
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5346–5356
November 7–11, 2021. c©2021 Association for Computational Linguistics

5346

Data Augmentation for Cross-Domain Named Entity Recognition

Shuguang Chen †, Gustavo Aguilar †, Leonardo Neves ∗ and Thamar Solorio †
University of Houston †

Snap Inc. ∗

{schen52, gaguilaralas, tsolorio}@uh.edu†

lneves@snap.com∗

Abstract

Current work in named entity recognition
(NER) shows that data augmentation tech-
niques can produce more robust models. How-
ever, most existing techniques focus on aug-
menting in-domain data in low-resource sce-
narios where annotated data is quite limited.
In contrast, we study cross-domain data aug-
mentation for the NER task. We investigate
the possibility of leveraging data from high-
resource domains by projecting it into the low-
resource domains. Specifically, we propose
a novel neural architecture to transform the
data representation from a high-resource to a
low-resource domain by learning the patterns
(e.g. style, noise, abbreviations, etc.) in the
text that differentiate them and a shared fea-
ture space where both domains are aligned.
We experiment with diverse datasets and show
that transforming the data to the low-resource
domain representation achieves significant im-
provements over only using data from high-
resource domains. 1

1 Introduction

Named entity recognition (NER) has seen signif-
icant performance improvements with the recent
advances of pre-trained language models (Akbik
et al., 2019; Devlin et al., 2019). However, the high
performance of such models usually relies on the
size and quality of training data. When used un-
der low-resource or even zero-resource scenarios,
those models struggle to generalize over diverse
domains (Fu et al., 2020), and the performance
drops dramatically due to the lack of annotated
data. Unfortunately, annotating more data is often
expensive and time-consuming, and it requires ex-
pert domain knowledge. Moreover, annotated data
can quickly become outdated in domains where
language changes rapidly (e.g, social media), lead-

1We release the code at https://github.com/
RiTUAL-UH/style_NER.

Figure 1: Examples from Ontonotes 5.0 dataset and
Temporal Twitter dataset. The language variations
and abbreviations in the text from social media do-
main make it clearly different from the formal text in
newswire domain.

ing to the temporal drift problem (Rijhwani and
Preotiuc-Pietro, 2020).

A common approach to alleviate the limitations
mentioned above is data augmentation, where au-
tomatically generated data can increase the size
and diversity in the training set, while resulting in
model performance gains. But data augmentation
in the context of NER is still understudied. Ap-
proaches that directly modify words in the training
set (e.g, synonym replacement (Zhang et al., 2015)
and word swap (Wei and Zou, 2019)) can inad-
vertently result in incorrectly labeled entities after
modification. Recent work in NER for low resource
scenarios is promising (Dai and Adel, 2020; Ding
et al., 2020) but it is limited to same domain set-
tings and improvements decrease drastically with
smaller sizes of training data.

To facilitate research in this direction, we inves-
tigate leveraging data from high-resource domains
by projecting it into low-resource domains. Based
on our observations, the text in different domains
usually presents unique patterns (e.g. style, noise,
abbreviations, etc.). As shown in Figure 1, the
text in the newswire domain is long and formal,

https://github.com/RiTUAL-UH/style_NER
https://github.com/RiTUAL-UH/style_NER


5347

while the text in the social media domain is short
and noisy, often presenting many grammar errors,
spelling mistakes, and language variations. In this
work, we hypothesize that even though the textual
patterns are different across domains, the semantics
of text are still transferable. Additionally, there are
some invariables in the way the named entities ap-
pear and we assume that the model can learn from
them. In this work, we introduce a cross-domain
autoencoder model capable of extracting the textual
patterns in different domains and learning a shared
feature space where domains are aligned. We eval-
uate our data augmentation method by conducting
experiments on two datasets, including six differ-
ent domains and ten domain pairs, showing that
transforming the data from high-resource to low-
resource domains is a more powerful method than
simply using the data from high-resource domains.
We also explore our data augmentation approach
in the context of the NER task in low-resource sce-
narios for both in-domain and out-of-domain data.

To summarize, we make the following contribu-
tions:

1. We propose a novel neural architecture that
can learn the textual patterns and effectively
transform the text from a high-resource to a
low-resource domain.

2. We systematically evaluate our proposed
method on two datasets, including six differ-
ent domains and ten different domain pairs,
and show the effectiveness of cross-domain
data augmentation for the NER task.

3. We empirically explore our approach in low-
resource scenarios and expose the case where
our approach could benefit the low-resource
NER task

2 Related work

Data augmentation aims to increase the size of
training data by slightly modifying the copies of
already existing data or adding newly generated
synthetic data from existing data (Hou et al., 2018;
Wei and Zou, 2019). It has become more practical
for NLP tasks in recent years, especially in low-
resource scenarios where annotated data is limited
(Fadaee et al., 2017; Xia et al., 2019). Without
collecting new data, this technique reduces the cost
of annotation and boosts the model performance.

