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Abstract

Previous work on crosslingual Relation and
Event Extraction (REE) suffers from the mono-
lingual bias issue due to the training of models
on only the source language data. An approach
to overcome this issue is to use unlabeled data
in the target language to aid the alignment of
crosslingual representations, i.e., via fooling a
language discriminator. However, as this ap-
proach does not condition on class informa-
tion, a target language example of a class could
be incorrectly aligned to a source language ex-
ample of a different class. To address this
issue, we propose a novel crosslingual align-
ment method that leverages class information
of REE tasks for representation learning. In
particular, we propose to learn two versions
of representation vectors for each class in an
REE task based on either source or target lan-
guage examples. Representation vectors for
corresponding classes will then be aligned to
achieve class-aware alignment for crosslingual
representations. In addition, we propose to fur-
ther align representation vectors for language-
universal word categories (i.e., parts of speech
and dependency relations). As such, a novel
filtering mechanism is presented to facilitate
the learning of word category representations
from contextualized representations on input
texts based on adversarial learning. We con-
duct extensive crosslingual experiments with
English, Chinese, and Arabic over REE tasks.
The results demonstrate the benefits of the pro-
posed method that significantly advances the
state-of-the-art performance in these settings.

1 Introduction

Relation and Event Extraction (REE) are important
tasks of Information Extraction (IE), whose goal is
to extract structured information from unstructured
text (Walker et al., 2006). Due to their complex-
ity, annotations for REE tasks are costly and only
available in a few languages. Thus, there have
been growing interests on crosslingual learning for

REE in which a model is trained on a language,
i.e., source language, and applied to another lan-
guage, i.e., target language, where the annotations
are not available. Recent approaches for crosslin-
gual REE have mainly employed multilingual word
embeddings, e.g., MUSE, (Joulin et al., 2018; Ni
and Florian, 2019; Liu et al., 2019; Subburathinam
et al., 2019) or multilingual pre-trained language
models, e.g., multilingual BERT, (Devlin et al.,
2019; M’hamdi et al., 2019; Ahmad et al., 2021;
Nguyen and Nguyen, 2021) to learn crosslingual
representation vectors for REE.

However, previous work on crosslingual REE
suffers from the monolingual bias issue due to the
monolingual training of models on only the source
language data, leading to non-optimal crosslingual
performance. A solution for this issue can resort
to language adversarial training (Chen et al., 2019;
Huang et al., 2019; Keung et al., 2019; Lange et al.,
2020; He et al., 2020) where unlabeled data in
the target language is used to aid crosslingual rep-
resentations via fooling a language discriminator.
The underlying principle for this approach is to
encourage the closeness of representation vectors
for sentences in the source and target languages
(i.e., aligning representation vectors). However, a
critical drawback of language adversarial training
is the failure to condition on classes/types of ex-
amples in the alignment process. As such, a target
language example of a class could be incorrectly
aligned to a source language example of a different
class in REE, causing confusion and hindering the
performance of the models. The middle sub-figure
in Figure 2 demonstrates the class misalignment of
representation vectors in crosslingual REE.

To this end, we propose a crosslingual alignment
method that explicitly conditions on class informa-
tion of REE tasks to enhance representation align-
ment and learning. Our major intuition is that the
semantics of the classes in REE tasks (e.g., the
event type of Aftack in event extraction) are gen-
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Figure 1: Overall architecture of the proposed models for RE, EAE. For ED, example representations are the contextualized

embeddings.

erally invariant across languages that can be lever-
aged as anchors to bridge representation vectors for
examples in different languages. As such, we can
obtain two semantic representation vectors for each
class in an REE task based on representation vec-
tors of examples in either source or target language.
Afterward, the representation vectors of the same
class can be regulated to match each other, serv-
ing as a mechanism for class-aware crosslingual
alignment of representation vectors for source and
target examples. To implement this idea, we use
multilingual BERT (mBERT) to obtain same-space
representations for examples in both source and
target languages to facilitate the alignment process.
Afterward, the source-language representation vec-
tor for a class is computed via representation vec-
tors of source-language examples that belong to
the corresponding class. For the target language,
as class information is not provided, we seek to
compute target-language representation vector for
a class by aggregating representation vectors for
unlabeled examples, weighted on an estimation of
the probabilities for the examples to exhibit the
class.

