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Abstract

Commonsense reasoning benchmarks have
been largely solved by fine-tuning language
models. The downside is that fine-tuning may
cause models to overfit to task-specific data
and thereby forget their knowledge gained dur-
ing pre-training. Recent works only propose
lightweight model updates as models may al-
ready possess useful knowledge from past ex-
perience, but a challenge remains in under-
standing what parts and to what extent mod-
els should be refined for a given task. In this
paper, we investigate what models learn from
commonsense reasoning datasets. We mea-
sure the impact of three different adaptation
methods on the generalization and accuracy
of models. Our experiments with two models
show that fine-tuning performs best, by learn-
ing both the content and the structure of the
task, but suffers from overfitting and limited
generalization to novel answers. We observe
that alternative adaptation methods like prefix-
tuning have comparable accuracy, but general-
ize better to unseen answers and are more ro-
bust to adversarial splits.

1 Introduction

Machine commonsense reasoning has recently
gained new traction, largely due to a collection
of diverse benchmarks (Talmor et al., 2019; Bhaga-
vatula et al., 2019; Sap et al., 2019) and the success-
ful application of language modeling methods on
these benchmarks (Ma et al., 2019; Shwartz et al.,
2020; Bauer and Bansal, 2021). The most widely
adopted approach to solve these commonsense rea-
soning tasks is by fine-tuning large pre-trained lan-
guage models (LMs) (Devlin et al., 2019; Liu et al.,
2019) on the task-specific training data. Mean-
while, it has been shown that language models are
able to acquire certain commonsense background
knowledge, during their pre-training on large tex-
tual data (Petroni et al., 2019; Davison et al., 2019;
Ma et al., 2021). In light of these findings and

the large capacity of these language models, recent
work has proposed lightweight alternatives to fine-
tuning LMs, e.g., by only updating a small amount
of additional parameters (Lin et al., 2020b; Li and
Liang, 2021), or by updating the inputs while keep-
ing the model weights intact (Jiang et al., 2020;
Shin et al., 2020). Intuitively, these lightweight
methods may retain the model’s pre-trained knowl-
edge to a large extent, and elicit the suitable knowl-
edge for the target task, provided that much of this
knowledge has already been encoded in the model
parameters. However, to our knowledge, no com-
prehensive comparison exists between these model
updating strategies.

In this paper, we pose the question: What do mod-
els learn from commonsense reasoning datasets?
We consider three representative learning methods:
regular fine-tuning, model extension with prefix-
tuning (Li and Liang, 2021), and model prompting
with Autoprompt (Shin et al., 2020). We apply
them to two representative model classes: the auto-
regressive language model GPT-2 (Radford et al.,
2019) and sequence-to-sequence language model
BART (Lewis et al., 2020). We conduct thorough
evaluation on the generative evaluation benchmarks
ProtoQA (Boratko et al., 2020) and CommonGen
(Lin et al., 2020a), by training on different parti-
tions of the training data. Our experiments show
that fine-tuning performs best, by learning both the
content and the structure of the task, but suffers
from overfitting and limited generalization to novel
answers. Prompting methods have lower accuracy,
but tend to show higher robustness to “adversar-
ial” splits. Extending the models by prefix-tuning
represents a “sweet spot” between task accuracy,
generalization, and robustness.

2 Related Work

Prior works probe the commonsense knowledge
learned by the LMs. Davison et al. (2019) mined
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commonsense knowledge from LMs, using tem-
plates with masked tokens; Richardson and Sab-
harwal (2020) designed diagnostic tasks to probe
LMs’ knowledge of definitions and taxonomic rea-
soning. The LAMA probes (Petroni et al., 2019)
demonstrate that LMs can largely recover knowl-
edge in existing (commonsense) knowledge graphs:
they could thus be queried/prompted directly as
knowledge bases (Shwartz et al., 2020; Shin et al.,
2020). Ettinger (2020) diagnoses the BERT model,
finding that it struggles with complex inference,
role-based event prediction, and grasping the con-
textual impacts of negation. The logical common-
sense probes in RICA (Zhou et al., 2020) show
that LMs perform similar to random guessing in
the zero-shot setting, they are heavily impacted by
statistical biases, and are not robust to linguistic
perturbations. Elazar et al. (2021) posit that while
LMs can learn to perform well on commonsense
tasks, their commonsense reasoning ability mostly
comes from fine-tuning on the task data.