Previous work has studied the data augmenta-
tion for both token-level tasks (Şahin and Steed-
man, 2018; Gao et al., 2019) and sequence-level

tasks (Wang and Yang, 2015; Min et al., 2020). Re-
lated to data augmentation on NER, Dai and Adel
(2020) conducted a study that primarily focuses on
the simple data augmentation methods such as syn-
onym replacement (i.e., replace the token with one
of its synonyms) and mention replacement (i.e.,
randomly replace the mention with another one
that has the same entity type with the replacement).
Zhang et al. (2020) studied sequence mixup (i.e.,
mix eligible sequences in the feature space and the
label space) to improve the data diversity and en-
hance sequence labeling for active learning. Ding
et al. (2020) presented a novel approach using ad-
versarial learning to generate high-quality synthetic
data, which is applicable to both supervised and
semi-supervised settings.

In cross-domain settings, NER models strug-
gle to generalize over diverse genres (Rijhwani
and Preotiuc-Pietro, 2020; Fu et al., 2020). Most
existing work mainly studies domain adaptation
(Liu et al., 2020a; Jia et al., 2019; Wang et al.,
2020; Liu et al., 2020b) which aims to adapt a
neural model from a source domain to achieve bet-
ter performance on the data from the target do-
main. Liu et al. (2020a) proposed a zero-resource
cross-domain framework to learn the general rep-
resentations of named entities. Jia et al. (2019)
studied the knowledge of domain difference and
presented a novel parameter generation network.
Other efforts include the different domain adap-
tation settings (Wang et al., 2020) and effective
cross-domain evaluation (Liu et al., 2020b). In our
work, we focus on cross-domain data augmenta-
tion. The proposed method aims to map data from
a high-resource domain to a low-resource domain.
By learning the textual patterns of the data from
different domains, our proposed method transform
the data from one domain to another and boosts
the model performance with the generated data for
NER in low-resource settings.

3 Proposed Method

In this work, we propose a novel neural architecture
to augment the data by transforming the text from a
high-resource domain to a lower-resource domain
for the NER task. The overall neural architecture
is shown in Figure 2.

We consider two unparalleled datasets: one from
the source domain Dsrc and one from the target
domain Dtgt. We first linearize all sentences by
inserting every entity label before the correspond-



5348

(a) Denoising Reconstruction

(b) Detransforming Reconstruction

Figure 2: The general architecture of our proposed method. (a) Figure shows the architecture for denoising recon-
struction, which aims to reconstruct each input sentence from its noisy version in its corresponding domain. (b)
Figure shows the details of reconstructing each input sentence from its transformed version in its corresponding
domain. We call this detransforming reconstruction.

ing word. At each iteration, we randomly pair
a sentence from Dsrc and a sentence from Dtgt

as the input to the model. The model starts with
word-by-word denoising reconstruction and then
detransforming reconstruction. In denoising re-
construction, we aim to train the model to learn a
compressed representation of an input based on the
domain it comes from in an unsupervised way. We
inject noise into each input sentence by shuffling,
dropping, or masking some words. The encoder is
trained to capture the textual semantics and learn
the pattern that makes each sentence different from
sentences in other domains. Then we train the de-
coder by minimizing a training objective that mea-
sures its ability to reconstruct each sentence from
its noisy version in its corresponding domain. In
detransforming reconstruction, the goal is to trans-
form sentences from one domain to another domain
based on their textual semantics. We first transform
each sentence from the source/target domain to the
target/source domain with the model from the pre-
vious training step as the input. The encoder then
generates latent representations for transformed
sentences. After that, different from denoising re-
construction, the decoder here is trained to recon-
struct each sentence from its transformed version
in its corresponding domain. Besides denoising
and detransforming reconstruction, we also train
a discriminator to distinguish whether the latent
vector generated by the encoder is from the source
domain or target domain. In this case, the encoder
can generate a meaningful intermediate represen-

tation. Otherwise, the model would bypass the
intermediate mapping step between domains and
replace it by memorizing rather than generalizing.
In the following sections, we will introduce the
details of our model architecture and the training
algorithm.

3.1 Data Pre-processing

Following Ding et al. (2020), we perform sentence
linearization so that the model can learn the distri-
bution and the relationship of words and labels. In
this work, we use the standard BIO schema (Tjong
Kim Sang and Veenstra, 1999). Given a sequence
of words w = {w1, w2, ..., wn} and a sequence
of labels l = {l1, l2, ..., ln}, we first linearize the
words with labels by putting every label li before
the corresponding word wi. Then we generate a
new sentence x = {l1, w1, l2, w2, ..., ln, wn} and
drop all O labels from them as the input. Special
tokens <BOS> and <EOS> are inserted at the be-
ginning and the end of each input sentence.

3.2 Cross-domain Autoencoder

Word-level Robustness Our cross-domain au-
toencoder model involves an encoder Enc : x→ z
that maps input sequences from data space to la-
tent space. Previous work (Shen et al., 2020) has
demonstrated that input perturbations are particu-
larly useful for discrete text modeling with pow-
erful sequence networks, as they encourage the
preservation of data structure in latent space rep-
resentations. In this work, we perturb each input



5349

Operation Description

Shuffle generate a new permutation of all words
Dropout randomly drop a word from the sequence
Mask randomly mask a word with <MSK> token

Table 1: Word-level operations to inject noise in each
input sequence. Each operation is randomly applied to
input sequences with a certain probability p.

sentence by injecting noise with three different op-
erations (see Table 1) to ensure that similar input
sentences can have similar latent representations.

