
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5452–5456
November 7–11, 2021. c©2021 Association for Computational Linguistics

5452

Multi-Vector Attention Models for Deep Re-ranking

Giulio Zhou∗

Carnegie Mellon University
giuliozhou@cmu.edu

Jacob Devlin
Google Research

jacobdevlin@google.com

Abstract

Large-scale document retrieval systems often
utilize two styles of neural network models
which live at two different ends of the joint
computation vs. accuracy spectrum. The
first style is dual encoder (or two-tower) mod-
els, where the query and document representa-
tions are computed completely independently
and combined with a simple dot product op-
eration. The second style is cross-attention
models, where the query and document fea-
tures are concatenated in the input layer and
all computation is based on the joint query-
document representation. Dual encoder mod-
els are typically used for retrieval and deep
re-ranking, while cross-attention models are
typically used for shallow re-ranking. In
this paper, we present a lightweight architec-
ture that explores this joint cost vs. accu-
racy trade-off based on multi-vector attention
(MVA). We thoroughly evaluate our method
on the MS-MARCO passage retrieval dataset
and show how to efficiently trade off retrieval
accuracy with joint computation and offline
document storage cost. We show that a highly
compressed document representation and in-
expensive joint computation can be achieved
through a combination of learned pooling to-
kens and aggressive downprojection. Our
code and model checkpoints are available on
GitHub.

1 Introduction

Classical information retrieval systems used
weighted sparse keyword matching to retrieve rel-
evant documents for incoming search queries. A
common approach has been to re-rank these docu-
ments with a neural network model which takes the
concatenation of the query text and document text
as input, and emits a relevance score. We refer to
this as a cross-attention network, depicted in Fig-
ure 1a. In modern NLP, these systems are typically

∗Work done while at Google.

pre-trained using a technique such as BERT (De-
vlin et al., 2019) and then fine-tuned on human-
labeled relevance data (Han et al., 2020; Ding et al.,
2020; Nogueira et al., 2019).

However, even if the re-ranking model is a state-
of-the-art neural system, it is still limited by the
documents that were produced by the retrieval sys-
tem. Because of this, end-to-end neural approaches
to retrieval have become popular to improve the rel-
evance of the documents produced in the retrieval
stage. These models typically take the form of a
dual encoder network (also called a “two-tower net-
work,” “Siamese network,” and “DSSM” (Huang
et al., 2013), as depicted in Figure 1b), which emits
a “query vector” and “document vector” condi-
tioned on the query text and document text respec-
tively. The relevance score is typically defined as
the dot product (or cosine distance) between these
vectors.

With a dual encoder model, each document vec-
tor in the corpus can be precomputed offline, and
the query vector only needs to be computed once
per incoming query. Since scoring each query-
document pair is a simple dot product, a commod-
ity CPU can score thousands of document in a
few milliseconds. Moreover, retrieving the high-
est scoring documents for a query can be done in
sub-linear time using approximate nearest neighbor
algorithms such as hierarchical k-means clustering
(Johnson et al., 2017; Guo et al., 2020).

In practice, modern IR systems are not restricted
to this simple retrieve-then-rerank framework, and
often use multi-stage re-ranking. For example,
the system might first retrieve the top 1000 doc-
uments using a combination of a dual encoder and
keyword retrieval, then re-rank with a very cheap
cross-attention model, then finally re-score the top
50 with a more expensive cross-attention model.

There are two key costs to consider for these type
of deep re-ranking models. The first is the num-
ber of bytes necessary to store the precomputed

https://github.com/google-research/language/tree/master/language/multi_vector_attention


5453

Encoder

Pooler

Score

Output

(a) Cross-Attention model.

Query 
Encoder

Document 
Encoder

Pooler Pooler

Score

(b) Dual Encoder model.

Figure 1: Standard information retrieval architectures.

document representation, since this must be stored
in fast-access memory (typically RAM) for every
document in the corpus. The second is the cost of
the “joint computation,” which is the part of the
model that combines the query and document rep-
resentation in order to generate a relevance score.

