), which requires an entity linking step
during preprocessing and uses a RoBERTa-LARGE

model pretrained with several extra tasks. In fact,
we suspect that our fine-tuned BERT has saturated
this benchmark, as it slightly exceeds the human
accuracy estimate provided by Li et al. (2016).

5 Task-based evaluation

We next evaluate the efficacy of the ranking step in
NEGATER. Specifically, we next show how the top-
ranking negative examples from NEGATER can
be informative (R3) for training KB completion
models. Similar to the previous section, we fine-
tune pretrained BERT and RoBERTa models for a
commonsense triple classification task. However,
here we use a more challenging dataset split, and
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vary the ways that negatives are sampled at training
time.

5.1 Data

As discussed previously, the ConceptNet split in-
troduced by Li et al. (2016) is already saturated by
BERT, likely because it contains “easy” negative
test examples. We therefore construct a new, more
challenging split by taking the small percentage
(3%) of triples in the benchmark with negated re-
lations (e.g., NOTISA, six total), each of which
has a positive counterpart in the KB (e.g., ISA).
We filter the dataset to the positive/negated relation
pairs only, and take the negated triples as true neg-
ative instances for testing by removing the NOT-
relation prefixes. Our new split, which we call
ConceptNet-TN to denote True Negatives, consists
of 36,210/3,278/3,278 train/validation/test triples.
Again, the classes are balanced positive/negative,
so accuracy is our main performance metric.

Note that because this dataset contains true
(hard) negatives, we expect accuracy to be much
lower than what we achieved in Table 2.

5.2 Baselines

As baselines we consider several contrastive data
augmentation approaches, all of which involve cor-
rupting positive in-KB samples.

We employ the following negative sampling
baselines designed for commonsense KBs:

• UNIFORM (Li et al., 2016; Saito et al., 2018):
We replace the head phrase Xh or tail phrase
Xt of each positive (Xh, r,Xt)

+ by uni-
formly sampling another phrase from the KB.

• COMET (Bosselut et al., 2019): COMET
is a version of GPT (Radford et al., 2018)
that was fine-tuned to generate the tail phrase
of a commonsense triple, conditioned on a
head phrase and relation. To make COMET
generate negatives, we prepend a “not” token
to each positive head phrase X+

h and gener-
ate 10 tail phrases XCOMET

t for the modified
head/relation prefix using beam search. Fi-
nally, we replace the tail phrase Xt in the
positive with each XCOMET

t in turn, yielding
negatives (X+

h , r,X
COMET
t ).

To investigate whether negative samplers tailored
to encyclopedic knowledge can transfer to com-
monsense, we employ the following state-of-the-art
baselines designed for encyclopedic KBs:

• ROTATE-SA (Sun et al., 2019): For each pos-
itive instance, a pool of candidate negatives
is generated with UNIFORM. The candidates
are then scored by the (shallow, but state-of-
the-art) RotatE KB embedding, and a nega-
tive is sampled from the candidate pool with
probability proportional to the score distribu-
tion. We take the top 50% of self-adversarially
generated statements as negative examples, in
order of score descending, from the last epoch
of training.

• SANS (Ahrabian et al., 2020) is a graph-
structural negative sampler that corrupts
head/tail phrases of positive instances by sam-
pling from the k-hop neighborhood of each
KB entity. We set k = 2.

Finally, we devise two intuitive baselines:

• SLOTS: We replace the head phrase Xh (tail
phrase Xt) of each positive (Xh, r,Xt)

+ by
uniformly sampling from the set of phrases
that appear in the head (tail) slot of KB triples
mentioning relation r. We filter out all nega-
tive samples that appear in the KB.

• ANTONYMS: We tag each phrase in the KB
as either a verb, noun, or adjective phrase us-
ing the SpaCy POS tagger.1 Then, for each
verb (noun, adjective) phrase, we replace the
first verb (noun, adjective) token with a ran-
domly selected antonym from either Word-
Net (Miller, 1998) or the gold lexical contrast
dataset from (Nguyen et al., 2016).

5.3 NEGATER variants
We generate out-of-KB candidates for NEGATER
with our k-NN approach using k=10, yielding
around 570K candidates. We implement the
NEGATER candidate ranking methods as follows:

• NEGATER-θr: We rank candidates using
fine-tuned BERT’s classification scores. Since
the scores are scaled differently by relation
type, we combine the top-ranking 50% of can-
didates per relation and shuffle them.