Some works have sought to uncover what mod-
els learn through training on question answering
datasets, exposing various dataset artifacts in the
process (Jia and Liang, 2017; Kaushik and Lipton,
2018; Pugaliya et al., 2019). Welbl et al. (2020)
found that models trained on the SQuAD2.0 dataset
(Rajpurkar et al., 2018) are insensitive to the mean-
ingful changes in the question and predict the same
answer. Ko et al. (2020) found that BERT easily
picks up the position bias in the SQuAD dataset
(Rajpurkar et al., 2016) and models’ performance
can drop by more than 50 points on f/-score when
training on a biased subset. Sen and Saffari (2020)
analyzed the model’s ability to generalize, by train-
ing on 5 different QA datasets, and found that no
single dataset is robust to perturbations in the ques-
tions. Shah et al. (2020) tested models, trained on
several multiple-choice QA datasets, and showed
that they are largely relying on dataset biases. Pre-
vious work mostly studies the language models,
as-is, or evaluated models fine-tuned on the QA
datasets. In this paper, we go a step further and in-
vestigate the models adapted to a target task, using
three different methods, and we study their effect
on the model’s learning process.

3 Experimental Setup
3.1 Task and datasets

We experiment with generative commonsense tasks,
assuming that they are more realistic to real-world

deployment of LMs and that they provide more
insight about models’ reasoning abilities. Specif-
ically, we evaluate our models on the recently-
introduced ProtoQA (Boratko et al., 2020) and
CommonGen (Lin et al., 2020a) datasets. For Pro-
toQA, given a question about a prototypical situ-
ation, the model is expected to produce a ranked
list of answers. Each question in the dev and test
sets is annotated with 100 answers, which are fur-
ther manually grouped into clusters: the model’s
outputs are compared with the answer clusters, and
the scores reflect the sizes of the matched clusters.
We adopt ProtoQA’s official evaluation metrics:
Max answer@k (percentage of correct answers
with top-k predictions) and Max Incorrect@k
(percentage of correct answers after making & mis-
takes). We compute the answer matches based on
WordNet similarity, as recommended by Boratko
et al. (2020). For CommonGen, given a set of 3-5
input concepts, the task is to generate a scene de-
scription, utilizing all input concepts. Following
prior work, we adopt BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and Lavie,
2005), CIDEr (Vedantam et al., 2015) and SPICE
(Anderson et al., 2016), as evaluation metrics.

3.2 Strategies

We describe how we adapt pre-trained GPT-2 and
BART models to a target task with three methods':
(S1) Fine-tuning is the classic model adaptation ap-
proach, where all its parameters are updated using
the training signal from the ground truth.

(S2) Prefix-tuning (Li and Liang, 2021) is a method
which fixes the pre-trained model’s parameters dur-
ing adaptation. This method adds trainable param-
eters, called prefix states, to the self-attention com-
ponent (Vaswani et al., 2017) of every transformer
layer in the model; only these prefix states are up-
dated during training. Essentially, the prefix states
act as conditioning variables that contextualize the
representation of the inputs, such that the model
can generate the desired outputs.

(S3) Instead of updating model parameters, Auto-
prompt (Shin et al., 2020) appends a few trigger-
tokens to the input and updates these trigger-tokens
during training. Specifically, the gradient with re-
spect to the trigger-tokens is computed using the
ground-truth data. During training, new trigger-
tokens are discovered, along the direction of the

'Our code is available at https://github.com/
Mayerl123/CS_Model_ Adaptation
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Table 1: Results on the ProtoQA dev set, we ran experiments 5 times with different seeds, and report 95% confidence interval.

*Note that the human performance accuracies from (Boratko et al.,
values would be similar on dev set.

