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Abstract

In this paper, we propose Sequence Span
Rewriting (SSR), a self-supervised task for
sequence-to-sequence (Seq2Seq) pre-training.
SSR learns to refine the machine-generated
imperfect text spans into ground truth text.
SSR provides more fine-grained and informa-
tive supervision in addition to the original text-
infilling objective. Compared to the preva-
lent text infilling objectives for Seq2Seq pre-
training, SSR is naturally more consistent with
many downstream generation tasks that re-
quire sentence rewriting (e.g., text summariza-
tion, question generation, grammatical error
correction, and paraphrase generation). We
conduct extensive experiments by using SSR
to improve the typical Seq2Seq pre-trained
model T5 in a continual pre-training setting
and show substantial improvements over T5
on various natural language generation tasks.1

1 Introduction

Text infilling (e.g., masked language modeling)
has become a prevalent learning objective for pre-
trained language models (PTLMs) (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Lan et al., 2020;
Lewis et al., 2020b; Raffel et al., 2019). It provides
self-supervision by masking out tokens or spans in
text, and trains a model to infill the masked con-
tent based on the contexts, accordingly guiding the
model for representation learning, as Figure 1(a)
shows.

In this paper, we propose to extend the conven-
tional text infilling to a novel sequence-to-sequence
(Seq2Seq) pre-training objective, namely Sequence
Span Rewriting (SSR). We train a model to rewrite
machine-generated imperfect text spans into the

∗This work was done during the first author’s internship
at Microsoft Research Asia.

1Code for pre-training SSR is available at
https://github.com/MichaelZhouwang/
Sequence_Span_Rewriting.

ground truth text, as illustrated in Figure 1(b). SSR
has two advantages over text infilling: (1) SSR pro-
vides better supervision signals, as SSR trains the
model with diverse and fine-grained rewriting pat-
terns beyond filling the blanks; (2) SSR bridges
the gap between pre-training and fine-tuning,
because many downstream Seq2Seq tasks like sum-
marization and paraphrase generation are naturally
sequence span rewriting tasks where a source sen-
tence is mapped to the target sentence following
specific rewriting patterns.

The key element in implementing SSR is how to
generate imperfect text spans that are both diverse
and informative. Inspired by ELECTRA (Clark
et al., 2020), we use a powerful pre-trained text in-
filling model – T5-large (Raffel et al., 2019) – as the
imperfect span generator. Compared with random
or rule-based noising approaches, the T5-based
imperfect span generator can derive various infor-
mative text spans that benefit the model to learn
meaningful and diverse rewriting patterns including
paraphrasing and enhancing the fluency and contex-
tual consistency through correcting grammatical,
commonsense and factual errors, to improve a text
sequence. These rewriting patterns resemble the
goal of various NLG tasks and thus strengthen the
ability of pre-trained model for downstream appli-
cations.

In our experiments, we apply SSR to the typi-
cal Seq2Seq pre-trained model – T5 (Raffel et al.,
2019) in a continual learning fashion. We show
SSR outperforms both the original pre-trained T5
models and their continual training counterparts
with the conventional text infilling objective on var-
ious Seq2Seq tasks, including text summarization,
question generation, and grammatical error correc-
tion, with a small number of optimization steps
with moderate amount of machine-generated data,
which confirms the potential of SSR to serve as a
plug-and-play method to improve various existing
pre-trained Seq2Seq models. Notably, we find SSR

https://github.com/MichaelZhouwang/Sequence_Span_Rewriting
https://github.com/MichaelZhouwang/Sequence_Span_Rewriting
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Figure 1: The comparison of (a) Text Infilling and (b) Sequence Span Rewriting. Instead of learning to directly fill
the blanks, Sequence Span Rewriting first exploits an imperfect span generator to generate imperfect spans within
the text and then feeds the filled text to the model to learn how to rewrite it into the ground truth.

especially useful for pre-training smaller Seq2Seq
models, with the help of a powerful imperfect span
generator. This observation sheds light on a new
approach for knowledge transfer from large models
to smaller ones.