• NEGATER-∇: We again use BERT to rank
the candidates. To choose between the full-
gradient and gradient-prediction approaches
(§ 3.2.2), we train an MLP to predict gradi-
ent magnitudes and plot the mean absolute

1https://spacy.io/usage/linguistic-features#
pos-tagging

https://spacy.io/usage/linguistic-features#pos-tagging
https://spacy.io/usage/linguistic-features#pos-tagging
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Figure 2: Lower left corner is best: Wall-clock time
versus training loss (MAE) for NEGATER-∇ gradient
magnitude prediction as training set size n increases.

error training loss after 100 epochs for dif-
ferent training set sizes n. Figure 2 shows
that even for n=5K examples, the loss quickly
approaches zero. Therefore, for efficiency,
we use an MLP trained on n=20K examples,
which takes around 1 hour to train and rank
candidates on a single GPU, compared to an
estimated 14 hours for the full-gradient ap-
proach. For a random sample of 100 candi-
dates, the Pearson correlation coefficient be-
tween the true/predicted gradient magnitudes
is ρ=0.982, indicating that the approximation
is highly accurate.

• No-ranking ablation: Finally, in order to
measure the importance of the LM ranking
component of NEGATER, we introduce an ab-
lation which randomly shuffles the out-of-KB
candidates rather than ranking them.

After we obtain each ranked list of candidates, we
feed the statements as negative training examples
to BERT/RoBERTa in order of rank descending.

5.4 Results

For all performance metrics, we report averages
over five trials to account for randomness in sam-
pling and parameter initializations.

Accuracy comparison As shown in Table 3,
training with the top-ranking negative examples
from NEGATER always yields the best accuracy
for both LMs, up to 1.90% more than the base-
lines. Note that this improvement is achieved with
changing how only half of the training examples
(the negatives) are sampled. Notice also that our
NEGATER variants are the only samplers to offer
statistically significant improvements over the
UNIFORM baseline at α < 0.01 for BERT and
α < 0.05 for RoBERTa (two-sided t-tests, five
trials per model), signifying better-than-chance im-
provements.

Notice also that our most competitive baseline is
SLOTS, which is a contrastive approach that sam-

Table 3: Accuracy on ConceptNet-TN using different
negative sampling approaches: Our NEGATER vari-
ants are the only negative samplers to offer statistically
significant improvements over the popular UNIFORM
baseline at α < 0.01 (N) for BERT and α < 0.05 (4)
for RoBERTa (two-sided t-test, five trials per model).
Bold/underline: Best result per LM; Underline only:
Second-best result per LM.

BERT RoBERTa

B
as

el
in

es

UNIFORM 75.60 ± 0.24 75.55 ± 0.43
COMET 76.04 ± 0.63 75.86 ± 0.75
ROTATE-SA 75.30 ± 0.51 75.20 ± 0.37
SANS 75.45 ± 0.38 75.17 ± 0.37
SLOTS 76.46 ± 0.584 75.80 ± 0.25
ANTONYMS 76.06 ± 0.304 75.58 ± 0.58

N
E

G
A

T
E

R θr ranking 76.95 ± 0.28N 76.29 ± 0.59
∇ ranking 76.53 ± 0.22N 76.34 ± 0.324
No ranking 75.61 ± 0.29 75.29 ± 0.19

ples new head/tail phrases from those appearing in
the corresponding slots of the current relation r—
that is, preserving the grammar (R1) of the relation.
This confirms that grammatical negative samples
are indeed more informative than nonsensical ones.

Encyclopedic versus commonsense? We hy-
pothesize that the encyclopedic KB baselines
ROTATE-SA and SANS underperform because
such methods assume that the KB is a dense graph.
While this is usually true for encyclopedic KBs,
many commonsense KBs are highly sparse because
entities are not disambiguated, which means that
multiple phrases referring to the same concept may
be treated as different entities in the KB.2 For ex-
ample, SANS assumes that there are plentiful enti-
ties within the k-hop neighborhood of a query en-
tity, whereas in reality there may be very few, and
these entities may not be grammatical in context of
the original positive (R1) nor thematically relevant
(R2) to the query entity. Therefore, encyclopedic
negative samplers may not be transferrable to com-
monsense KBs or other highly sparse KBs.