2020) are reported on the test set, we assume that the accuracy

Model Ans@1 Ans@3 Ans@5 Ans@10 InCorr@1 InCorr@3 InCorr@5
GPT2 28.2 27.1 27.2 30.7 14.4 21.1 27.5
GPT2-Autoprompt ~ 25.5(£2.5)  30.9(+2.8) 35.1(+1.7) 42.4(£1.7) 14.7(£2.6) 28.7(+1.9) 35.5(+1.3)
GPT2-Prefix-tuning ~ 42.7(£2.0) 51.5(£1.4) 52.2(+0.8) 60.8(£0.5) 28.8(£1.3) 47.6(+0..9) 56.9(+0.8)
GPT2-Finetune 49.3(+1.7) 50.3(£1.5) 53.0(£2.2) 63.0(£0.6) 31.9(+1.4) 49.9(+1.4) 57.9(+£1.4)
BART 20.9 29.8 32.2 37.5 15.1 27.3 32.2
BART-Autoprompt ~ 28.2(£4.7)  33.8(+0.9) 37.2(£1.5) 44.6(£3.0) 16.6(£2.1) 31.1(+2.3) 38.9(42.7)
BART-Prefix-tuning ~ 45.5(£2.9)  51.0(+1.9) 54.8(+1.6) 62.9(+1.0) 32.7(£1.4) 51.4(+0.9) 58.7(+1.0)
BART-Finetune 53.6(+2.5) 54.3(£2.2) 56.3(£0.9) 62.6(+1.0) 35.6(+0.6) 53.9(+1.5) 59.5(+1.8)
Human* 78.4 74.4 72.5 73.3 55.8 69.4 72.4
Single Human* 40.5 39.4 41.0 45.6 23.9 36.0 40.5

gradient, to replace the existing ones and to min-
imize the loss. Essentially, this method automati-
cally learns to paraphrase the input question so that
the model can generate the desired outputs.

We select fine-tuning, prefix-tuning, and Auto-
prompt as they are representative methods for
adapting a pre-trained model to a target task,
namely: 1. model adaptation (fine-tuning); 2.
model extension (prefix-tuning); and 3. input adap-
tation (Autoprompt). We illustrate whether the
model has learned different behaviors from meth-
ods with different degrees of adaptation. Training
details can be found in the appendix A.1.

3.3 Research Questions

We address three questions in this paper, namely:
(RQI: Adaptation level) How do different levels
of adaptation affect the model’s task-specific per-
formance? We expect that methods that adapt a
larger number of parameters to the training task
(fine-tuning) would perform better on the task it-
self, as the larger search space makes it more likely
to find a task optimum. We investigate this by com-
paring S1-S3 on the two benchmarks.

(RQ2: Task structure) Do models only learn the
task structure during training? As we are working
with relatively small benchmarks, we hypothesize
that LMs acquire most of the necessary common-
sense knowledge during pre-training instead of at
adaptation time, during which they instead learn
to elicit this knowledge. In this case, such adapta-
tion to task structure could be done on just a subset
of the training data without a large drop in per-
formance, and the model need not depend on any
lexical similarities between the training set and the
dev set. To this end, we train our models with each
adaptation method on: 1) a non-overlap subset of
ProtoQA, consisting of train-set QA pairs whose

Table 2: Summary of the dataset splits.

Dataset Subset # of examples
ProtoQA Full-data 44,964
ProtoQA non-overlap 18,855
ProtoQA similarity 17,461
CommonGen Full-data 67,398
CommonGen min-overlap 17,914
CommonGen random 17,914

answers do not have any vocabulary overlap with
the dev set answers; and 2) a min-overlap split for
CommonGen, selecting training instances whose
input concepts appear at most once in the dev set.
(RQ3: Novelty) Do models simply memorize the
training data, or do they learn to reason on novel
questions and answers as well? To test whether
models merely retrieve lexically similar examples,
we formulate a similarity subset on ProtoQA, com-
prised of the 100 questions in the training set
with the highest cosine similarity for every dev
set question. To test whether models achieve bet-
ter performance due to improved reasoning ability,
we selected 30 questions from the ProtoQA dev
set, where the model answers are at least partially
correct, and we minimally changed the question
through manual annotation—so that the required
reasoning process is the same, but the answer set
is different (example question pairs are given in
the appendix A.2). Then, we use the BART model
trained with each adaptation method to generate
answers for the 30 new questions. We manually
validate the 30 new questions and the 30 original
questions, in order to compute the accuracy of the
models as well as the percentage of overlapping
answers between the original questions and new
questions. More details are provided in section
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4.1.1, and a summary of all the dataset splits used
in our experiments is shown in Table 2.
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Figure 1: Results on ProtoQA dev set. The upper figure shows
the models trained on the non-overlap subset. The bottom
figure shows the model trained on the similarity subset.