In addition to class semantics, we propose to
further exploit universal parts of speech and de-
pendency relations in parsing trees (i.e., word cat-
egories) to improve the cross-lingual alignment
for representation vectors in REE. As such univer-
sal word categories have been consistently anno-
tated for more than 100 languages (Zeman et al.,
2020) and can be generated with high accuracy
via existing toolkits, e.g., the transformer-based
toolkit Trankit for multilingual NLP (Straka, 2018;

Qi et al., 2020; Nguyen et al., 2021b), we expect
this information to provide helpful anchor knowl-
edge for cross-lingual representation learning. To
this end, similar to the class-aware alignment, we
propose to align representation vectors of the same
universal word categories that are computed using
contextualized representations of examples in the
source and target languages to further improve the
language-independence of representation vectors
for REE.

A potential issue with the computation of word
category representations via contextualized repre-
sentations of examples is the preservation of con-
text word information in representations for word
categories that might introduce noise and hinder
the representation alignment. To address this is-
sue, we propose an adversarial training model that
seeks to explicitly filter context information from
word category representations. This is achieved by
using Gradient Reversal Layer (Ganin and Lempit-
sky, 2015) to prevent word category representations
from being able to recognize the context words in
the original examples. We expect that this filtering
mechanism can improve the word category pure-
ness of the representations, thus providing appropri-
ate inputs for the alignment process for improved
representation learning.

We conduct extensive experiments with differ-
ent crosslingual settings on English, Chinese, and
Arabic for three REE tasks, i.e., Relation Extrac-
tion, Event Detection, and Event Argument Extrac-
tion. The results demonstrate the benefits of the
proposed method that significantly advances the
state-of-the-art performance in these settings.
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2 Problem Statement

We study cross-lingual transfer learning for three
REE tasks as defined in the ACE 2005 dataset
(Walker et al., 2006), i.e., Relation Extraction (RE),
Event Detection (ED), and Event Argument Extrac-
tion (EAE). Given two entity mentions in an input
sentence, the goal of RE is to determine the seman-
tic relationship between the mentions according
to predefined relation types/classes (e.g., Employ-
ment). For ED, its purpose is to identify event
triggers, which can be verbs/normalization with
one or multiple words, that express occurrences of
events of predefined types (e.g., Attack). Finally,
given an event trigger and an entity mention, EAE
aims to predict the role (e.g., Victim) that the entity
mention plays in the corresponding event. Note
that, we have a special type None to indicate non-
relation, non-trigger, or non-argument for RE, ED,
and EAE respectively.

For further discussion, let Dy, = {(Zsrc, Ysre) }
(|Dsre| = Ngyre) be the labeled training set in the
source language. As such, for ED, x,. is an input
sentence and ys,. serves as the golden sequence tag
(using BIO) for the words in ... For RE and EAE,
Zsre Involves an input sentence along with indexes
of the given trigger word and entity mentions while
Ysre represents the golden relation type or argument
role for the input. We also assume access to an
unlabeled dataset Dygr = {(21g¢)} (| Digt| = Nigt)
in the target language where x4, consists of similar
information as x,. for the corresponding task.

3 Baseline Methods

To prepare for our cross-lingual representation
alignment techniques for REE, we first describe
the baseline models explored in this work.

3.1 Using Source Language Data Only

In this section, we present two baselines that train
models based only on labeled data in the source
language. These baselines are the current state-
of-the-art (SOTA) models for crosslingual transfer
learning for ED, RE, and EAE on the ACE 2005
dataset (Walker et al., 2006).

BERTCRF (M’hamdi et al., 2019): This is the
current SOTA model for crosslingual ED. Given an
input sentence w = w1, wa, . . . , wy,] with n words
(in Z4pc), the model first sends w to the mBERT en-
coder to obtain a sequence of contextualized repre-
sentations Z = [z1, Zg, . . ., Z,,] Where zj, is the rep-
resentation for each wy, € w, computed as the aver-

age of its word-piece representations returned by
the last layer of mBERT. The ED task is then done
by performing sequence labeling over the words in
w where each word is assigned with a BIO tag to
capture boundaries and event types of event triggers
in w. In particular, the final representation vector
for trigger prediction rgfz i, 18 directly formed from
the word representation z;, (i.e., rf;’g p = Zr). Af-
terward, this prediction representation is fed into
a feed-forward network FEN*? to obtain a score
vector that exhibits the likelihoods for wy, to receive
possible BIO tags for the predefined event types:
shD, =FENFP(eBD ) w1 <k <.