In this work, we explore the Multi-Vector Atten-
tion (MVA) architecture as an extension of dual
encoder networks. The MVA network produces a
query matrix (rather than vector) which attends to a
document matrix to produce a query-dependent
document representation. The scalar relevance
score is then computed in a manner similar to a
standard dual encoder model. A mathematical de-
scription is given in Section 2.1.

Related Work. Several retrieval approaches
have been proposed that apply lightweight query-
document scoring on last-layer Transformer fea-
tures. These consist of multi-vector dual en-
coders (Luan et al., 2020; Khattab and Zaharia,
2020; Li et al., 2020) that emit multiple query and
document vectors which interact via dot products,
and multi-layer attention architectures (Gao et al.,
2020; Chen et al., 2020; MacAvaney et al., 2020).

The work presented here can be thought of as
an extension to ColBERT (Khattab and Zaharia,
2020), where we explore various aspects of the
output layer in order to compress the document
representation even further. We found the max()
operation to be unstable when used in conjunction
with the more aggressive pooling and downsam-
pling, so we instead used a differentiable attention
operation.

Input Key Value Attention

Score

Query (X)

Document (Y)

Figure 2: Multi-Vector Attention (MVA) Architecture.

2 Multi-Vector Attention Network

2.1 Model Architecture
Our architecture employs the standard form of
“Transformer-style” dot product attention. Given
input matrices Q,K, V ∈ Rn×h:

Attention(Q,K, V ) = softmax(
QKT

√
h

)V

Single-headed attention is applied to query vec-
tors X ∈ Rq×h and document vectors Y ∈
Rd×h using the learned projection matrices
WQK ,WQV ,WDK ,WDV ∈ Rh×h. These parame-
ters are used to generate the intermediate query key,
query value, document key, and document value
matrices:

QK = XWQK QV = XWQV

DK = YWDK DV = YWDV

These matrices are passed into the operation
Attention(QK , DK , DV ) to perform query token-
dependent attention over document tokens for each
individual query token Xi. The final relevance
score between Q and D is given by:

1

q

q∑
i=1

QV
T
i Attention(QKi , DK , DV )

which is the average dot product between query
value vectors and their corresponding attention av-
eraged document vector.

2.2 Pooling Architectures
First-K Tokens. In this pooling method, we trun-
cate sequences to the first K tokens.

Multiple [CLS] Embeddings. We prepend
query and document sequences with [CLS] em-
beddings QCLS ∈ Rh and DCLS ∈ Rh that are
retained following the encoder; this can be viewed



5454

as a generalization of BERT’s single-[CLS] em-
bedding. In prior work, ColBERT (Khattab and
Zaharia, 2020) applies this to the query and uses
the untruncated sequence during scoring, referring
to this as “query augmentation.”

Temporal Pooling. We also explore a projection-
based pooling approach that reduces sequences by
a specified pooling factor ρ. We reshape the input
sequence X ∈ Rn×h into X̃ ∈ R

n
ρ
×ρh, which

concatenates every ρ consecutive elements into a
single composite vector. Applying the Attention
architecture projection layers to these composite
vectors completes the pooling operation.

2.3 Losses

We pre-train using standard BERT objectives,
which include the Masked Language Modeling
(MLM) task as well as the Next-Sentence Predic-
tion (NSP) task. Our models are fine-tuned using a
softmax loss with the <query, positive document,
negative document> training triples provided by
MSMARCO.

3 Experimental Setup

Datasets. We pre-train all of our models on the
Colossal Clean Crawled Corpus (C4). For retrieval
evaluation, we use the MS-MARCO (Bajaj et al.,
2016) passage re-ranking dataset. We truncate
query sequences to length 32 and documents to
length 112. We observe that the average lengths of
queries and documents in MS-MARCO are around
6 and 70 respectively.