4 Results

4.1 ProtoQA

In response to RQI (adaptation level), Table 1
shows that prefix-tuning yields similar or slightly
worse results compared to fine-tuning, for both LM
classes, indicating that prefix-tuning is a promising
lightweight alternative to fine-tuning. Autoprompt
lags behind the tuning methods, while outperform-
ing the zero-shot baseline. This is not surprising,
as Autoprompt performs a fairly limited adaptation
by only updating trigger tokens in a discrete space.

The results for RQ2 (task structure) are shown in
Figure 1. Fine-tuning a model on the non-overlap
data leads to a drastic drop in performance, com-
pared to using the full training data. Prefix-tuning’s
drop in performance is smaller than that of fine-
tuning, while Autoprompt achieves the best per-
formance when training on this subset. The re-
sult of Autoprompt is similar to training on the
full data, showing that Autoprompt is much more
robust towards an adversarial training split and
is mainly learning how to elicit the model’s pre-
trained knowledge to answer the questions. Fine-
tuning is learning knowledge together with the task
structure, while prefix-tuning stands between fine-
tuning and Autoprompt. Since prefix-tuning does
not change the pre-trained model’s parameters, but
rather adds new parameters, it learns to mix the
knowledge gained from pre-training with the signal
from training instances to answer new questions.

For RQ3 (novelty), the results of training on the

Table 3: Human evaluation results

Measurement Fine-tune Prefix Autoprompt
Original question 54.8 53.6 43.7
New question 423 423 30.9
% overlap answers 44.7 44.7 38.1

similarity subset are shown in Figure 1. Although
the number of QA pairs is much lower, fine-tuning
achieves the same results as in the full-data setting.
This shows that fine-tuning benefits more from
the content of the training data than the task
format, further informing our findings for RQ2.
Prefix-tuning performs slightly worse than the
full data setting, indicating that here it is largely
learning the training content. Autoprompt achieves
similar results as in the full-data and non-overlap
settings, confirming our RQ2 observations that
models are only learning the task format. We
note that, while retrieving lexically similar
questions might yield partial results, this form of
pattern-matching is insufficient for commonsense
reasoning. For example, for a training question
Name a vegetable that people like to steam, the
model learned the answer cauliflower, which is
coincidentally also a correct answer to the dev
question Name a vegetable that is as large as your
head. In other words, the model answers correctly
for the wrong reasons.

4.1.1 Manual Annotation

We conduct manual annotation, to further verify
our observations for RQ3. For the BART model,
trained with each adaptation method, we gener-
ate top10 answers for every question and then an-
notate each answer, independently. We annotate
each answer on a 5-point Likert scale, where 1
means strongly disagree, 2 means mostly disagree,
3 means not sure/it depends, 4 means mostly agree,
and 5 means strongly agree. In total, 4 researchers
annotated 1165 QA pairs where each QA pair re-
ceived 3 ratings. The overall Kripendorf alpha
(Krippendorff, 2004) score is 0.52, which is mod-
erate agreement. If we merge answers choices 1
and 2 to be ‘incorrect’ and merge 4 and 5 to be
‘correct’, and then compute the 3-class categorical
agreement score using Fleiss kappa, the agreement
score is 0.36, which is fair agreement. Then we
consolidate the 3 ratings by taking the average of
the 3 annotations and consider an answer to be
correct if the average score is greater than 3.5.
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Table 4: Results on CommonGen dev set with the BART model.