Ablation study Table 3 also indicates that the
LM ranking component of NEGATER is crucial
for improving accuracy. Our no-ranking ablation
leads to lower classification accuracy than both
NEGATER-θr and NEGATER-∇. Empirically, we
find that this is because the ranking step helps filter

2Malaviya et al. (2020) provide an illustrative example
for comparison: The popular encyclopedic KB completion
benchmark FB15K-237 (Toutanova and Chen, 2015) is 75×
denser than the ConceptNet benchmark studied in this paper.
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Table 4: NEGATER consistently yields the highest pre-
cision on ConceptNet-TN among negative samplers be-
cause it lowers the false positive rate: Performance
drill-down (stdevs omitted for space). N, 4: Signif-
icant improvement over UNIFORM at α < 0.01 and
α < 0.05, respectively.

BERT RoBERTa
Prec. Rec. Prec. Rec.

B
as

el
in

es

UNIFORM 71.29 85.83 73.36 80.28
COMET 73.73 80.99 73.47 81.02
ROTATE-SA 74.83 76.59 73.70 78.48
SANS 72.54 82.11 73.26 79.50
SLOTS 75.214 79.34 73.85 80.17
ANTONYMS 72.55 83.98 72.98 81.62

N
E

G
A

T
E

R θr ranking 75.12N 80.68 75.92N 77.05
∇ ranking 76.60N 76.50 75.75N 77.57
No ranking 76.81N 73.42 75.674 74.78

out false negatives generated by our k-NN candi-
date construction procedure.

Performance drill-down Finally, Table 4 pro-
vides precision and recall scores to further “drill
down” into NEGATER’s effects. Evidently, the
NEGATER variants consistently yield the best pre-
cision, whereas there is no consistent winner in
terms of recall. To understand why NEGATER
improves precision, we remind the reader that
precision is calculated as P = (TP )/(TP +
FP ), where TP stands for true positives and FP
stands for false positives. Because training with
NEGATER examples helps the LMs better recog-
nize hard negatives—examples that “look positive”
but are really negative—the LM mislabels fewer
negatives, decreasing the false positive rate.

6 Human evaluation

Finally, we collect qualitative human judgments on
the examples output by each negative sampler.

6.1 Data
To cover a diverse set of reasoning scenarios, we
consider the HASPREREQUISITE, HASPROPERTY,
HASSUBEVENT, RECEIVESACTION, and USED-
FOR relations from ConceptNet. For each relation
and negative sampler, we take 30 negative state-
ments at random, yielding 1,350 statements judged
in total (5 relations × 9 negative samplers × 30
statements per method/relation).

6.2 Methods
We gather judgments for (R1) grammar on a bi-
nary scale (incorrect/correct) and (R2) thematic

Table 5: NEGATER best trades off grammar (R1), con-
sistency (R2), and the true negative rate, as measured
by the percentage of statements labeled “never true”:
Human annotation scores, normalized out of 1. Rela-
tive and average ranks are provided because not all raw
metrics are directly comparable—e.g., grammar (R1) is
judged as binary, whereas consistency (R2) is graded.

R1 R2 % “never true” Avg rank

B
as

el
in

es

UNIFORM 0.487 (9) 0.408 (7) 0.747 (3) 6.33 (9)
COMET 0.580 (8) 0.703 (1) 0.407 (9) 6.00 (8)
ROTATE-SA 0.733 (7) 0.373 (8) 0.767 (2) 5.67 (7)
SANS 0.760 (6) 0.532 (5) 0.633 (4) 5.00 (4)
SLOTS 0.853 (5) 0.372 (9) 0.773 (1) 5.00 (4)
ANTONYMS 0.860 (4) 0.495 (6) 0.613 (5) 5.00 (4)

N
E

G
A

T
E

R θr ranking 0.880 (3) 0.635 (2) 0.413 (8) 4.33 (3)
∇ ranking 0.927 (1) 0.555 (4) 0.587 (6) 3.67 (1)
No ranking 0.920 (2) 0.592 (3) 0.560 (7) 4.00 (2)

consistency of the head/tail phrases on a 4-point
scale (“not consistent at all”, “a little consistent”,
“somewhat consistent”, “highly consistent”). To
estimate the true negative rate, we also obtain truth-
fulness judgments on a 4-point scale (“not truthful
at all”, “sometimes true”, “mostly true”, “always
true”). We recruit four annotators who are fluent
in English. Among 50 statements shared across
the annotators, we observe an average variance of
0.058 points on the 0/1 scale for R1, 0.418 points
on the 4-point scale for R2, and 0.364 points on the
4-point truthfulness scale. According to previous
work in commonsense KB construction (Romero
et al., 2019), these values indicate high agreement.
Appendix B provides the annotation instructions.