2 Related Work

Pre-training in NLP BERT (Devlin et al., 2019)
introduced the masked language modeling objec-
tive by masking out certain tokens in a text and
predicting them based on their left and right side
contexts. Recent work has shown that BERT’s per-
formance can be further improved by training for
longer (Liu et al., 2019), by tying parameters across
layers (Lan et al., 2020), and by replacing a consec-
utive span of tokens with the mask token for MLM
training (Joshi et al., 2020). Our approach is also re-
lated to ELECTRA (Clark et al., 2020), which uses
a pre-trained masked language model to generate
fake tokens and train a discriminator to detect them.
The key difference is that our approach focuses on
span-level texts and trains the model to correct the
mistakes instead of simply detecting them, which
includes more diverse and informative signals and
enables the model to perform text generation tasks
in a Seq2Seq fashion.

To enable mask language models for natural lan-
guage generation tasks, Song et al. (2019) used
a decoder to generate the masked tokens autore-
gressively. UniLM (Dong et al., 2019) multitasks
MLM and language modeling objectives. More re-
cently, BART (Lewis et al., 2020b) and T5 (Raffel
et al., 2019) pre-train Seq2Seq models with the text
span infilling objective, which removes text spans
in the input texts and train the models to recover
the original texts in an auto-regressive fashion.

More recently, CALM (Zhou et al., 2021a) in-
troduces concept-to-sentence generation and con-
cept order recovery as two self-supervised ob-
jectives that encourage Seq2Seq PTLMs to ac-
quire generative commonsense reasoning ability.
MARGE (Lewis et al., 2020a) pre-trains a Seq2Seq
model with an unsupervised multi-lingual cross-
document paraphrasing objective. Their approach
is related to our text rewriting objective. However,
MARGE requires multi-lingual paraphrase docu-
ments and needs to train a separate retrieval model
while our method can simply used an off-the-shelf
model pre-trained with text infilling to generate
training data. Also, MARGE is pre-trained to gen-
erate a paraphrase-like document in another lan-
guage, thus mainly helpful for translation tasks
and multi-lingual tasks. In contrast, SSR focus on
monolingual text rewriting and improve general
text generation tasks.

SSR departs significantly from the aforemen-
tioned methods for Seq2Seq pre-training as it em-
ploy machine-generated noises instead of rule-
based ones, thus introducing more diverse train-
ing signals. Also, SSR receives complete inputs
without artificial masks during pre-training relying
solely on monolingual corpus.

Model Acceleration for PTLMs Recently,
many attempts have been made to speed up a
large pre-trained language model (PTLM). To
name a few, Shen et al. (2020) quantized BERT
to 2-bit using Hessian information; Michel et al.
(2019) pruned unnecessary attention heads in the
transformer layers to reduce the parameters of a
BERT model. DistilBERT (Sanh et al., 2019) and
uses knowledge distillation (Hinton et al., 2015;
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Romero et al., 2015) to compress BERT. More
recently, (Zhou et al., 2021b) proposed Meta Dis-
tillation to improve the performance of knowledge
distillation for compression BERT. In addition, Xu
et al. (2020) introduced progressive module replac-
ing to train more compact BERT models by encour-
aging the student model to behave similarly with
the teacher model. In addition, Zhou et al. (2020c);
Schwartz et al. (2020) proposed to accelerate the
inference stage of pre-trained models via input-
adaptive inference. However, to the best of our
knowledge, few studies have been done for accel-
erating large sequence-to-sequence PTLMs. Our
approach can also be used for model compression
by using a large pre-trained model as the imper-
fect span generator. In this way, SSR also exploits
the knowledge of a larger model to improve the
training of a compact model.

3 Methodology

The key idea of SSR is to train a Seq2Seq model
to rewrite machine-generated text spans that may
contain a variety of noise such as paraphrase, gram-
matical and factual errors, into ground truth that
are correct and appropriate in the context. As il-
lustrated by Figure 1(b), SSR involves three steps:
(1) masking out parts of the text; (2) generating im-
perfect text to fill in the masked spans; (3) training
the Seq2Seq model to rewrite the imperfect spans
to the ground truth. We will introduce the techni-
cal details of SSR in Section 3.1 and an advanced
training strategy for SSR in Section 3.2.