Method Split Bleu4 METEOR ROUGE-L CIDEr SPICE
Autoprompt  Full-data  0.3(:0.2)  8.9(+3.0) 16.2(¥4.1) 1.0(£0.5) -
Prefix Full-data  34.4(+£0.4) 33.0(£0.2) 53.9(£0.2) 17.4(+0.2) 33.4(+0.3)
Fine-tune Full-data  34.9(+£0.4) 32.9(+0.1) 54.1(+0.1) 17.4(+0.1) 33.0(0.2)
Autoprompt  Min-overlap  0.3(£0.2) 8.0(£2.1)  16.5(+2.3)  1.1(£0.6) -
Prefix Min-overlap 32.8(+1.0) 31.5(+0.3) 52.1(£0.5) 16.6(+0.3) 32.2(+0.2)
Fine-tune  Min-overlap 31.5(+0.2)  30.6(+0.3) 51.2(£0.2) 15.9(+0.1)  30.7(:0.5)
Autoprompt  Random  0.1(£0.1)  7.4(+£3.1) 145(¥42) L1(+£0.8) -
Prefix Random — 33.4(£0.3) 32.3(£0.4) 52.9(£0.3) 17.2(+0.2) 32.8(+0.7)
Fine-tune Random  34.1(+0.3) 32.1(+0.1) 53.3(£0.2) 17.1(£0.2) 32.3(+0.4)

The results from manual assessment of the models’
reasoning capabilities are shown in Table 3. We
observe that our LMs are not able to capture subtle
changes in the question that lead to a different an-
swer set; models are getting worse performance on
the new questions, overall. We believe this is be-
cause the newly-generated questions are more dif-
ficult to answer, as they seldom appear in any text
corpus in general. We also see a high overlap be-
tween the generated answers to the original and the
newly-created questions, especially for fine-tuning
and prefix-tuning, where nearly half (44.7%) of
the answers are repeated. This confirms our obser-
vation that models memorize/retrieve training-set
answers without actually engaging in reasoning.

4.2 CommonGen

The full results on the CommonGen dataset are
shown in Table 4. Overall, we can see that the re-
sults follow a similar trend to those of ProtoQA, as
prefix-tuning is able to perform significantly better
than fine-tuning when trained on an ‘adversarial’
split. We notice that the relative drop of perfor-
mance for both methods on the Min-overlap subset
is less drastic than that of ProtoQA. We think this
is mainly due to the task format. For ProtoQA,
models need to perform one or a few hops of rea-
soning to answer the questions and there is no direct
evidence from the question itself, i.e., the model
cannot directly copy answers from the questions.
However, the model is directly given the target con-
cepts as inputs for CommonGen, which the model
can directly use as its outputs. Thus, we argue that
the amount of reasoning required in CommonGen
is more restricted than in ProtoQA, and models are
less likely to leverage the clues to solve the task.

Also, it is worth noting that the accuracy of Au-
toprompt is extremely low on all 3 splits. In fact,

Autopropmt fails to generate any meaningful sen-
tences after training, and the SPICE metric could
not be computed. We, again, attribute this to the
task format. Autoprompt would eventually dis-
cover tokens that are meaningless to humans, and
we can think of them as injecting task-specific noise
to the pre-trained models. For ProtoQA, the model
is expected to generate single words or short-phrase
answers to complete the sentence, i.e., converted
question, thus it is reasonable for the model to do
it even with the injected noise. However, for Com-
monGen, the model is expected to generate a full
sentence as output; with Autoprompt, the task basi-
cally translates to generating a sentence given input
concepts and a bunch of random tokens, which is
very different from BART’s pre-training context.

5 Conclusions

Experiments with two language model classes, on
two generative commonsense benchmarks, under
three adaptation methods, revealed that the learning
efficiency of LMs relies heavily on the adaptation
method. Fine-tuning teaches the model both the
structure of the task and the content, prompting ap-
proaches focus on learning the task structure only,
while model extension by prefix-tuning falls be-
tween these two extremes. Consequently, prompt-
ing is the least sensitive of the three methods to the
training data size and quality, and prefix-tuning can
generalize better to novel concepts regardless of the
task format. Future work on generalizable common
sense leverage these findings, and: 1) avoid fine-
tuning, as we may never be able to create datasets
without any unintended biases (Linzen, 2020); and
2) evaluate on multiple independent test-sets to
better replicate real-world settings, as training on
any split of data can lead to an overestimation of
performance (Sggaard et al., 2021).
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A Appendix