6.3 Results

Table 5 compares normalized average judgment
scores for R1 and R2, as well as the percentage of
statements labeled as “never true” (i.e., the true neg-
ative rate). Here, the takeaway is that the require-
ments of negative knowledge are a tradeoff, and
NEGATER-∇ best manages this tradeoff. In-
deed, the methods that yield the most true negatives
(ROTATE-SA, SLOTS) perform the worst in gram-
mar (R1) and consistency (R2), whereas methods
that yield more consistent statements like COMET
have a comparatively low true negative rate.

Finally, Table 6 provides examples of statements
with consistency (R2) and truthfulness judgments.
Again, it is evident that NEGATER-∇ best manages
the tradeoffs of negative knowledge. In fact, it is
the only negative sampler for which a majority of
examples are rated both as “never true” (58.67%)
and “somewhat consistent” or higher (62%).
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Table 6: Our NEGATER-∇ variant best handles the tradeoff between consistency (R2) and truthfulness: Represen-
tative negative examples from the most competitive methods SLOTS, NEGATER-θr, and NEGATER-∇.

Method Negative statement Consistent? True?

SLOTS

(“open business”, HASPREREQUISITE, “hide behind door”) A little Never
(“go somewhere”, HASSUBEVENT, “bruise appears”) Not at all Never
(“mailbox”, USEDFOR, “sleeping guests”) Not at all Never

NEGATER-θr
(“play baseball”, HASPREREQUISITE, “join hockey team”) Somewhat Never
(“comfort someone”, HASSUBEVENT, “talk with them”) Highly Mostly
(“having a bath”, USEDFOR, “refreshing yourself”) Highly Sometimes

NEGATER-∇
(“hear news”, HASPREREQUISITE, “record something”) A little Never
(“drink water”, HASSUBEVENT, “inebriation”) Highly Never
(“luggage trolley”, USEDFOR, “moving rocks”) Highly Never

7 Related work

Commonsense KB completion Approaches to
commonsense KB completion include triple classi-
fication (Li et al., 2016; Saito et al., 2018; Jastrzęb-
ski et al., 2018; Davison et al., 2019), generation
of novel triples (Bosselut et al., 2019; Hwang et al.,
2021), and link prediction (Malaviya et al., 2020).
Such approaches either focus solely on modeling
positive knowledge, or else generate negatives at
random, making our work the first attempt in the
direction of meaningful negative knowledge.

Knowledge in language models Several studies
have shown that deep contextual language models
acquire a degree of implicit commonsense knowl-
edge during pretraining (Petroni et al., 2019; Davi-
son et al., 2019; Roberts et al., 2020), which can be
further sharpened specifically toward KB comple-
tion by targeted fine-tuning (Bosselut et al., 2019;
Hwang et al., 2021). Our results in fine-tuning
BERT to ConceptNet (§ 4) validate these find-
ings. Other studies have demonstrated that pre-
trained LMs struggle to distinguish affirmative sen-
tences from their negated counterparts (Kassner
and Schütze, 2020; Ettinger, 2020), although this
can again be addressed by fine-tuning (Kassner and
Schütze, 2020; Jiang et al., 2021). Note, however,
that we deal not with linguistic negation but with
negative, or false, knowledge.

Negatives in knowledge bases We are not aware
of any tailored negative samplers for commonsense
knowledge. However, several negative samplers for
encyclopedic KBs like Freebase exist, including
self-adversarial (Cai and Wang, 2018; Sun et al.,
2019), graph-structural (Ahrabian et al., 2020), and
heuristic “interestingness” (Arnaout et al., 2020)
approaches. While these methods share our high-

level goal, we showed in § 5 that they are less
effective on highly sparse commonsense KBs.