3.1 Sequence Span Rewriting

Text Span Masking To generate training data of
sequence span rewriting in a self-supervised fash-
ion, we first randomly sample a number of text
spans and mask them. Specifically, the spans are
masked with special mask tokens by order (e.g.,
<s1>, <s2> and <s3>) in Figure 1(b) as in T5,
with span lengths drawn from a Poisson distribu-
tion (λ = 3). The number of spans is controlled so
that approximately 30% of all tokens are masked.
Specially, 0-length spans correspond to an insertion
of a mask token.

For example, as shown in Figure 1, given a sen-
tence “In 2002, Elon Musk founded SpaceX, an
aerospace manufacturer company.”, we randomly
sample three text spans (two of them are of length
1). The masked sentence becomes “In <s1>, Elon
Musk <s2> SpaceX, <s3> company.”

Imperfect Span Generation With masked
spans, we can generate imperfect text to fill in
the spans. Specifically, we feed the masked in-
put into the imperfect span generator to generate
predictions in an auto-regressive fashion. To im-
prove the diversity of generation, we use nucleus
sampling (Holtzman et al., 2020) that truncates the
unreliable tail of the probability distribution and
samples from the dynamic nucleus of tokens con-
taining the vast majority of the probability mass.
For instance, given the previous masked input sen-
tence, a T5-large model generates “2001”, “joined”,
and “a manufacturer” as imperfect spans.

Span Rewriting After we obtain imperfect spans
within the text, we pre-train the Seq2Seq model to
rewrite imperfect text spans into the ground truth.
Specifically, we use special tokens <si> and </si>
to denote the starting and ending of i-th text span to
be rewritten in the source sequence, which gives “In
<s1> 2001 </s1>, Elon Musk <s2> joined </s2>
SpaceX, <s3> a manufacturer </s3> company.”
as the input for SSR pre-training. Similarly, we
use <si> to separate different text spans in the
target sequence, which gives “<s1> 2002 <s2>
founded <s3> an aerospace manufacturer” as the
target sequence. We train the model to generate
target text spans from left to right auto-regressively
by maximum likelihood estimation.

We can see that the SSR objective involves using
a pre-trained model to generate imperfect spans,
which will lead to increased computational cost.
In practice, we suggest starting SSR pre-training
based on checkpoints of existing Seq2Seq pre-
trained models. In this way, we only need to gen-
erate a few amount of imperfect spans and con-
tinually pre-train the models for a few steps. In
this perspective, SSR can be viewed as a general
approach that be used to improve various Seq2Seq
pre-trained models before fine-tuning them on
downstream text generation tasks.

For fine-tuning SSR, we simply denote the en-
tire input sequence with the same span identifier
(e.g., <s1>) used during SSR pre-training. There-
fore, the model would learn to rewrite the entire
input sequence, alleviating the gap caused by the
<mask> token during text infilling pre-training.
For example, for grammatical error correction, the
input is formatted as “<s1> I go to school yester-
day. </s1>” and the output is “<s1> I went to
school yesterday.”, which exactly corresponds to
the pre-training format of SSR.
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In addition, for some constrained text generation
tasks (Lin et al., 2020) and controlled text genera-
tion (Hu et al., 2017) tasks, we can specify which
part of input text to be rewritten with span iden-
tifiers. This enables more flexible text generation
with Seq2Seq pre-trained models. Taking text at-
tribute transfer as an example, an input example
would looks like “Great food <s1> but very rude
</s1> waiters.” and the corresponding target se-
quence is “<s1> and very friendly”. The inductive
bias of span rewriting learned by SSR pre-training
naturally benefit these kind of NLG applications.