Denoising Reconstruction The neural architec-
ture for denoising reconstruction is shown in Figure
2(a). Consider a pair of two unparalleled sentences:
one sentence xsrc from Dsrc in the source domain
and another sentence xtgt from Dtgt in the target
domain. The model is trained to reconstruct each
sentence by sharing the same encoder and decoder
parameters while using different embedding lookup
tables. The token embedders Embsrc and Embtgt
hold a lookup table of the corresponding domains.
The encoder is a bi-directional LSTM model that
takes the noisy linearized sentences as input and
returns hidden states as latent vectors. At each de-
coding step, the decoder takes the current word and
the latent vector from the previous step as input.
Then it uses the vocabulary in the corresponding
domain to project each vector from latent space to
vocabulary space and predicts the next word with
additive attention (Bahdanau et al., 2015).

The training objective for denoising reconstruc-
tion is defined as below. The goal of this training
objective is to force the model to learn a shared
space where both domains are aligned through the
latent vectors and generate a compressed version
of input sentence.

Lnoise(x̂, x) = −
N∑
i=1

xi · logx̂i

Detransforming Reconstruction In detrans-
forming reconstruction, the first step is to trans-
form each sentence from the source/target domain
to the target/source domain. As shown in Figure
2(b), given a pair of sequences xsrc and xtgt from
the source and target domain, we first map xsrc
to x̃tgt in the target domain and xtgt to x̃src in the
source domain by applying the modelM i−1

θ , which
includes embedders, encoder, and decoder, from
previous training step. After that, we feed x̃tgt and

x̃src to the encoder and generate compressed latent
representations ztgt and zsrc. Then the decoder
maps ztgt to x̂src in the source domain and zsrc
to x̂tgt in the target domain. The goal is to learn
the mapping between different domains and recon-
struct a sequence from its transformed version in
its corresponding domain.

The training objective for detransforming recon-
struction is shown below.

Ltrans(x̂, x) = −
N∑
i=1

xi · logx̂i

Domain Classification For domain classifica-
tion, we apply adversarial training. We use the
encoder to extract the textual patterns of sentences
from different domains. The encoder generates the
latent representations for the noised or transformed
version of inputs and the discriminator tells if the
given latent vector is actually from the source or
target domain. Then the encoder will refine its
technique to fool the discriminator in a way that
will end up capturing the patterns to convert text
from the source/target domain to the target/source
domain. The discriminator is first trained in the
denoising reconstruction and then fine-tuned in the
detransforming reconstruction to distinguish source
domain sentences and target domain sentences. As
shown in Figure 2, the discriminator DX takes in-
puts from both domains without knowing where
the sequences come from. Then, the model pre-
dicts the corresponding domains of the inputs. The
inputs are the latent vectors z, where both domains
have been mapped to the same space. We formulate
this task as a binary classification task. The train-
ing objective of adversarial training is described as
below:

Ladv(ẑi, zi) =−
N∑
i=1

zilogẑi + (1− zi)log(1− ẑi)

Final Training Objective The final training ob-
jective is defined as the weighted sum of Lnoise,
Ltrans, and Ladv:

Lfinal(θ) = λ1Lnoise + λ2Ltrans + λ3Ladv

where λ1, λ2, and λ3 are parameters that weight
the importance of each loss.

3.3 Training Algorithm
Based on our observation, the model’s ability to re-
construct sentences across domains highly relies on



5350

the denoising reconstruction and domain classifica-
tion components. Therefore, in this work, we take
two phases to train our model. In the first phase, we
train the model with only denoising reconstruction
and domain classification so that it can learn the
textual pattern and generate compressed represen-
tations of the data from each domain. We calculate
the perplexity for denoising reconstruction as the
criterion to select the best model across iterations.
In the second phase, we train the model together
with denoising reconstruction, detransforming re-
construction, and the domain classification. The
goal is to align the compressed representations of
the data from different domains so that the model
can project the data from one domain to another.
We calculate the sum of the perplexity for both de-
noising and detransforming reconstruction as the
model selection criterion.

3.4 Data Post-processing

We generate synthetic data using the cross-domain
autoencoder model as described in Section 3.2. We
convert the generated data from the linearized for-
mat to the same format as gold data. We use the
following rules to post-process the generated data:
1) remove sequences that do not follow the stan-
dard BIO schema; 2) remove sequences that have
<UNK> or <MSK> tokens; 3) remove sequences
that do not have any entity tags.

4 Experiments

In this section, we will introduce the cross-domain
mapping experiment and the NER experiment. In
the cross-domain mapping experiment, we ana-
lyze the reconstruction and generation capability of
the proposed model. We then tested our proposed
method and evaluated the data generated from our
model on the NER task. Details of the data set, ex-
perimental setup, and results are described below.