Next, the score vectors are sent to a Condi-
tional Random Field (CRF) layer to learn the
inter-dependencies between the tags and obtain
conditional probability for possible tag sequences
PEP(|lw = 4..). The negative log-likelihood of
the golden tag sequence ¥, is then used to train
the model:

LED _ _ Z

(Tsre Ysre)EDsre

IOg(PED(ysrc‘xsrc)) (D

Finally, Viterbi decoding is employed to perform
prediction in inference time.

GATE (Ahmad et al., 2021): This is the current
SOTA model for crosslingual RE and EAE on the
ACE 2005 dataset. Given an input sentence w in
Zsre, this model uses the same encoding step with
mBERT in BERTCREF to obtain the contextualized
representation z;, for each w; € w. Afterward,
an overall word representation vector vy, for wy, is

formed by the concatenation: vi, = [zx; 2} ; zzep ]

where z;° and zzep are the embeddings of the
universal part of speech and the dependency re-
lation for wy. Here, the dependency relation for
a word is obtained by retrieving the dependency
relation between the word and its governor in the
dependency tree. For RE, given two entity men-
tions, the sequence of vectors V = [v1,Va, ..., Vy]
is then passed to a Transformer layer (Vaswani
et al., 2017) along with a syntax-based attention
mask to compute a final representation vector riZ
for relation prediction over the input xg... Af-
terward, a score vector for the possible relations
is computed via a feed-forward network FEN/#:

Sire = FENFE(rde).

The score vector s2Z is then sent to a softmax
layer to obtain a distribution over possible rela-
tion types for x4..: PR (.|z4,.). Finally, to train

the model, we minimize the standard negative log-
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likelihood of the golden label ygy.:

>

(zsresYsre)EDsre

LRE log(PRE (ysrc |xsrc)) 2

For EAE, given an event trigger and an entity
mention, we follow the same steps above for RE to
compute the representation vector for role predic-
tion rZAF | the score vector sZ4F and the negative
log-likelihood for optimization LEAF.

Finally, for convenience, let rg]f s rg‘? , and
rtngE be the final representation vectors for x4 in
the unlabeled data of target language. We also have
sgf . sf/}? , and sfng for the likelihood score vec-
tors for examples in the target language. These vec-
tors are computed in the same way as their source

language counterparts in this section.

3.2 Using Unlabeled Target Language Data

To avoid the monolingual bias in the cross-lingual
methods for REE in Section 3.1, our work aims
to exploit unlabeled data in the target language to
improve the cross-lingual representations for REE.
This section presents the typical approaches for
leveraging unlabeled target language data for cross-
lingual transfer learning in NLP, offering additional
baselines for our proposed model later.

Language Adversarial Training (LADV): To
leverage unlabeled data in the target language, this
method introduces a language discriminator that
receives representation vectors for input sentences
and predicts the language identity (i.e., source or
target) of the sentences (Chen et al., 2019; Huang
et al., 2019; Keung et al., 2019; Cao et al., 2020).
As such, given an REE task ¢t € {ED, RE, EAE},
the method seeks to jointly train a model for ¢ (i.e.,
those described in Section 3.1) and the language
discriminator so that the induced representation
vectors for ¢ can contain necessary information for
the predictions in ¢ and be language-agnostic to
better transfer knowledge across languages at the
same time.

To implement this method, we first obtain a
representation vector for each input sentence in
the source and target language data by feeding it
into mBERT to obtain word representation vectors
21,22, ...,2Z,] as in BERTCRE. Following (Ke-
ung et al., 2019), the average of such word vectors
is used as the representation for the sentence in
this baseline. For convenience, let ay.. and a; g
be the sentence representation vectors for the in-
put sentences in x.. and x4 respectively. Also,
let fltn , be the language discriminator for task ¢

(implemented by a feed-forward network with a
sigmoid activation in the end). In the next step,
the representation vector a, (x € {src,tgt}) for
each sentence is sent to f} g to obtain a probability
Dy = fltn g(a*), indicating the likelihood that the in-
put sentence belongs to the source language. Treat-
ing source and target language sentences as positive
and negative examples, the loss for the discrimina-
tor L%5¢ is then computed via the negative log-
likelihood: L¥s¢ = —%7 5 log(pe.,.) —
zxtgteDtgt log(1 — pz,,, ). The overall joint loss
to train the model for ¢t with LADV is thus: L =
Ltesk 1 [disc Note that as LADV aims to prevent
the language discriminator from recognizing the
language identity from sentence representation vec-
tors, we insert the Gradient Reversal Layer (GRL)
(Ganin and Lempitsky, 2015) between a, and f{75*
to reverse the gradients during the backward pass
from L%*¢. Overall, fooling the language discrim-
inator in LADV with GRL eliminates language-
specific features to improve generalization across
languages for ¢.