3.2 Curriculum SSR

As mentioned above, we apply SSR as a continual
training objective for pre-trained Seq2Seq mod-
els that were originally trained with the text in-
filling objective. However, continually training a
pre-trained Seq2Seq model with a different objec-
tive may result in drastic adaption of its parameters.
To make this transition smoother and reduce the
difficulty of optimization, we propose to schedule
the SSR training examples with curriculum learn-
ing (Bengio et al., 2009) according to their diffi-
culties. Specifically, we measure the difficulty of
rewriting a certain imperfect text span with both
the length of the imperfect span and the uncertainty
(i.e., perplexity) of the imperfect span generator
when generating this span.

Intuitively, a short imperfect span generally in-
cludes some simple word substitution (e.g., big→
large) or grammatical error (e.g., is→ was) while
a longer imperfect span may require more com-
plicated paraphrasing (e.g., what is happening→
what’s up). Also, an imperfect span with larger
perplexity suggests the span may be of lower qual-
ity or more uncommon, thus more difficult to be
rewritten into ground truth. Therefore, we consider
longer imperfect spans and spans with a higher per-
plexity under the imperfect span generator to be
more difficult. We split the SSR training examples
into k (k = 5 in our experiments) groups according
to the sum of per-token loss of the imperfect span
generator when it generates an SSR training exam-
ple. We then start pre-training the model with the
easiest group of SSR training examples and then
gradually switch to more difficult groups during
pre-training. Intuitively, this will make the transi-
tion from the original text infilling objective to the
sequence span rewriting objective more smooth.

4 Experiments

4.1 Experimental Settings
SSR is implemented as a text-to-text transformer
model with a bidirectional encoder and a left-to-
right auto-regressive decoder. For pre-training, we
minimize the negative log-likelihood of the original
ground truth text spans. We describe details of the
architecture, pre-training, and fine-tuning of SSR
in this section.

Architecture We use the same architecture as
T5 (Raffel et al., 2019) which is roughly equivalent
to the original Transformer proposed by Vaswani
et al. (2017), with the exception of removing the
Layer Norm bias, placing the layer normalization
outside the residual path, and using a different rela-
tive position embedding scheme.

Following the design choice of T5 (Raffel et al.,
2019), we train three sizes of SSR:

• SSR-small: 60M parameters, 6 Transformer
layers, 8 attention heads, 512 hidden size

• SSR-base: 220M parameters, 12 Transformer
layers, 12 attention heads, 768 hidden size

• SSR-large: 770M parameters, 24 Transformer
layers, 16 attention heads, 1024 hidden size

Pre-training Details As we propose SSR to
serve as a general plug-and-play approach to im-
prove existing Seq2Seq pre-trained models with-
out intensive computation like pre-training from
scratch, we initialize each size of SSR model with
the corresponding pre-trained T5 model of the same
size, and continually pre-train the models with the
SSR objective.

For imperfect span generation, we use the off-
the-shelf T5-large model with nucleus sampling
(p = 0.9) to sample generated text spans. For SSR
learning, we sample 4GB of text from Wikipedia
corpus, BookCorpus (Zhu et al., 2015), and Real-
News (Zellers et al., 2019), which are commonly
used for pre-training language models. Our imple-
mentation is based on Hugging Face Transform-
ers (Wolf et al., 2020). We use text sequences
with a maximum length of 256 tokens to sam-
ple masked text spans and generate imperfect text
spans. We then continually pre-train different vari-
ants of SSR for 100k updates2, with a maximum
sequence length of 256, a batch size of 512, and a

2We empirically find 100k updates to be enough since the
models’ performance on downstream tasks begin to saturate.
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Model Architecture CNN/DM XSum

RG-1 RG-2 RG-L RG-1 RG-2 RG-L

Performance of models without pre-training

Lead-3 - 40.42 17.62 36.67 16.30 1.60 11.95
PTGEN (See et al., 2017) - 36.44 15.66 33.42 29.70 9.21 23.24

Performance of state-of-the-art models based on pre-trained models of comparable size