4.1 Datasets

In our experiments, we use two datasets: Ontonotes
5.0 Dataset (Pradhan et al., 2013) and Tempo-
ral Twitter Dataset (Rijhwani and Preotiuc-Pietro,
2020). We select data from six different domains in
English language, including Broadcast Conversa-
tion (BC), Broadcast News (BN), Magazine (MZ),
Newswire (NW), Web Data (WB), and Social Media
(SM). All the data is annotated with the following
18 entity tags: PERSON, NORP, FAC, ORG, GPE,
LOC, PRODUCT, EVENT, WORK_OF_ART, LAW,

LANGUAGE, DATE, TIME, PERCENT, MONEY,
QUANTITY, ORDINAL, CARDINAL. Below we de-
scribe how we pre-process each dataset:

Ontonotes 5.0 Dataset We use subsets from five
different domains, including Broadcast Conversa-
tion (BC), Broadcast News (BN), Magazine (MZ),
Newswire (NW), and Web Data (WB). Following
Pradhan et al. (2013), we use the same splits and
remove the repeated sequences from each dataset.

Temporal Twitter Dataset This dataset was col-
lected from Social Media (SM) domain. It includes
tweets from 2014 to 2019, with 2,000 samples from
each year. We use the data from 2014 to 2018 as
the training set. Following Rijhwani and Preotiuc-
Pietro (2020), we use 500 samples from 2019 as
the validation set and another 1,500 samples from
2019 as the test set.

4.2 Cross-domain Mapping
In this section, we describe the experimental set-
tings of our proposed cross-domain autoencoder
model and report the evaluation results.

Cross-domain Autoencoder We use our pro-
posed cross-domain autoencoder model (described
in Section 3.2) to generate synthetic data. In our
experiments, we build the vocabulary with the most
common 10K words and 5 special tokens: <PAD>,
<UNK>, <BOS>, <EOS> and <MSK>. We use a
bi-directional LSTM layer as the encoder and a
LSTM layer as the decoder. For the discriminator,
we use a linear layer. The hyper-parameters are
described in Appendix A.

Results For cross-domain mapping experiments,
we consider two different domains as the source do-
main: NW and SM. The textual patterns in NW are
similar to that in other domains while the textual
patterns in SM is quite different from that in other
domains (see Appendix B on domain similarity).
In Table 2, we report the results of cross-domain
mapping experiments on ten different domain pairs.
We use perplexity as the metric to evaluate recon-
struction. The lower perplexity indicates a higher
accuracy and a higher quality of reconstruction.
From the results of our experiments, we notice that
the average perplexity with NW as source domain
is lower than the average perplexity with SM as
source domain, indicating that the model can easily
reconstruct both in-domain and out-of-domain sen-
tences when the textual patterns are transferable.



5351

Exp ID Source Target Reconstruction

Dev Test

Exp 1.0 NW BC 15.61 14.94
Exp 1.1 NW BN 5.43 4.31
Exp 1.2 NW MZ 6.72 5.98
Exp 1.3 NW WB 3.84 3.73
Exp 1.4 NW SM 8.31 7.65

Exp 1.5 SM BC 16.02 14.67
Exp 1.6 SM BN 11.34 12.58
Exp 1.7 SM MZ 14.64 15.28
Exp 1.8 SM NW 8.31 7.65
Exp 1.9 SM WB 9.08 8.54

Table 2: The results of our cross-domain autoencoder
model on each domain pair. The scores for reconstruc-
tion, including both denoising and detransforming re-
construction, are calculated with the perplexity metric.

4.3 Named Entity Recognition

Here we describe the experimental settings of the
sequence labeling model for the NER experiment
and report the evaluation results.

Sequence Labeling Model We fine-tune a
BERT (Devlin et al., 2019) model to evaluate our
cross-domain mapping method on the NER task.
BERT is pre-trained with masked language model-
ing and next sentence prediction objectives on the
text from the general domain. We use BERT as
the base model because it is capable of generating
contextualized word representations and achieving
high performances across many NLP tasks. We
adapt a linear layer on top of BERT encoder to clas-
sify each token into pre-defined entity types. The
hyper-parameters are described in Appendix A.

Results To evaluate the quality of the generated
data, we conduct experiments on the NER task with
ten different domain pairs. The results are shown
in Table 3. For each domain pair, we consider three
experiments: 1) source domain: train the model on
the data from source domain as lower bound; 2)
target domain: train the model on the data from the
target domain as upper bound; and 3) Gen: train
the model on the generated data combined with the
data from the source domain. Based on the results,
we observe that, when the patterns of text in the
source and target domain are quite close (NW as
source domain), the improvement is quite limited or
even no improvement. In most of the experiments
with NW as source domain, the improvement is less
than 1% F1 score. In the experiment of NW→ BC,
we can see the performance becomes lower when
we combine the generated data with the data from