A.1 Training details

A.1.1 Hyper-parameters

For all of our experiments on ProtoQA, we follow
the baseline model setup of Boratko et al. (2020)
and train the model with learning rate le-5, batch
size 8, warm-up steps 150 and Adam epsilon 1e-6,
unless otherwise specified. We trained the model
for the amount of steps that are equivalent to 1
epoch of training on full training set, i.e., we train
the model for longer epochs on non-overlap and
similarity subsets. For both training and inference,
we adopted the same question-converting templates
as Boratko et al. (2020). During inference, we do
nucleus sampling with top-p=0.9, temperature 0.69
to generate 300 answer candidates; we group them
and rank them based on frequency.

For all of the experiments on CommonGen, we
used learning rate of 1e-5, batch size 16, warm-up
steps 500 and Adam epsilon le-6. We trained
the model for 2 epochs and similarly we train
models for longer epochs on min-overlap and
random subsets. During inference, we do beam
search with beam size 5, length penalty 0.6, and
repetition penalty 2.0. Note that we disabled
positional embeddings in the BART encoder, for
all CommonGen experiments, as we found them
detrimental to model performance.

A.1.2 Model Implementation

We used the BART-large and GPT2-large model
provided by the transformers library (Wolf et al.,
2019). For prefix-tuning, we used prefix with
length 10 and a 1 layer of prefix MLP with hid-
den size 512 (we tried {512, 800} and found them
to have very close results). The learning rate is Se-
5, while other hyperparameters are the same as in
fine-tuning (we tried {le-5, 2e-5, 5-e5, 8e-5}, and
found the latter 2 achieve slightly better results).
For prefix-tuning with the BART model, we added
prefix states to self-attention in encoder layers and
self-attention and cross-attention in decoder layers.
For GPT2 model, we only add prefix states to self-
attention in decoder layers.

For Auto-prompt with BART, we used the same 10
trigger tokens for both encoder and decoder; the
trigger tokens are all initialized with mask tokens.
For GPT2, we also used 10 trigger tokens. Since
the model does not have mask tokens, we initial-
ized triggers with the tokenized prompt "Based on

Table 5: Trainable parameters comparison

LM Adaptation # Parameters
GPT2 Fine-tune 774M
GPT2 Prefix-tuning 900K
GPT2  Autoprompt 0
BART Fine-tune 400M
BART  Prefix-tuning 1.44M
BART  Autoprompt 0

simple commonsense fact, we know that", which
is exactly 10 tokens by BPE. We train the models
with batch size 32 and gradient accumulation steps
4 (we tried batch sizes {32, 128, 256} and found
that larger batch size yield more stable results). At
each update step, we search for the next trigger to-
ken, within the 100 closest candidate tokens, along
the gradient direction (we used 10 candidate tokens
for CommonGen experiments, as we found that
both 10 and 100 lead to extremely bad results—so
we used 10 to save computation time).

A summary of the number of trainable parameters
for each model-adaptation method combination is
shown in Table 5.

A.1.3 Dataset splits

The ProtoQA dataset provides a dev-scraped set
and a dev-crowdsourced set, where dev-scraped
is collected from the Family-feud fan website,
i.e., same as the training set, while the dev-
crowdsourced set contains newly written questions
and answers by crowd-workers, i.e., same as the
test set. We select the best model using the loss
on dev-scraped set and report results on the dev-
crowdsourced set, because the test set answers are
hidden and we need the ground-truth answers to
test our hypothesis. In the main paper content,
all references of ProtoQA dev-set refer to the dev-
crowdsourced set. For CommonGen dataset, we
select best models, using the loss on the dev-set.

For the similarity subset of ProtoQA, we adopt
the stsb-roberta-large model from the
sentence-transformer (Reimers and Gurevych,
2019) library and compute the cosine similarity
between the train and the dev questions.