mBERT Finetuning (FMBERT): Recently, it
has been shown that fine-tuning multilingual pre-
trained language models on unlabeled data of the
target language can improve the crosslingual per-
formance for NLP tasks (Pfeiffer et al., 2020).
Motivated by such prior work, this baseline ex-
ploits the unlabeled data in the target language for
cross-lingual representation learning by fine-tuning
mBERT on the data using mask language modeling
(MLM) (Devlin et al., 2019). Afterward, the fine-
tuned mBERT model is utilized in the encoders for
the baseline models for REE tasks in Section 3.1.

4 Proposed Method
4.1 Class-based Alignment

An overview for the proposed model is shown in
Figure 1. As described in the introduction, to avoid
the potential cross-class alignment of representa-
tion vectors in the source and target language, this
section presents a novel method for crosslingual
representation alignment in REE where class infor-
mation of tasks is explicitly employed to improve
the alignment process. In particular, due to the
language-universal nature of the semantics of the
classes for an REE task, semantic representation
vectors for a class should match each other no mat-
ter if they are computed with data from the source
or target language. To this end, we seek to ob-
tain two versions of representation vectors for each
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class in an REE task. One version is based on rep-
resentations of examples for the source language
while the other version employs representations
from target language examples. The two repre-
sentation versions will then be matched to achieve
cross-lingual representation alignment for REE.

As such, let [ be a class in an REE task ¢ (e.g., [
is a BIO tag for event types in ED). We compute
the source-language representation czr ., for i via
the average of representation vectors for examples
with label [ in Dyg,.. In particular, for t = RFE or
FAFE, we have:

¢ 1
csrc,l = E
N.£7'c

(Tsre,Ysre)

Similarly, for t = ED:

1[ys'rc = l}rirc (3)

[Zsrel

Z Z 1[ySTc,k = l]l‘g?’k (4)

(Zsre Ysre) k=1

cED _ 1
sre,l —
Né'r'c

Here, 1 is the indicator function, and N!, . is the
number of examples (for RE and EAE) or words
(for ED) in Dy, that are annotated with label [.

In the target language, as the golden labels ¥4
for the examples x4 are not provided, we pro-
pose to obtain a target-language representation
ci ot DY aggregating representation vectors for all
examples x5y € Dyg. Probability estimations
for examples or words to belong to class [ are
used as the weights for the aggregation. In par-
ticular, we obtain the probability estimations by

. ED (RE EAE
sending the score vectors s, .. 8;5;, and s; 4

to a softmax layer: yif e = softmax(sl{?gfk), and
Yig = softmax(s,) (for t = RE or EAE). As
such, we obtain the target-language representation
for [ via the weighted sum of r} ¢ (for RE and EAE):

ot t
thgteDtgt ytgt,lrtgt

&)

t
[ =
gt,l ~t
thgt ED¢gt Yigt,l

Similarly, for ED:

Z |Ztgt| cED rED
(ED _ Zwtgi€Digr Luk=1 Yigt.k,i¥tgt k
tgt,l — Z |ztgt| ~ED

ztgt €Digt £vk=1 Jigt,k,l

(6)

where yig” and &gf 11 represent the likelihood
score for class [ in vectors y,igt and y,{f]f 1 respec-
tively. The alignment for the representations of
class [ is then achieved by minimizing the negative
cosine similarity of the source- and target-language
vectors (i.e., for task t):

t . t t
Lcls = - Z comne(cs'rc,h ctgt,l) (7)
l

Adaptive Coefficient: In our implementation,
we compute the source-language representations
ct . for [ after each training epoch while the target-
language representations c! gt Are obtained for in
each training minibatch. The current parameters
of the models are utilized to perform such calcu-
lation. As such, the quality of the representation
vectors for classes might vary along the training
process of the models. In particular, later epochs
might correspond to better model parameters, thus
leading to more reliable class representations. To
this end, we propose to apply an adaptive coeffi-
cient A\ for the class alignment loss Lf:ls So its
impact is gradually increasing along the training:
Aels = m — 1 where F and e are the total
and current numbers of training epochs, respec-
tively. Note that )\, is small in the early training

stages and gradually increase in the process.