Domain Pair Data Number of Training Samples Gain
1K 2K 3K 4K

NW → BC
NW 66.53 69.70 72.47 73.05 -
Gen 59.14 ↓ 62.32 ↓ 64.49 ↓ 65.75 ↓ -7.51
BC 69.65 75.13 78.44 79.45 -

NW → BN
NW 77.55 80.77 82.30 83.36 -
Gen 78.31 ↑ 81.29 ↑ 82.32 ↑ 83.48 ↑ +0.36
BN 82.63 86.26 87.49 88.72 -

NW → MZ
NW 71.41 73.61 75.14 76.62 -
Gen 72.16 ↑ 74.64 ↑ 75.99 ↑ 77.31 ↑ +0.83
MZ 82.63 83.54 85.55 86.05 -

NW → WB
NW 41.95 43.88 44.52 45.35 -
Gen 43.25 ↑ 44.42 ↑ 45.10 ↑ 45.61 ↑ +0.67
WB 46.22 55.47 58.77 60.37 -

NW → SM
NW 34.71 35.47 35.69 35.69 -
Gen 43.19 ↑ 43.85 ↑ 44.29 ↑ 44.82 ↑ +8.65
SM 69.91 73.33 73.99 74.56 -

SM → BC
SM 26.94 28.87 29.61 29.80 -
Gen 36.59 ↑ 37.08 ↑ 38.40 ↑ 38.76 ↑ +8.90
BC 69.65 75.13 78.44 79.45 -

SM → BN
SM 28.63 29.90 30.45 30.83 -
Gen 47.28 ↑ 48.32 ↑ 49.15 ↑ 50.79 ↑ +18.93
BN 82.63 86.26 87.49 88.72 -

SM → MZ
SM 20.54 25.76 27.48 28.89 -
Gen 41.11 ↑ 42.78 ↑ 44.12 ↑ 45.89 ↑ +17.81
MZ 82.11 83.54 85.55 86.05 -

SM → NW
SM 25.94 28.83 29.34 30.20 -
Gen 35.98 ↑ 38.33 ↑ 39.55 ↑ 40.84 ↑ +10.10
NW 79.50 82.81 85.55 86.49 -

SM → WB
SM 25.70 26.23 26.41 26.52 -
Gen 36.15 ↑ 36.73 ↑ 37.65 ↑ 38.13 ↑ +10.95
WB 46.22 55.47 58.77 60.37 -

Table 3: The results of our proposed data augmentation
for the NER task on ten different domain pairs. Scores
are calculated with the micro F1 metric. Note that there
is a decreasing tendency (↓) for the pairs with similar
textual pattern; The scores from the pairs with dissimi-
lar textual patterns tend to increase (↑).

the source domain as training data. We suspect
that this is because the discriminator in our model
cannot distinguish which domain the latent vec-
tors come from. For this reason, the model cannot
generate meaningful intermediate representations
and thus result in lower performances. However,
when the patterns are dissimilar (SM as source do-
main), Gen can outperform the lower bound by up
to 18.93% F1 score, indicating that the model has
a good understanding of the textual pattern from
each domain, and that the textual pattern of the
generated data are more similar to the data from
the target domain than the data from the source
domain.

Comparison with Previous Work To compare
our proposed method with previous methods for
data augmentation on NER, we augment the train-
ing data from the source domain (i.e, generate syn-
thetic data and combine it with original training



5352

Exp ID Method
NW → SM SM → NW

Number of Training Samples Number of Training Samples

1K 2K 3K 4K 1K 2K 3K 4K

Exp 2.0 Baseline (No Augmentation) 34.71 35.47 35.69 35.69 25.94 28.83 29.54 30.20

Exp 2.1 Keyboard Augmentation 34.83 ↑ 35.69 ↑ 36.13 ↑ 36.69 ↑ 27.01 ↑ 27.87 ↓ 28.21 ↓ 28.43 ↓
Exp 2.2 Swap Augmentation 29.49 ↓ 30.54 ↓ 31.36 ↓ 32.07 ↓ 27.33 ↑ 28.62 ↓ 29.13 ↓ 29.56 ↓
Exp 2.3 Delete Augmentation 28.59 ↓ 29.56 ↓ 30.01 ↓ 30.38 ↓ 27.81 ↑ 28.95 ↑ 29.16 ↓ 29.20 ↓
Exp 2.4 Spelling Augmentation 34.97 ↑ 35.51 ↑ 35.95 ↑ 36.24 ↑ 28.09 ↑ 29.68 ↑ 30.42 ↑ 30.92 ↑
Exp 2.5 Synonym Replacement 34.77 ↑ 35.95 ↑ 36.31 ↑ 36.63 ↑ 28.94 ↑ 29.18 ↑ 29.84 ↑ 30.66 ↑
Exp 2.6 Context Replacement 24.89 ↓ 26.04 ↓ 27.04 ↓ 27.60 ↓ 26.98 ↑ 26.95 ↓ 28.03 ↓ 28.06 ↓
Exp 2.7 DAGA (Ding et al., 2020) 32.75 ↓ 33.62 ↓ 34.17 ↓ 34.32 ↓ 28.57 ↑ 29.29 ↑ 29.95 ↑ 30.54 ↑

Exp 2.8 Ours (Domain Mapping) 43.19 ↑ 43.85 ↑ 44.29 ↑ 44.82 ↑ 35.98 ↑ 38.33 ↑ 39.55 ↑ 40.84 ↑

Table 4: Comparison of our proposed cross-domain mapping method with previous data augmentation method for
NER task. Scores are calculated with the F1 metric. The best score for each column is in bold.

data) as the training set. The validation set and
test set are from the target domain. We first estab-
lish a baseline Exp 2.0 Baseline (No Augmentation)
without using any data augmentation technique.
Then we consider 7 different methods, including 1)
Exp 2.1 Keyboard Augmentation: randomly replace
characters based on the keyboard distance, 2) Exp
2.2 Swap Augmentation: randomly swap characters
within each word, 3) Exp 2.3 Delete Augmentation:
delete characters randomly, 4) Exp 2.4 Spelling
Augmentation: substitute word by spelling mistake
words dictionary, 5) Exp 2.5 Synonym Replace-
ment: substitute word by WordNet’s (Miller, 1995)
synonym, 6) Exp 2.6 Context Replacement: substi-
tute words by BERT contextual word embeddings,
and 7) Exp 2.7 DAGA from Ding et al. (2020).