MASS (Song et al., 2019) L=6, H=1024 42.12 19.50 39.01 39.75 17.24 31.95
BERTSumAbs (Liu and Lapata, 2019) L=12, H=768 41.72 19.39 38.76 38.76 16.33 31.15
UniLMv2 (Bao et al., 2020) L=12, H=768 43.16 20.42 40.14 44.00 21.11 36.08

Performance of comparable models based on T5-base

T5-base (Raffel et al., 2019) L=12, H=768 42.25 20.22 39.45 43.12 20.84 34.98
T5-base-cont L=12, H=768 42.49 20.33 39.65 43.32 20.94 35.21
DistilT5-base L=12, H=768 42.37 20.25 39.53 43.25 20.89 35.14
DenoiseT5-base L=12, H=768 42.22 20.18 39.41 43.14 20.82 35.03
SSR-base L=12, H=768 43.53∗ 20.79∗ 40.44∗ 44.05 21.19 35.88

Table 1: Abstractive summarization results. We also present the transformer architecture for the methods using
pre-trained models. For example, L=12, H=768 means both the encoder and decoder are built with 12 transformer
layers with a hidden size of 768. ∗The asterisk denotes statistically significant improvement with p-value < 0.05
upon all compared models.

learning rate of 5e-5 with a linear warm-up for the
first 8,000 updates.

It is noteworthy that although SSR requires us-
ing a pre-trained Seq2Seq model for imperfect span
generation, the computation cost of using SSR to
improve a Seq2Seq pre-trained model is still con-
siderably smaller than the pre-training cost. This is
because SSR requires much smaller training corpus
and optimization steps when employed in a contin-
ual pre-training setting. This also reduces recent
concerns (Strubell et al., 2019; Bender et al., 2021)
about the carbon footprint and energy consumption
in LM pre-training.

4.2 Tasks and Datasets

Abstractive Summarization aims to rewrite a
long document into a short summary. To pro-
vide a comparison with the recent work in pre-
trained models for this task, we present re-
sults on two widely used summarization datasets:
CNN/DailyMail (Hermann et al., 2015) and
XSum (Narayan et al., 2018), and report evalua-
tion results in terms of ROUGE-1, ROUGE-2 and
ROUGE-L (Lin, 2004).
Question Generation is to generate valid and flu-
ent questions according to a given passage and
target answers. It can be considered as rewriting
a target answer and its surrounding context into
a question form. Following previous work (Dong

et al., 2019), we concatenate the passage and an an-
swer as the input of the model to learn to generate
the corresponding question in the fine-tuning stage.
We use SQUAD (Rajpurkar et al., 2016) dataset
to train and test question generation following the
data split in (Du and Cardie, 2018). We report eval-
uation results in terms of BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
CIDEr (Vedantam et al., 2015).
Grammatical Error Correction is a task that
rewrites a potentially erroneous input sentence into
a fluent sentence that is grammatical error free with-
out changing the original meaning of the input sen-
tence. Following the recent work (Grundkiewicz
et al., 2019; Kiyono et al., 2019; Zhou et al., 2020a)
in GEC, we use the public Lang-8 (Mizumoto et al.,
2011), NUCLE (Dahlmeier et al., 2013), FCE (Yan-
nakoudakis et al., 2011) and W&I+LOCNESS
datasets (Bryant et al., 2019; Granger, 1998) for
fine-tuning without using any synthetic GEC data,
and then evaluate Max-Match (M2) precision, re-
call, and F0.5 score on the CoNLL-2014 (Ng et al.,
2014) test set.