8 Conclusion

In this paper we rigorously defined negative knowl-
edge in commonsense KBs and proposed a frame-
work, NEGATER, to address this problem. Im-
portantly, our framework does not require ground-
truth negatives at any point, making it an effective
choice when gold training examples are not avail-
able. We empirically demonstrated the strength
of NEGATER over many competitive baselines
in multiple evaluations, including the strength of
our fine-tuning approach, the task-based utility of
NEGATER statements, and the intrinsic quality of
these statements. A promising future direction is to
explore new reasoning tasks that can be improved
with negative knowledge from NEGATER, for
example multiple-choice commonsense QA (Ma
et al., 2021), which often requires high-quality neg-
ative examples for training.
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A Implementation details

Pooling To obtain a single contextual representa-
tion of a triple from a sequence of triple tokens,
we experiment with three standard pooling ap-
proaches (Reimers and Gurevych, 2019): Taking
the reserved [CLS] token embedding from the out-
put of the encoder, and mean- and max-pooling
over all output token representations. As we do not
observe statistically significant differences in per-
formance among the pooling operations, we use the
[CLS] token as the triple embedding, since this is a
very common method for encoding text sequences
with BERT (Gururangan et al., 2020).

LM hyperparameters Following the recom-
mendations given by Devlin et al. (2019), we search
manually among the following hyperparameters
(best configuration for BERT in bold, RoBERTa
underlined): Batch size in {16, 32}; Learning
rate in {10−4, 10−5,2× 10−5, 3 × 10−5}; Num-
ber of epochs in {3, 5, 7, 10,13}; Number of
warmup steps in {0,10K, 100K}; Maximum se-
quence length in {16,32, 64}. All other hyperpa-
rameters are as reported in (Devlin et al., 2019).

Training negatives For the fine-tuning evalua-
tion, to make our training process as similar as
possible to common practice in the literature (Li
et al., 2016; Saito et al., 2018; Jastrzębski et al.,
2018), we corrupt each positive x+ by replacing
the head, relation, and tail of the positive in turn
with a randomly sampled phrase or relation. For
the task-based evaluation, we sample one negative
per positive in order to make running many experi-
ments across different negative samplers feasible.

Software and hardware We implement our
LMs with the Transformers PyTorch library (Wolf
et al., 2020) and run all experiments on a NVIDIA
Tesla V100 GPU with 16 GB of RAM. Both BERT
and RoBERTa take around 1.5 hours/epoch to train
on the ConceptNet benchmark.

B Annotation instructions

In this section we provide the annotation instruc-
tions for § 6.

B.1 Task definition
In this task you will judge a set of statements based
on how grammatical, truthful, and consistent they
are. Each statement is given in [head phrase, rela-
tion, tail phrase] form. The criteria are as follows:

• Grammar: Our definition of grammar refers
to whether each statement follows the gram-
mar rules we provide for its relation type. We
do not include proper use of punctuation (e.g.,
commas, apostrophes) or articles (e.g., “the”,
“a”, “this”) in our definition of grammar. The
choices are “correct”, “partially correct or un-
sure”, and “incorrect”. (Note: in our analyses
we binarize these choices, considering “par-
tially correct” and “incorrect” as the same.)

• Truthfulness: Our definition of truthfulness
refers to how often you believe the whole state-
ment holds true. The choices are: “always
true”, “mostly true”, “sometimes true”, and
“never true”.

• Consistency: We define “consistency” as the
degree to which the head and tail phrases are
consistent in terms of the topic, theme, or goal
that they refer to. For example, the phrases
“football” and “baseball” are highly consis-
tent because they both refer to team sports,
whereas the phrases “football” and “cactus”
are not consistent. The choices are: “highly
consistent”, “somewhat consistent”, “a little
consistent”, and “not consistent at all”.

You may fill your answers in any order. For exam-
ple, you might find it helpful to judge the grammar
of all statements first, then the truthfulness, then
the consistency. Some of the statements are sub-
jective and there is not always a “right” answer,
especially for the consistency criterion. If you are
unsure of a word or reference, you may use Google
or other search engines. You may also explain your
reasoning/interpretation in the optional Notes box.

B.2 Examples and explanations
HasPrerequisite The HASPREREQUISITE rela-
tion describes prerequisites or pre-conditions for
actions or states of being. It requires a verb phrase
(an action or a state of being) in the head slot and a
verb phrase or noun phrase in the tail slots. Exam-
ples:

• (“pay bill”, HASPREREQUISITE, “have
money”)

– Grammar: correct
– Truthfulness: always true
– Consistency: highly consistent
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• (“purchase a cellular phone”, HASPREREQUI-
SITE, “study”)

– Grammar: correct
– Truthfulness: never true
– Consistency: not consistent at all

• (“paint your house”, HASPREREQUISITE,
“purple”)

– Grammar: incorrect
– Truthfulness: never true
– Consistency: a little consistent (Our in-

terpretation: Painting your house in-
volves choosing a color, so the state-
ment could be construed as a little con-
sistent, even though it’s grammatically
incorrect.)