In Table 4, we compare our approach with the
previous data augmentation method for the NER
task by reporting the F1 score. We consider two
different experiments: NW → SM and SM→ NW.
We augment the data from the source domain as
training data. The validation data and test data
are from the target domain. Based on the results,
we observe that: 1) the improvement from tradi-
tional data augmentation (Exp 2.1 ~Exp 2.6) is
quite marginal. Only three of them can outperform
the baseline in both NW → SM and SM → NW
and the performance gain is from 0.34% ~1% F1
score; 2) data augmentation techniques are effec-
tive when we only have a small number of training
samples. For example, in SM→ NW, when using
only 1K training samples, all methods can outper-
form the baseline. However, when using 4K train-
ing samples, only three of them can outperform the
baseline; 3) Simply learning the textual patterns
(Exp 2.7) in each domain may not always result

in a good performance. When the size of training
data is quite limited, the model struggles to learn
the textual patterns and thus cannot achieve a good
performance; and 4) transforming text from the
source domain to the target domain is much pow-
erful because, on average, it can outperform the
baseline by 8.7% and 10.1% in two experiments,
respectively.

5 Analysis

In this section, we take a step further towards ex-
ploring our approach in the context of the NER task
in low-resource scenarios. Specifically, we inves-
tigate two crucial questions on data augmentation
for both in-domain and out-of-domain datasets.

Q1: Does the model require a large number of
training data from the target domain? To an-
swer this question, we randomly select 5%, 10%,
20%, 40%, 80% of samples from the target do-
main as the train data to train our cross-domain
autoencoder model. We consider NW as the source
domain and SM as the target domain. After training
the model, we generate samples from NW to SM
and merge them into the training set from NW as
the new training set. Then we do evaluation on the
test set from the SM. We establish a baseline that
only uses the data from NW for training the model.
Figure 3 shows the results of model performance
on the NER task. From this figure, we can see
that our method can consistently achieve higher
F1 scores than the baseline. Even if there is only
5% training samples from the target domain, our
model can still achieve significant improvements,
averaging 4.81% over the baseline.



5353

Figure 3: Model performance on the NER task with dif-
ferent amounts of target data and increasing amounts
of augmented data for training. The test set is from SM.
Each curve shows model performance on NER when
using different percentages of target data in the train-
ing set. The x-axis denotes the total number of train-
ing samples used. A 5% means that out of all the
training instances, only 5% are coming from the tar-
get data, while the rest comes from the augmentation
model. The y-axis denotes the F1 score for the NER
task.

Q2: Can we generate enough data to reach com-
petitive results in the target domain? We train
our cross-domain autoencoder model with all the
data from NW and only 5% data (totally 500 sam-
ples) from SM. Then we generate synthetic data
from NW to SM. After that, we do evaluation on
the NER task by combining 5% data from SM and
different numbers of training samples as training
data. Figure 4 shows the F1 scores achieved by
sequence labeling model. With 5% data from SM,
the model can only reach 65.25% F1 score. When
we add more generated samples, the model can
reach up to 77.59% F1 score, pushing the model
performance by 12.34%.

6 Discussion and Limitation

In this work, we explore how to leverage exist-
ing data from high-resource domains to augment
the data in low-resource domains. We introduce a
cross-domain autoencoder model that captures the
textual patterns in each domain and transforms the
data between different domains. However, there
are several limitations: 1) the maximum lengths
of the generated sequences: at each iteration, the
maximum lengths of the generated sequences x̃tgt
and x̃src are set to the same as original input se-
quences xsrc and xtgt, respectively. This is not
an ideal case because, intuitively, a short sentence
in the source domain may correspond to a long

Figure 4: Model performance on the NER task with
a fixed amount of target data and increasing amounts
of augmented data for training. The training set starts
with 500 instances from SM (5% of the training data in
SM) and the synthetic data generated from NW to SM.
The test set is from SM. The x-axis denotes the number
of the generated samples that are combined with the
data from SM for training the NER model. The y-axis
denotes the F1 score for the NER task.

sentence in the target domain. Fixing the maxi-
mum lengths of the generated sequences may hurt
the model on capturing the semantics of original
input sequences and result in a lower quality of
reconstruction. 2) unparalleled datasets: in our
experiments, the datasets Dsrc and Dtgt are unpar-
alleled, which means the sentences xsrc and xtgt
do not correspond to each other. When we generate
sequences from one domain to another, there is no
guidance and thus we cannot control the quality of
the generated sequences x̃tgt and x̃src.

Although our proposed method can not outper-
form the upper bound (i.e, training the model on
the data from the target domain), it can achieve a
significant improvement than only using the data
from the source domain, providing a strong lower
bound baseline for semi-supervised learning.