4.3 Compared Models

We compare SSR with the following models:

• T5: the original pre-trained text-to-text trans-
former based on the text infilling objective.
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Model Architecture Question Generation GEC

BLEU-4 METEOR CIDEr P R F0.5

Performance of baseline models without pre-training

Zhang and Bansal (2019) - 18.37 22.65 46.68 - - -
Xfmr-big (Chen et al., 2020) L=12, H=1024 - - - 64.9 26.6 50.4
Xfmr-big + Synthetic Data (Zhou et al., 2020b) L=12, H=1024 - - - 69.1 33.7 57.1

Performance of state-of-the-art models based on pre-trained models of comparable size

UniLMv2 (Bao et al., 2020) L=12, H=768 24.43 26.34 51.97 - - -

Performance of comparable models based on T5-base

T5-base (Raffel et al., 2019) L=12, H=768 23.74 25.95 51.61 68.6 33.5 56.7
T5-base-cont L=12, H=768 23.93 26.11 51.78 69.6 33.6 57.3
DistilT5-base L=12, H=768 23.86 25.93 51.64 69.3 33.1 56.9
DenoiseT5-base L=12, H=768 23.70 25.91 51.58 69.5 33.4 57.1
SSR-base L=12, H=768 24.35 26.51∗ 52.11∗ 70.5∗ 34.9∗ 58.7∗

Table 2: Question generation and GEC results. We also present the transformer architecture for the methods using
transformer models. For example, L=12, H=768 means both the encoder and decoder are built with 12 transformer
layers with a hidden size of 768. ∗The asterisk denotes statistically significant improvement with p-value < 0.05
upon all compared models.

• T5-cont: text-to-text transformer initialized
by T5 and continually pre-trained with the
original text infilling objective with additional
training steps. The total number of additional
training steps is equal to that of SSR.

• DistilT5: the variant that continually pre-
trains T5 by text infilling with sequence-
level knowledge distillation (Kim and Rush,
2016). This is implemented by using the im-
perfect text spans generated by T5-large as
target outputs for text infilling. DistilT5-small
and DistilT5-base are similar to conventional
sequence-level knowledge distillation while
DistilT5-large can be viewed as continually
pre-trained with self-distillation.

• DenoiseT5: the variant that injects rule-based
noises into plain text and continually pre-
train a T5 model to output the original text.
The rule-based noises include token shuffling,
deletion, and replacement. We adopt the same
noise strategy as described in Wang et al.
(2019).

For reference, we also compare against two
state-of-the-art base-sized pre-trained models for
NLG including MASS (Song et al., 2019) and
UniLMv2 (Bao et al., 2020).

4.4 Experimental Results
We first present experimental results of SSR-base
and comparable baselines on different datasets.

Then we show additional results of SSR-small and
SSR-large for further analysis.

Summarization Results According to Table 1,
it is observed that SSR-base substantially improves
the original T5-base model and its continual train-
ing variants on both CNN/DM and XSum datasets,
and achieves state-of-the-art results for the models
of the same size in the abstractive summarization
benchmarks. It is notable that our models are only
continually pre-trained on a relatively small dataset
for only a few number of updates. This confirms
the potential of our approach as a general “plug-
and-play” approach for improving various kinds
of sequence-to-sequence pre-trained models. In
contrast, using T5-large as a teacher model fails
to improve the training of a T5-base student with
sequence-level knowledge distillation. This shows
SSR can better exploit the capability of a large
Seq2Seq pre-trained model to improve a smaller
one, indicating its potential to serve as a model
compression technique for Seq2Seq pre-trained
models.

Question Generation and GEC Results Simi-
lar results are observed for question generation
and GEC tasks, as shown in Table 2: SSR-base
substantially outperforms all the other T5 vari-
ants and achieves comparable or even better re-
sults than the other base-size pre-trained models.
Surprisingly, continually pre-training T5-base with
SSR can achieve significant improvement over a
transformer-big model pre-trained on rule-based
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Model CNN/DM
RG-1 RG-2 RG-L

T5-large 43.09 20.68 40.15
T5-large-cont 43.14 20.71 40.21
DistilT5-large 43.05 20.63 40.07
SSR-large 43.65∗ 20.98∗ 40.69∗

Table 3: Abstractive summarization results on
CNN/DailyMail for SSR-large and corresponding T5
models of the same size. ∗The asterisk denotes statisti-
cally significant improvement with p-value < 0.05 upon
all compared models.

synthetic data. We attribute this to the closer rela-
tionship between the task of GEC and our proposed
SSR objective and more diverse grammatical errors
introduced by the machine-generated spans. Inter-
estingly, we observe the improvement of SSR on
the GEC task is even more significant than that on
question generation and summarization datasets,
because SSR is intuitively more similar to the chal-
lenge of GEC which can be well addressed by span
correction (Chen et al., 2020).