A.2 New Questions

Examples of the original and newly written ques-
tions, along with the model predictions are shown
in Table 6.
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Table 6: Example of original questions and newly written questions and the corresponding predictions from BART model trained
on Full data, the bold answers are corrected ones selected by human evaluation

Type Question/Answers
Original Name something a monk probably would not own.
Fine-tune car, clothes, money, bike, computer, horse, cell phone, shoes, motorcycle, bicycle

Prefix-tuning car, motorcycle, bike, clothes, money, robe, shoes, sword, horse, camera
Autoprompt  money, car, gun, sword, boat, wine, shoes, coffee, beer, cat

New Name something a monk probably would own.

Fine-tune pen, cross, book, sword, rosary, brooms, bible, robe, books, kite
Prefix-tuning robe, bible, cross, pen, beard, rosa, sword, robes, monastery, apron
Autoprompt  money, bike, sword, chair, books, brooch, bicycle, gold, phone, kitty

Original Name a vegetable that is about as big as your head..

Fine-tune broccoli, carrot, cabbage, cauliflower, carrots, lettuce, spinach, cucumber, potato, corn
Prefix-tuning cucumber, broccoli, cabbage, carrot, lettuce, pumpkin, spinach, beet, cauliflower, celery
Autoprompt  cabbage, broccoli, spinach, lettuce, carrots, cauliflower, potato, potatoes, pumpkin, gooseberries
New Name a vegetable that is about as big as your fist.

Fine-tune broccoli, cabbage, carrot, carrots, spinach, lettuce, cauliflower, cucumber, corn, beet
Prefix-tuning cucumber, broccoli, cabbage, lettuce, spinach, beet, celery, pumpkin, carrot, cauliflower
Autoprompt  broccoli, cabbage, lettuce, carrots, spinach, squash, cucumbers, eggplant, cuacumber, kiwi

Original Name a sport that requires a lot of equipment.

Fine-tune hockey, golf, football, tennis, basketball, baseball, soccer, boxing, wrestling, volleyball
Prefix-tuning football, basketball, hockey, soccer, tennis, golf, baseball, wrestling, volleyball, skiing
Autoprompt  hockey, soccer, golf, basketball, football, tennis, baseball, rugby, volleyball, ice hockey
New Name a sport that you don’t need a lot of equipment for.

Fine-tune hockey, tennis, baseball, golf, soccer, football, basketball, bowling, volleyball, swimming
Prefix-tuning  basketball, tennis, soccer, golf, football, hockey, baseball, bowling, swimming, skiing
Autoprompt  basketball, soccer, hockey, golf, volleyball, tennis, football, baseball, rugby, lacrosse

Original Name something around the house that’s often replaced.

Fine-tune tv, television, furniture, dishes, carpet, toilet paper, refrigerator, windows, stereo, lights
Prefix-tuning carpet, lamp, light, furniture, tv, clothes, dishes, television, bedding, toilet paper

Autoprompt TV, tv, couch, table, toilet, bed, television, microwave, chair, lamp

New Name something around the house that’s hardly ever replaced.

Fine-tune tv, television, furniture, dishes, refrigerator, stereo, carpet, toilet paper, windows, appliances
Prefix-tuning dishes, furniture, lamp, carpet, tv, clothes, bedding, TV, light, television

Autoprompt TV, tv, fridge, microwave, couch, refrigerator, dishwasher, coffee table, bed, table

Original Name a job where you have to be awake at night.

Fine-tune police officer, doctor, nurse, security guard, lawyer, teacher, firefighter, construction, actor, cop
Prefix-tuning  police officer, nurse, construction, doctor, security guard, bartender, waiter, babysitter, firefighter, teacher
Autoprompt  construction, work, carpenter, firefighter, truck driver, roofing, police, fireman, bartender, school

New Name a job where you only have to work during the day.

Fine-tune nurse, teacher, police officer, doctor, bartender, construction, waitress, lawyer, waiter, mechanic
Prefix-tuning nurse, teacher, lawyer, doctor, bartender, waiter, mechanic, construction, sales, waitress

Autoprompt  construction, hospital, fireman, restaurant, plumber, cook, cleaning, chef, firefighter, teaching
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