4.2 Word Category-based Alignment

We further exploit universal parts of speech (UPOS)
and dependency relations as the language-agnostic
knowledge to align crosslingual representations
for REE. To achieve a fair comparison with prior
work (Subburathinam et al., 2019; Ahmad et al.,
2021), we employ the UDPipe toolkit (Straka and
Strakova, 2017) to obtain parts of speech and de-
pendency relations for the sentences. Due to their
similarity, we will only describe the UPOS-based
alignment process and the dependency-based align-
ment can be done in the same way.

As such, we utilize an embedding table U (ini-
tialized randomly) to capture representation vec-
tors for the possible UPOS, serving as an anchor
knowledge across languages. Next, to facilitate the
UPOS-based representation alignment, we com-
pute additional representation vectors for UPOS
based on representation vectors of examples in both
source and target languages. In particular, for each
word wy, in an input sentence W (from Z ;.. Or T44¢),
we send its contextualized representation z; from
mBERT into a feed-forward network FENUPOS to
produce a representation vector q;, for the UPOS
wy’® of wy, € w: q, = FENUTPO9(z,). Afterward,
to leverage the language-universal of U, we pro-
pose to match g, to the embedding vector of w}”’
in U for q,, in both source and target language data.
In other words, induced representation vectors in
the source and target languages are both matched to
the anchor knowledge U, providing a mechanism
to align source and target representations.
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To match q,, and U, we seek to maximize the
similarity between q,, and the embedding of w}*’
in U while minimizing q,;,’s similarities with em-
beddings of other UPOS at the same time. To im-
plement this idea, we utilize the following function
for minimization:

Lygd™ = Y log(Y_ VAT )

WeD,wy, €W u€O
where D = Dy, U Dygt, O is the set of possible
UPOS, and U [u] is the embedding of u in U.

Context Information Filtering: Note that
L3H9™ s also the negative log-likelihood for a feed-
forward classifier that uses U as the weight matrix

pOS

and qy, as the input vector to predict the UPOS w;,

for wy. As such, minimizing Lgé’f" also serves to
retain relevant information for UPOS prediction in
the representation vector q;. However, due to the
direct computation of q;, from the contextualized
representation zg, it is possible that q,, still pre-
serves context information from the input sentence
w. This might introduce noise into q,, as ideally,
we expect (;, to focus only on information about
UPOS. As such, to improve the quality of q,, for
representation alignment, we propose to explicitly
filter context information from vectors q;. Our
main idea is to ensure that q, cannot be used to
recover the context words in w. To achieve this
goal, we first obtain an aggregated vector for the
UPOS representation vectors in the input sentence
w.q = % > k1 4 The resulting vector is then
fed into a Gradient Reversal Layer (GRL) (Ganin
and Lempitsky, 2015), followed by a word clas-
sifier (i.e., a feed-forward network FFN“* with a
softmax layer in the end) to compute a probabil-
ity distribution over the words in our vocabulary:
§°'* = softmax (FFN* (GRL(q))). Finally, to fil-
ter the context information from q;,, we minimize
the negative log-likelihood of the context words wy,
in the input sentence w:

== S Y o) ©

WEDsrcUD¢gt wp €W

where y°/“[wy,] is the probability for word w; in the
distribution y°**. Note that while the minimization
of the negative log-likelihood generally encourages
input representations to reveal information about
the prediction outputs (i.e., context words in our
case), the introduction of GRL in L§.% reverses this
process to discourage the context information in
q, thus purifying q;, to focus on UPOS knowledge

and facilitating the representation alignment.

In the next steps for universal dependency re-

lations, we follow the same procedure for Lgl;sg”

and Lgy; to obtain the losses Ly, 7" and LG re-

spectively for minimization. For convenience, let

__ ralign ctx __ ralign ctx
Lpos = Ligod™ + L& and Lye, = L39" + L2

In summary, the overall loss function to train our
models for a task t € {ED,RE,EAE} with
both class and word category alignment is thus:
Lmain — Lt + )\clsLils + )\postos + )\depLdep
where A\, is the adaptive coefficient, and A, and

Adep are trade-off parameters.