Training setup. We use a 12-layer Transformer
model with 12 attention heads and hidden size 768,
equivalent in architecture to BERTBase. We pre-
train dual encoder and cross-attention models on
C4 for 100,000 iterations on a v3-128 Cloud TPU,
with batch size 8,192 and Adam with learning rate
3e-4. Our Dual Encoder is pre-trained directly on
the MLM and NSP tasks rather than initialized as
two identical BERT models (which is the conven-
tional practice), and is therefore a stronger baseline
than is typically found in the literature. We ini-
tialize MVA models from the Dual Encoder check-
point and pre-train on the same MLM and NSP
tasks for 20,000 iterations before fine-tuning to
downstream tasks. We fine-tune on MS-MARCO
using a batch size of 256 triples and Adam with
learning rate 3e-5. We reserve a 10% split of the
MS-MARCO training set as a validation set for

Pooling Document MSMARCO
Method Timesteps Dev MRR@10

All Tokens ~70 35.8

First-K 56 35.4
First-K 28 34.5
First-K 14 31.9

Multiple CLS 56 35.2
Multiple CLS 28 34.9
Multiple CLS 14 33.2

Temporal Pooling 56 35.4
Temporal Pooling 28 34.1
Temporal Pooling 14 32.8

Table 1: A comparison of pooling approaches
applied to documents.

tuning hyperparameters and report results on the
MS-MARCO dev set.

4 Ablation Experiments

Our results center around two important consid-
erations that impact model deployment: (1) the
amount of joint computation needed to score every
query-document pair and (2) the cost to store the
document representations offline. We first conduct
ablation experiments to evaluate how independent
architecture variations affect downstream accuracy.

Multiple [CLS] pooling for short document
representations, and no pooling for query se-
quences. In Table 1, we compare three ap-
proaches for reducing the length of document se-
quences: truncation, multiple [CLS] embeddings,
and temporal pooling. We find that [CLS] em-
beddings are clearly superior for producing short
document representations, but that all approaches
perform similarly for longer representations.

In Table 3, we examine the effect of the number
of [CLS] tokens on the query side. In the first row,
“All Tokens”, the query representation corresponds
to one [CLS] token plus each actual (non-padding)
token in the query. Our results suggest that short
queries do not benefit much from query pooling.

Projections lower costs with little quality drop.
Down-projection is supported by changing the size
of the attention head, which leads to a linear reduc-
tion in both joint computation and in offline docu-
ment storage. In Table 2, we show via the accuracy
trade-offs that hidden size projections outperform
a comparable reduction in document length.

Multi-head Attention is unnecessary. In Ta-
ble 4, we evaluate whether the single attention



5455

Projection MSMARCO
Size Dev

MRR@10

768 35.8
128 36.0
64 35.4
32 35.0
16 34.7

Table 2: An evaluation
of projections (by using
smaller attention head
sizes) on the full query
and document sequences.

Query MSMARCO
Timesteps Dev

MRR@10

All Tokens 35.8
(Avg. ~6)

1 CLS 32.6
2 CLS 33.5
8 CLS 34.9

33 CLS 35.9

Table 3: Multiple CLS
pooling applied to the
query sequence with full
document sequences.

Document Num Projection MSMARCO
Timesteps Heads Size Dev MRR@10

All Tokens 1 64 35.4
(Avg. ~70)

56 1 64 34.6
28 2 64 33.5
28 1 128 34.4
14 4 64 31.7
14 1 256 33.5

Table 4: A study of multi-headed attention applied
to several document configurations with equivalent di-
mensionality.

head used by MVA can be replaced by multiple
smaller attention heads with the same combined
dimensionality. We do so by examining a range
of document sequence lengths where the length
is varied using [CLS] embeddings, but where
(length × projection_size) is held constant. We
find that multiple projection heads worsen the re-
sults across all sequence lengths, and especially so
for shorter document sequences.

Joint pre-training improves downstream per-
formance. We find it helpful to first pre-train
the MVA parameters for a small number of ad-
ditional steps on the MLM and NSP tasks before
fine-tuning on the downstream dataset. Pre-training
a MVA model from scratch, however, is not neces-
sary since the improvement in downstream accu-
racy is marginal.