• (“eat”, HASPREREQUISITE, “send them to
their room”)

– Grammar: correct
– Truthfulness: never true
– Consistency: not consistent at all

HasProperty The HASPROPERTY relation de-
scribes properties of actions or objects. It requires
a verb phrase or noun phrase in the head slot and a
description in the tail slot. Examples:

• (“school bus”, HASPROPERTY, “yellow”)

– Grammar: correct
– Truthfulness: mostly true (Our interpre-

tation: Yellow school buses are very com-
mon in the USA and Canada, but not all
school buses are yellow.)

– Consistency: highly consistent

• (“basketball”, HASPROPERTY, “round”)

– Grammar: correct
– Truthfulness: always true
– Consistency: highly consistent

• (“pilot”, HasProperty, “land airplane”)

– Grammar: incorrect
– Truthfulness: never true
– Consistency: highly consistent (Our in-

terpretation: While pilots do land air-
planes, the HasProperty relation re-
quires a description in the tail slot, so
it’s not grammatically correct or truth-
ful.)

• (“gross domestic product”, HASPROPERTY,
“abbreviated to CTBT”)

– Grammar: correct
– Truthfulness: never true
– Consistency: a little consistent (Our in-

terpretation: The gross domestic prod-
uct does have a well-known abbreviation
(“GDP”), so this statement could be con-
strued as a little consistent.)

HasSubevent The HASSUBEVENT relation de-
scribes sub-events or components of larger events.
It requires an event (verb phrase or noun phrase) in
the head slot and an event in the tail slot. Examples:

• (“lying”, HASSUBEVENT, “you feel guilty”)

– Grammar: correct
– Truthfulness: mostly true (Our interpre-

tation: Lying often causes guilt in people,
although the amount of guilt depends on
the person.)

– Consistency: highly consistent

• (“relax”, HASSUBEVENT, “vegetable”)

– Grammar: incorrect
– Truthfulness: never true
– Consistency: not consistent at all

• (“drink coffee”, HASSUBEVENT, “water may
get into your nose”)

– Grammar: correct
– Truthfulness: never true
– Consistency: a little consistent (Our in-

terpretation: Drinking coffee doesn’t
cause water to get into your nose, but
coffee and water are both drinkable liq-
uids, so we think this statement is a little
consistent.)

ReceivesAction The RECEIVESACTION relation
describes actions that apply to objects or other ac-
tions. It requires a verb phrase or noun phrase in the
head slot and an action in the tail slot. Examples:

• (“book”, RECEIVESACTION, “write by per-
son”)

– Grammar: correct
– Truthfulness: always true
– Consistency: highly consistent
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• (“most watches”, RECEIVESACTION, “rhyme
with piano”)

– Grammar: correct
– Truthfulness: never true
– Consistency: not consistent at all

• (“oil”, RECEIVESACTION, “grow in field”)

– Grammar: correct
– Truthfulness: never true
– Consistency: a little consistent (Our in-

terpretation: Since oil is a natural re-
source similar to other things that are
grown in fields, we could see this state-
ment being a little consistent (it’s a
stretch though).)

• (“violin”, RECEIVESACTION, “play with a
puck”)

– Grammar: correct
– Truthfulness: never true
– Consistency: somewhat consistent (Our

interpretation: Violins are indeed played,
but with a bow, not a puck.)

UsedFor The USEDFOR relation describes the
uses of objects or actions. It requires a verb phrase
or noun phrase in the head and tail slots. Examples:

• (“shoes”, USEDFOR, “protecting feet”)

– Grammar: correct
– Truthfulness: always true
– Consistency: highly consistent

• (“tying your shoelace”, USEDFOR, “smart”)

– Grammar: incorrect
– Truthfulness: never true
– Consistency: not consistent at all

• (“swimming”, USEDFOR, “traveling on
land”)

– Grammar: correct
– Truthfulness: never true
– Consistency: somewhat consistent (Our

interpretation: This statement is some-
what consistent because swimming and
traveling on land are both means of
movement.)

• (“bush”, USEDFOR, “wrestling on”)

– Grammar: correct
– Truthfulness: never true
– Consistency: not consistent at all