4.5 Analysis
Impact of Model Size To analyze the effective-
ness of the proposed SSR objective for Seq2Seq
pre-trained models with different sizes, we re-
port the performance comparison of small-size and
large-size SSR and different T5-based baselines.
Note that we focus on analysis of SSR on the same
T5 backbone model and do not compare against
other large-sized Seq2Seq PTLMs because they are
pre-trained with different data and number of stpes,
thus are not comparable with our models.

We present the results of large-size models and
small-size models in Table 3 and Table 4, respec-
tively.3 We find that the sequence span rewriting
objective improves both large-size and small-size
models. However, the improvement upon small-
size models is significantly larger than that upon
large-size models. This suggests that our method
is more effective when the infilling model is signif-
icantly larger than the rewriting model. The per-
formance of SSR-small is also significantly better
than DistilT5-small sequence-level knowledge dis-
tillation. That indicates SSR’s potential on exploit-
ing the knowledge from large pre-trained Seq2Seq

3We do not compare against the variant with the
denoising-based objective since its performance is consistently
lower than the baseline in the previous experiments.

Model CNN/DM
RG-1 RG-2 RG-L

T5-small 40.22 19.36 37.85
T5-small-cont 40.43 19.55 38.08
DistilT5-small 40.38 19.49 38.01
SSR-small 41.95∗ 20.06∗ 39.01∗

Table 4: Abstractive summarization results on
CNN/DailyMail for SSR-small and corresponding T5
models of the same size. ∗The asterisk denotes statisti-
cally significant improvement with p-value < 0.05 upon
all compared models.

Model Imperfect CNN/DM
Span Generator RG-1 RG-2 RG-L

T5-base - 42.25 20.22 39.45
SSR-base T5-base 42.78 20.51 39.97
SSR-base T5-large 43.47 20.74 40.37

T5-small - 40.22 19.36 37.85
SSR-small T5-base 41.03 19.74 38.68
SSR-small T5-large 41.95 20.06 39.01

Table 5: Abstractive summarization results on
CNN/DailyMail for SSR with imperfect span genera-
tor of different sizes.

transformers to improve the training of smaller
models in a task-agnostic fashion.

Impact of Imperfect Span Generator We also
investigate the impact of the size of the imperfect
span generator. This time, we generate imperfect
text spans for pre-training using T5-base model
and continually pre-train SSR-base and SSR-small.
The results are shown in Table 5. We find that our
approach performs better with a larger imperfect
span generator, which seems in contradiction to the
findings in the replaced token detection objective
introduced in ELECTRA (Clark et al., 2020). We
suspect the reason is that the task of span-level in-
filling is more challenging than its token-level coun-
terpart. Therefore, a small imperfect span generator
may not be powerful enough to generate imperfect
text spans that are meaningful and of relatively
high quality. Consequently, the rewriting model
may simply learn to ignore the imperfect spans
and the SSR objective will degrade into text infill-
ing. Moreover, we can see that the improvement
yielded by the SSR objective is more significant
when the size of the imperfect span generator is
larger than the rewriting model that we aim to train.
This confirms that SSR can effectively exploit the
knowledge of a large model to better train a smaller
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Model CNN/DM
RG-1 RG-2 RG-L

SSR-base 43.53∗ 20.79∗ 40.47∗
No curriculum 43.26 20.53 40.14
Anti-curriculum 43.09 20.48 40.01
Loss-only curriculum 43.40 20.67 40.25
Length-only curriculum 43.43 20.71 40.35

Table 6: Ablation study results on CNN/DailyMail for
SSR-base with different curriculum learning strategies.
∗The asterisk denotes statistically significant improve-
ment with p-value < 0.05 upon all compared ablation.

one. Interestingly, we find that using imperfect
spans generated by T5-base to continually pre-train
T5-base can still improve the performance, which
is similar to the case of self-distillation (Furlanello
et al., 2018).