Language | Data RE ED EAE
(#rels) | (#trgs) | (#args)
Train | 4,974 4,420 7,018
English Dev 626 505 877
Test 620 424 878
Train | 4,767 2,213 5,931
Chinese Dev 572 111 741
Test 605 197 742
Train | 2,918 1,986 3,959
Arabic Dev 357 112 495
Test 378 169 495

Table 1: Statistics of the multilingual datasets for ED,
RE, and EAE in ACE 2005. #rels, #trgs and #args
represent the numbers of relations, event triggers, and
event arguments respectively.

S Experiments

Datasets and Hyper-parameters: Following pre-
vious work (M’ hamdi et al., 2019; Subburathinam
et al., 2019; Ahmad et al., 2021), we use the multi-
lingual dataset ACE 2005 (Walker et al., 2006) to
evaluate REE models in this work. ACE 2005 anno-
tate documents for entity mentions, event triggers,
relations, and arguments in English (EN), Chinese
(ZH) and Arabic (AR). We apply the same data
split and preprocessing for ACE 2005 as prior work
(M’hamdi et al., 2019; Ahmad et al., 2021) for a fair
comparison. Overall, there are 18 relation types, 33
event types, and 35 argument roles in this dataset.
For each of the language (i.e., English, Chinese
and Arabic) and task (i.e., ED, RE, and EAE), the
data split provides training, development, and test
data. In our cross-lingual transfer learning exper-
iments, the models will be trained on the training
data of one language (the source) and evaluated
on the test data of another language (the target).
The unlabeled data for the target language is ob-
tained by removing the labels from its training data.
The statistics of the ACE 2005 dataset for the three
tasks are shown in Table 1.
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Even Argument Extraction

Relation Extraction

Model EN TEN | ZH | ZH | AR

ZH AR | EN AR | EN

AR | EN | EN |ZH |ZH | AR | AR
ZH | ZH | AR | EN | AR | EN | ZH

GATE 63.2 | 68.5 | 593 | 69.2 | 539

57.8 | 55.1 | 66.8 | 71.5 | 61.2 | 69.0 | 54.3

GATE+LADV 639 | 67.7 | 603 | 68.6 | 55.8
GATE+FMBERT | 63.7 | 68.7 | 59.3 | 69.3 | 54.6

57.8 | 56.8 | 642 | 70.2 | 61.6 | 689 | 54.8
58.1 | 55.8 | 669 | 71.8 | 61.7 | 69.2 | 54.9

GATE+CCCAR | 65.5 | 694 | 62.0 | 69.3 | 57.5

59.1 | 58.1 | 67.9 | 72.0 | 63.5 | 70.5 | 57.7

Table 2: Performance (F1 scores) of models on test data for EAE and RE in six crosslingual settings. Each column corresponds
to one setting where source languages are written above target languages. Underlined numbers designate settings where the
proposed model is significantly better than other models with p < 0.01.

Event Detection
EN EN ZH | ZH AR [ AR
7ZH AR | EN AR | EN | ZH
BERTCRF 68.5 | 309 | - - - -
BERTCRF+LADV 70.0 | 335 | 41.2 | 203 | 37.2 | 55.6
BERTCRF+FMBERT | 69.4 | 334 | 429 | 20.0 | 36.5 | 56.3
BERTCRF+CCCAR | 72.1 | 42.7 | 45.8 | 20.7 | 40.7 | 59.8

Model

Table 3: Performance (F1 scores) on test data for ED in six
crosslingual settings. Each column corresponds to one setting
where source languages are written above target languages.
“-” indicates results that are not reported in the original work.
Underlined numbers designate settings where the proposed
model is significantly better than other models with p < 0.01.

We use the same hyper-parameters for
BERTCRF and GATE as provided by previous
work (M’hamdi et al., 2019; Ahmad et al., 2021).
Specific hyper-parameters for our model are tuned
on the development data. In particular, we use
two layers for the feed forward networks with 50
hidden units for the layers, 50 dimensions for the
UPOS and dependency embeddings, and 0.1 for
the parameters \,,s and Age,. For the baseline
FMBERT, we utilize the huggingface library to
finetune mBERT on unlabeled target data with
MLM for 100, 000 steps (i.e., batch size of 64 and
learning rate of be-5).

Performance Comparison: We compare the pro-
posed crosslingual method for REE on two groups
of baselines. The first group involve models that
only use source language data for training, i.e.,
BERTCRF and GATE. These are current SOTA
methods for crosslingual ED, RE, and EAE. The
second baseline groups additionally employ unla-
beled data in the target language to support crosslin-
gual representation learning in REE, i.e., LADV
and FMBERT. Our proposed method also leverages
unlabeled data in the target language, called CC-
CAR for class- and word category-based crosslin-
gual alignment of representations. Note that LADV,
FMBERT, and CCCAR should be applied on top of
a source-only method (i.e., BERTCRF and GATE)
to form a complete model.