5 Results

Optimal operating points. We present several
optimal operating points that maximize MRR with
respect to different amounts of allowed joint com-
putation and storage cost. The configuration that
achieves the highest MRR for reasonable cost uses

Model Approx Joint Storage MSMARCO
Name Compute Cost Dev

(mega-FLOPS) (Floats) MRR@10

BERTBase 11,000,000 0 36.0
ColBERT 286 8,960 34.9

CA (Ours) 11,000,000 0 38.0
DE (Ours) 0.8 768 29.6

MVA1 130 17,920 36.0
MVA2 25 3,072 34.7
MVA3 8 1,024 32.7

1 70 document timesteps, projection size 128.
2 24 document timesteps, projection size 64.
3 16 document timesteps, projection size 32.

Table 5: Re-ranking results for various model config-
urations. Cross-Attention (CA), Dual Encoder (DE),
Multi-Vector Attention (MVA). BERTBase and Col-
BERT figures are from (Khattab and Zaharia, 2020).

First Pass Num Approx Joint MSMARCO
Model Re-ranked Compute Dev

(mega-FLOPS) MRR@10

N/A 1000 11,000,000 38.0

DE
1 0.8 29.6
10 110,000 35.3
50 550,000 37.5

MVA 1 25 34.7
(D=24, P=64) 10 110,000 36.6

50 550,000 37.9

Table 6: Multi-pass re-ranking using a cross-attention
model. D = timesteps in document representation, P
= projection size.

the full query-document sequence and a projection
size of 128. We also present two cheaper archi-
tecture variants that use aggressive projections and
[CLS] pooling to lower computation, for a large im-
provement over dual encoders for small additional
cost. Our approach attains comparable results to
ColBERT (Khattab and Zaharia, 2020) without hav-
ing to extensively pad the query with [CLS] tokens.

Improved Re-ranking with MVA. We simulate
a three-stage re-ranking pipeline where the MS-
MARCO top-1000 candidates (originally retrieved
by BM25) are first re-ranked using MVA (as well
as the Dual Encoder) and then the top-K candidates
further re-ranked with the cross-attention model.
We show in Table 6 that a comparatively cheap
MVA model substantially outperforms a Dual En-
coder. Moreover, the amortized cost of cross-
attention re-ranking enables a better operating point
on the joint computation-accuracy curve.



5456

6 Conclusion

We presented a Multi-Vector Attention (MVA) ar-
chitecture for deep re-ranking that extends previous
work on multi-vector dual encoders and attention
architectures.

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Jiecao Chen, Liu Yang, Karthik Raman, Michael Ben-
dersky, Jung-Jung Yeh, Yun Zhou, Marc Najork,
Danyang Cai, and Ehsan Emadzadeh. 2020. Dipair:
Fast and accurate distillation for trillion-scale text
matching and pair modeling.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yingqi Qu Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2020. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Mod-
ularized transfomer-based ranking framework. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4180–4190, Online. Association for Computa-
tional Linguistics.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and
Marc Najork. 2020. Learning-to-rank with bert in
tf-ranking.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over bert. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39–48.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He,
and Yingfei Sun. 2020. Parade: Passage represen-
tation aggregation for document reranking. arXiv
preprint arXiv:2008.09093.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2020. Sparse, dense, and at-
tentional representations for text retrieval. arXiv
preprint arXiv:2005.00181.

Sean MacAvaney, Franco Maria Nardini, Raffaele
Perego, Nicola Tonellotto, Nazli Goharian, and
Ophir Frieder. 2020. Efficient document re-ranking
for transformers by precomputing term representa-
tions. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 49–58.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert.

http://arxiv.org/abs/2010.03099
http://arxiv.org/abs/2010.03099
http://arxiv.org/abs/2010.03099
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2010.08191
http://arxiv.org/abs/2010.08191
http://arxiv.org/abs/2010.08191
https://doi.org/10.18653/v1/2020.emnlp-main.342
https://doi.org/10.18653/v1/2020.emnlp-main.342
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
http://arxiv.org/abs/2004.08476
http://arxiv.org/abs/2004.08476
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424