Impact of Curriculum Pre-training We then
analyze the effectiveness of the proposed curricu-
lum pre-training technique. We continually pre-
train SSR-base with three variants of the proposed
curriculum pre-training method: No curriculum de-
notes the variant without curriculum pre-training;
Anti-curriculum denotes the variant where pre-
training starts with difficult examples; Loss-only
and Length-only curriculum denote a curriculum
based solely on per-token loss and the length of
imperfect span, respectively. The results are shown
in Table 6. We find that pre-training SSR from
relatively easy examples to hard examples sta-
tistical significantly improve its performance on
downstream tasks. More specifically, we find that
scheduling the training examples by their length
is slightly more effective than by per-token loss,
while the combination of them can yield further
improvements.

5 Discussion

Pre-training via Rewriting We discuss several
key advantages of SSR over the conventional text
infilling objectives here. (1) SSR is closer to the
downstream sequence transduction tasks. This
is because the model’s prediction is not only based
on its bidirectional context but also conditioned
on the imperfect spans. In this way, the gap be-
tween pre-training and fine-tuning stages, which
is introduced by the masked tokens or spans in
conventional pre-training objectives, is alleviated.
Indeed, many NLG tasks can be viewed as se-
quence span rewriting problems that rewrite the

input text into another language, more compact for-
mat, grammatically correct sentences, or another
style. (2) SSR introduces more diverse noise pat-
terns. These patterns include paraphrasing and
simplification of the text span, missing or redun-
dant information, grammatical errors, and errors in
terms of world knowledge or commonsense knowl-
edge. In fact, many of the rewriting patterns in-
troduced by SSR resemble training examples in
the downstream tasks. In contrast, conventional
self-supervised Seq2Seq pre-training techniques
rely on rule-based noise functions like text span
masking, token masking, token deletion, token ro-
tation, sentence shuffling, etc. (3) SSR enables
the model to learn from informative examples.
SSR enables the model to learn from informative
examples, where the span generator makes an error.
This provides more meaningful supervision and is
also similar to the idea of active learning (Settles,
2009).

Distillation via Rewriting SSR sheds light on a
new perspective of exploiting the knowledge of a
large pre-trained model to improve smaller models.
Similar to knowledge distillation (KD), this can
be achieved by using a large-size teacher model
pre-trained with the text infilling objective as the
imperfect span generator, and pre-train or refine a
small-size student model with the generated data
using SSR. Different from conventional KD (Hin-
ton et al., 2015) or sequence-level KD (Kim and
Rush, 2016), SSR enables the student model to ex-
ploit both teacher outputs and the ground truth at
the same time. It is also related to boost learn-
ing (Schapire, 2003) and residual learning (He
et al., 2016) in a sense that the model only needs
to learn the prediction error of the teacher model,
instead of the original task, text infilling, which
may be too difficult for smaller-size models.

6 Conclusion

We present sequence span rewriting (SSR), a novel
self-supervised objective for improving sequence-
to-sequence transformers pre-trained with conven-
tional text infilling objectives. SSR introduces
more diverse and fine-grained learning signals and
also bridges the gap between self-supervised pre-
training and task-specific fine-tuning on common
NLG datasets. Our experiments on continual T5
pre-training confirm the effectiveness of SSR on
improving pre-trained T5 models of different sizes
across different tasks and datasets. Also, the large
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improvements achieved on small models with a
larger imperfect span generator indicates a new
perspective of exploiting the knowledge of a large
pre-trained model to help train smaller ones.

Ethical Considerations

Our approach is proposed to improve existing
sequence-to-sequence pre-training techniques. It
does not involve the collection and release of data
except that generated by a pre-trained model, nor
inference of information or judgments about in-
dividuals. That being said, since an improved
sequence-to-sequence pre-trained model may be
used in various downstream applications, it is still
an important future direction to investigate the bias,
fairness, and privacy issue in various kinds of pre-
trained models.
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