Tables 3 and 2 show the test data performance of

the models for the three REE tasks in six crosslin-
gual settings (i.e., with different pairs of languages
for the source and target). It is clear from the tables
that the proposed method CCCAR consistently out-
performs other methods in all crosslingual settings
for the three REE tasks. In particular, for EAE,
CCCAR substantially improves the baseline model
GATE (i.e., the current SOTA) by 1.9% on average
while those improvement for LADV and FMBERT
are only 0.45% and 0.38%. The same trend can be
seen for RE and ED where CCCAR on average im-
proves the baselines by 1.97% for the former and
7.7% for the latter. These results clearly demon-
strate the effectiveness of the proposed method,
highlighting the benefits of the class- and word
category-based alignment for crosslingual REE.

Model English — Chinese | English — Arabic

RE | ED | EAE | RE | ED | EAE

CCCAR 581|721 | 655 | 67.9 | 42.7 | 69.4
- Class Align. 56.6 | 69.9 | 63.6 | 66.9 | 38.8 | 68.9
- Adaptive Coeff. | 57.4 | 715 | 64.7 | 673 [ 413 | 69.2
- UPOS Align. 579 | 714 [ 65.1 | 66.9 | 40.4 | 69.3
- Dep Align. 57.8 | 71.7] 647 | 67.1 | 41.5 | 68.9
- Word Cat Align. | 57.0 | 709 | 64.4 | 67.0 | 40.0 | 68.7
- Context Filtering | 576 | 71.2 | 64.9 | 67.4 | 41.6 | 69.0

Table 4: Performance (F1 scores) of models. In the row for
the proposed model CCCAR, we use BERTCREF as the base
model for ED, and GATE as the base model for RE and EAE.

Ablation Study: This section conducts an abla-
tion study to understand the contribution of each
designed component in the proposed crosslingual
alignment method CCCAR. In particular, we ex-
amine the performance of the following ablated
models: (i) - Class Align.: this model excludes
the class-based alignment component (i.e., the loss
LZl ;) from CCCAR; (ii) - Adaptive Coeff.: instead
of using the adaptive coefficient ). for the class-
based alignment loss L, , this model utilizes a
fixed value (i.e., 0.2 as tuned on development data)
for A (iii) - UPOS Align.: this model elimi-
nates the UPOS-based alignment component (i.e.,
the losses Lgffgq" and L) from CCCAR; (iv) -

pos
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Dep Align.: the alignment component based on
dependency relations (i.e., the losses L?lle’]f” and
Lfig;) is not utilized in this model; (v) - Word Cat
Align.: this model removes both UPOS-based and
dependency-based alignment from CCCAR (i.e.,
excluding Ly,s and Lgcp); and (vi) - Context Fil-
tering: the word context filtering for the represen-
tation vectors of UPOS and dependency relations
(with GRL) is not employed in this model (i.e.,

T : ctx ctx
eliminating the losses Ly;c and Lg.7).

Table 4 presents the test data performance of the
models in the English-to-Chinese and English-to-
Arabic settings for the three REE tasks. As can
be seen, removing any component of the proposed
model would hurt the performance significantly
across different settings and tasks, thus clearly il-
lustrating the benefits of the designed components
for CCCAR. The performance of the models drops
the most when the class-based alignment is ex-
cluded, further demonstrating the importance of
class-aware alignment for crosslingual REE.

Source-language Data Usage: Previous experi-
ments show that using unlabeled data in the target
language to align representation vectors in CCCAR
can improve the performance for the source-only
baselines for REE. In this section, we seek to under-
stand how much labeled data in the source language
can be saved if unlabeled data in the target language
is employed with CCCAR for an REE task. In par-
ticular, we are interested in the portion of source
language data that, once combined with unlabeled
target language data via CCCAR, can produce simi-
lar performance as the source-only baseline trained
on full source language data. To this end, we show
the learning curves of the source-only and CCCAR-
augmented models for REE tasks when the size of
the source-language training data varies. Figure
3 show the curves for the English-to-Chinese set-
ting. As can be seen, the proposed CCCAR method
with unlabeled target data only needs to use ap-
proximately 60% of the source-language training
data for RE and EAE to achieve comparable per-
formance with the source-only baselines on full
source language data. This portion for ED is less
than 80%. These results thus suggests an additional
benefit of CCCAR to significantly reduce neces-
sary data annotation for the source language based
on unlabeled target language data in crosslingual
learning for REE.