7 Conclusion

In this work, we present a novel neural architec-
ture for data augmentation where the model learns
to transform data from a high resource scenario
to data that resembles that of a low resource do-
main. By training the model on reconstruction loss,
it can extract the textual patterns in each domain
and learn a feature space where both domains are
aligned. We show the effectiveness of our proposed
method by evaluating a model trained on the aug-
mented data for NER, concluding that transforming
text to low-resource domains is more powerful than
only using the data from high-resource domains.



5354

Our future work includes three directions: i) ex-
plore how to embed more supervision about forcing
a better alignment in the latent space, ii) design a
strategy to control the quality of the generated se-
quences, and iii) generalize our method to other
NLP tasks such as text classification.

Acknowledgements

This work was partially supported by the National
Science Foundation (NSF) under grant #1910192.
We would like to thank the members from the RiT-
UAL lab at the University of Houston for their
invaluable feedback. We also thank the anonymous
EMNLP reviewers for their valuable suggestions.

References
Alan Akbik, Tanja Bergmann, and Roland Vollgraf.

2019. Pooled contextualized embeddings for named
entity recognition. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 724–728, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Xiang Dai and Heike Adel. 2020. An analysis of
simple data augmentation for named entity recogni-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3861–
3867, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-
engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and
Chunyan Miao. 2020. DAGA: Data augmentation
with a generation approach for low-resource tagging
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6045–6057, Online. Associa-
tion for Computational Linguistics.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2017. Data augmentation for low-resource neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 567–
573, Vancouver, Canada. Association for Computa-
tional Linguistics.

Jinlan Fu, Pengfei Liu, and Qi Zhang. 2020. Rethink-
ing generalization of neural models: A named entity
recognition case study. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):7732–
7739.

Fei Gao, Jinhua Zhu, Lijun Wu, Yingce Xia, Tao
Qin, Xueqi Cheng, Wengang Zhou, and Tie-Yan Liu.
2019. Soft contextual data augmentation for neural
machine translation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5539–5544, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
2018. Sequence-to-sequence data augmentation for
dialogue language understanding. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1234–1245, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Chen Jia, Xiaobo Liang, and Yue Zhang. 2019. Cross-
domain NER using cross-domain language model-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2464–2474, Florence, Italy. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Zihan Liu, Genta Indra Winata, and Pascale Fung.
2020a. Zero-resource cross-domain named entity
recognition. In Proceedings of the 5th Workshop
on Representation Learning for NLP, pages 1–6, On-
line. Association for Computational Linguistics.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Zi-
wei Ji, Samuel Cahyawijaya, Andrea Madotto, and
Pascale Fung. 2020b. Crossner: Evaluating cross-
domain named entity recognition.

I. Loshchilov and F. Hutter. 2019. Decoupled weight
decay regularization. In ICLR.

G. Miller. 1995. Wordnet: a lexical database for en-
glish. Commun. ACM, 38:39–41.

Junghyun Min, R. Thomas McCoy, Dipanjan Das,
Emily Pitler, and Tal Linzen. 2020. Syntactic
data augmentation increases robustness to inference
heuristics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2339–2352, Online. Association for Computa-
tional Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In ICML.

https://doi.org/10.18653/v1/N19-1078
https://doi.org/10.18653/v1/N19-1078
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.1609/aaai.v34i05.6276
https://doi.org/10.1609/aaai.v34i05.6276
https://doi.org/10.1609/aaai.v34i05.6276
https://doi.org/10.18653/v1/P19-1555
https://doi.org/10.18653/v1/P19-1555
https://www.aclweb.org/anthology/C18-1105
https://www.aclweb.org/anthology/C18-1105
https://doi.org/10.18653/v1/P19-1236
https://doi.org/10.18653/v1/P19-1236
https://doi.org/10.18653/v1/P19-1236
https://doi.org/10.18653/v1/2020.repl4nlp-1.1
https://doi.org/10.18653/v1/2020.repl4nlp-1.1
http://arxiv.org/abs/2012.04373
http://arxiv.org/abs/2012.04373
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212


5355

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Shruti Rijhwani and Daniel Preotiuc-Pietro. 2020.
Temporally-informed analysis of named entity
recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7605–7617, Online. Association for
Computational Linguistics.

Gözde Gül Şahin and Mark Steedman. 2018. Data aug-
mentation via dependency tree morphing for low-
resource languages. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5004–5009, Brussels, Bel-
gium. Association for Computational Linguistics.

T. Shen, Jonas Mueller, R. Barzilay, and T. Jaakkola.
2020. Educating text autoencoders: Latent represen-
tation guidance via denoising. In ICML.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Ninth Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 173–179, Bergen, Norway.
Association for Computational Linguistics.

Jing Wang, Mayank Kulkarni, and Daniel Preotiuc-
Pietro. 2020. Multi-domain named entity recogni-
tion with genre-aware and agnostic inference. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8476–
8488, Online. Association for Computational Lin-
guistics.

William Yang Wang and Diyi Yang. 2015. That’s so an-
noying!!!: A lexical and frame-semantic embedding
based data augmentation approach to automatic cat-
egorization of annoying behaviors using #petpeeve
tweets. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2557–2563, Lisbon, Portugal. Association for
Computational Linguistics.

Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
mentation techniques for boosting performance on
text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6382–6388, Hong Kong,
China. Association for Computational Linguistics.

Mengzhou Xia, Xiang Kong, Antonios Anastasopou-
los, and Graham Neubig. 2019. Generalized data
augmentation for low-resource translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5786–
5796, Florence, Italy. Association for Computa-
tional Linguistics.

Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. Se-
qMix: Augmenting active sequence labeling via se-
quence mixup. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8566–8579, Online. As-
sociation for Computational Linguistics.

X. Zhang, J. Zhao, and Y. LeCun. 2015. Character-
level convolutional networks for text classification.
ArXiv, abs/1509.01626.

A Experimental Settings

This section describes the hyper-parameters for
both cross-domain autoencoder model and se-
quence labeling model.

Cross-domain Autoencoder For cross-domain
autoencoder, the embedding size is 512. The hid-
den state sizes of the LSTM and linear layer are set
to 1024 and 300, respectively. The probability of
word dropout is set as 0.1 to inject noise into input
sequences. We use Adam (Kingma and Ba, 2015)
as the optimizer with an initial learning rate of 5e-4
for both encoder and decoder. For the discrimina-
tor, we use RMSprop as the optimizer with initial
learning rate 5e-4. The batch size is 32 and the
number of training epochs is set to 50. We apply
gradient clipping (Pascanu et al., 2013) of 5 and
the dropout rate is 0.5. In the first training phase,
λ1, λ2, and λ3 are set to 1, 0, and 10, respectively.
In the second training phase, we change λ2 to 1.

Sequence Labeling Model For sequence label-
ing model, the dropout rate is set to 0.1. We use
AdamW (Loshchilov and Hutter, 2019) as the op-
timizer with initial learning rate 5e-5 and weight
decay is set to 0.01. The batch size is 32 and the
number of training epochs is 20.

B Domain Similarity

This section empirically analyzes the performance
gains obtained by training models with synthetic
data generated by our method. To this end, we an-
alyze the data from the source and target domain,
as well as the generated data. For this analysis, we
consider two sets: train and test. The training set is
used to directly update model parameters while the
test set provides an unbiased evaluation of the final
model. Entities that only appear in the training set
are defined as non-overlapping entities, and those
that appear in both the training set and the test set
are defined as overlapping entities. The domain
similarity is then defined as the percentage of over-
lap entities among all entities. As shown in Table

https://www.aclweb.org/anthology/W13-3516
https://www.aclweb.org/anthology/W13-3516
https://doi.org/10.18653/v1/2020.acl-main.680
https://doi.org/10.18653/v1/2020.acl-main.680
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/D18-1545
https://www.aclweb.org/anthology/E99-1023
https://www.aclweb.org/anthology/E99-1023
https://doi.org/10.18653/v1/2020.acl-main.750
https://doi.org/10.18653/v1/2020.acl-main.750
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/P19-1579
https://doi.org/10.18653/v1/P19-1579
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691


5356

Domain Pair Data Domain Similarity

Non-overlap Overlap Similarity %

NW → BC
NW 63,666 14,056 18.08
Gen 11,901 7,216 37.75
BC 5,927 3,877 39.55

NW → BN
NW 59,405 18,317 23.57
Gen 34,994 12,734 26.68
BN 27,764 5,437 55.43

NW → MZ
NW 69,248 8,474 10.90
Gen 27,764 5,437 16.38
MZ 6,738 4,183 38.30

NW → WB
NW 66,779 10,943 14.08
Gen 24,582 3,638 12.89
WB 5,578 2,718 32.76

NW → SM
NW 76,347 1,375 1.77
Gen 14,347 2,895 16.79
SM 4,970 1,418 22.20

SM → BC
SM 6,250 138 2.16
Gen 10,996 978 8.17
BC 5,927 3,877 39.55

SM → BN
SM 6,199 189 2.96
Gen 10,302 2,172 17.41
BN 8,807 10,954 55.43

SM → MZ
SM 6,374 14 0.22
Gen 19,392 769 3.81
MZ 6,738 4,183 38.30

SM → NW
SM 6,207 181 2.83
Gen 10,564 1,810 14.63
NW 46,954 30,768 39.59

SM → WB
SM 6,342 46 0.72
Gen 8,951 498 5.27
WB 5,578 2,718 32.76

Table 5: The statistics of domain similarity. Overlap
describes the set operations: Train ∩ Test. Notably, the
overlap percentages of the data from the target domain
are substantially higher than the ones from the source
domain. Similarity refers to the percentage of total
overlap entities out of the all entities (including both
overlap and non-overlap entities).

5, the data from NW is more similar to test data as
it can achieve 10.90% ~23.57% domain similarity
with the test data from other domains. Instead, the
data from SM can only achieve 0.22% ~2.96% do-
main similarity, indicating that the data from NW
is more close the data from other domains. Fur-
thermore, the training data from the source domain
achieves the lowest similarity while the training
data from the target domain can always achieve the
highest similarity. On average, our methods can
improve the domain similarity by 8.25%, which
illustrates that the generated data can provide more
diverse contexts for the entities that appear in the
test set.