Alignment Effect of the Proposed Method: As
discussed earlier, a major issue for LADV is that

it might align representations of examples with
different classes in the crosslingual setting. CC-
CAR can address this issue as it explicitly relies
on class information for representation alignment.
To demonstrate these arguments, Figure 2 uses the
t-Distributed Stochastic Neighbor Embedding (t-
SNE) (Van der Maaten and Hinton, 2008) to visual-
ize the example representations induced by GATE,
the LADV baseline GATE+LADYV, and the pro-
posed GATE+CCCAR. This visualization is done
over 4,000 randomly selected examples for the top
5 frequent classes in EAE. Here, examples are sam-
pled from training data for both source and target
languages in the English-to-Chinese setting. As
can be seen, in the source-only model GATE, repre-
sentations for examples from the source language
are quite separate from those in the target language.
The representation alignment in GATE+LADV can
address this issue by pushing representations from
both languages closer. However, representations
for examples with different classes are unexpect-
edly aligned in GATE+LADY, causing suboptimal
representations for crosslingual settings. Finally,
due to the explicit condition on class information
for alignment, GATE+CCCAR can match repre-
sentations for both languages while avoiding the
cross-class alignment to improve crosslingual per-
formance for REE.

6 Related Work

REE has been extensively studied for English, fea-
turing traditional machine learning methods (Pat-
wardhan and Riloff, 2009; Liao and Grishman,
2011; Li et al., 2013; Yang and Mitchell, 2016)
and advanced deep learning models (Nguyen and
Grishman, 2015; Chen et al., 2015; Nguyen et al.,
2016a; Nguyen and Grishman, 2018; Wang et al.,
2019; Zhang et al., 2019; Sahu et al., 2019; Veyseh
et al., 2020b,a,c; Lin et al., 2020; Nguyen et al.,
2021a). Recently, several works have considered
cross-lingual transfer learning for three REE tasks
(Ni and Florian, 2019; Liu et al., 2019; Subburathi-
nam et al., 2019) where multilingual pre-trained
language models (e.g., mBERT) have been proved
as an important encoding component (Ahmad et al.,
2021; Nguyen and Nguyen, 2021).

However, a fundamental limitation of existing
crosslingual models for REE is the monolingual
bias due to the sole reliance on source language
data for training. In other NLP tasks, LADV has
been explored to address this issue by leveraging
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Figure 2: T-SNE visualizations for the representations of 4,000 randomly selected examples from English (i.e., source language)
and Chinese (i.e., target language) data. Circles and triangles represent English and Chinese examples respectively. Colors
represent different classes in EAE. GATE+CCCAR shows induced representation vectors from our proposed model.

F1 score (%)
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Figure 3: Performance on test data of the models in the
English-to-Chinese setting. Dash lines represent the
performance of the source-only baselines using 100%
of the source-language training data.

unlabeled data in the target language to perform
crosslingual representation alignment (Chen et al.,
2019; Huang et al., 2019; Lange et al., 2020; Cao
et al., 2020; He et al., 2020). Unfortunately, LADV
suffers from the cross-class alignment issue, mak-
ing it less optimal for crosslingual REE. Finally, we
note that language-universal representation learn-
ing is related to domain adaption research where
models seek to learn domain-invariant representa-
tions (Ganin and Lempitsky, 2015; Fu et al., 2017;
Adel et al., 2017; Xie et al., 2018; Cicek and Soatto,
2019; Tang et al., 2020; Ngo et al., 2021).

7 Conclusions

We present a novel method for crosslingual transfer
learning for REE that leverages unlabeled data in
the target language to support language-universal
representation learning. Our method exploits class

semantics in REE tasks and universal word cate-
gories (i.e., UPOS and dependency relations) as
bridges to align representation vectors across lan-
guages. In our method, representation vectors
for classes and word categories are computed via
contextualized representations of examples to im-
plement representation matching for crosslingual
alignment. Extensive experiments show that the
proposed method achieves SOTA performance for
three REE tasks in different crosslingual settings.
In the future, we plan to extend our methods to re-
lated problems in IE (e.g., coreference resolution).
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