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Abstract

Unsupervised consistency training is a way of
semi-supervised learning that encourages con-
sistency in model predictions between the orig-
inal and augmented data. For Named Entity
Recognition (NER), existing approaches aug-
ment the input sequence with token replace-
ment, assuming annotations on the replaced
positions unchanged. In this paper, we explore
the use of paraphrasing as a more principled
data augmentation scheme for NER unsuper-
vised consistency training. Specifically, we
convert Conditional Random Field (CRF) into
a multi-label classification module and encour-
age consistency on the entity appearance be-
tween the original and paraphrased sequences.
Experiments show that our method is espe-
cially effective when annotations are limited.

1 Introduction

Supervised training for Named Entity Recognition
(NER) requires token level annotations, which are
time consuming and more expensive to obtain than
the sequence level annotations commonly used
for classification tasks. Due to the scarcity of
labeled data, various semi-supervised approaches
have been investigated for training in low-resource
scenarios, i.e., only a small amount of labeled data
is available (Clark et al., 2018; Lowell et al., 2020).

Unsupervised consistency training is a common
approach to semi-supervised learning in NER. It en-
courages prediction consistency between the origi-
nal and the augmented examples, by leveraging the
availability of a larger amount of unlabeled data.
Recently, Xie et al. (2019) proposed the Unsuper-
vised Data Augmentation (UDA), which substitutes
traditional token-wise perturbations with higher
quality data augmentation, e.g., paraphrasing via
back-translation. UDA achieves state-of-the-art
results on a wide variety of classification tasks
with only tens or hundreds of labeled examples,
and even sometimes matching the performance

of supervised training with a much larger (fully-
annotated) dataset. In the case of NER, due to the
difficulty of obtaining token-level annotations, it is
of interest to extend UDA for NER models whose
predictions are (token-level) sequences instead of
single (sentence-level) labels.

More recently, Lowell et al. (2020) augmented
unlabeled samples for NER by randomly replacing
a portion of input tokens with outputs from a lan-
guage model, thus constraining the model predic-
tions to be invariant to the replacement operation.
There are two problems with this approach: i) there
is no guarantee that the type of entity (label) will
remain unchanged after replacement; and ii) the
newly generated context from replacement is con-
strained by length of the original sequence, which
restricts the quality of augmentation. In fact, Xie
et al. (2019) suggests that there exists strong corre-
lation between the quality of the augmentation and
the performance of consistency training.

In this paper, we explore the use of paraphrasing
as a means for higher quality data augmentation for
unsupervised consistency training in NER. Com-
pared with token replacement, the key difficulty of
using paraphrasing is that the alignment of tokens
between the original and paraphrased sequence is
unclear. However, since paraphrasing does not
change the substance of the text, we can expect a
paraphrase to contain the same entities as in the
original sequence. So motivated, instead of relying
on token-level consistency, we encourage consis-
tency on the occurrence of entities between predic-
tions on the original and paraphrased sequences.
In doing so, we convert the Conditional Random
Field (CRF) (Lafferty et al., 2001) predictor of
NER into a binary multi-label classification mod-
ule indicating the occurrence of each entity label,
e.g., location (LOC) or person (PER). Experimen-
tal results show that our method outperforms token
replacement and other semi-supervised learning
approaches when annotations are scarce.
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Figure 1: Illustration of our NER model.

2 Related Work

In addition to token replacement discussed above
(Lowell et al., 2020), Şahin and Steedman (2019);
Dai and Adel (2020) also investigated on ran-
domly swapping tokens or text-spans in the in-
put sequence as augmentation. However, such
methods may be problematic for languages that
rarely have inflectional morphemes, such as En-
glish, where words follow strict ordering (Şahin
and Steedman, 2019). Therefore, we are not con-
sidering swap-based methods in our experiments.
Other semi-supervised approaches for NER include
CVT (Clark et al., 2018) which regularizes model
predictions to be invariant when masking-out parts
of the input data. Recently, Chen et al. (2020b)
proposed an adapted version of virtual adversarial
training with CRF, outperforming CVT on NER
tasks. In the experiments, we show that our method
can achieve better performance than both token re-
placement and SeqVAT in low-resource scenarios.

3 Methodology

3.1 The NER model

Following Beltagy et al. (2019), our model for NER
consists of aBERTbase () encoder and a CRF mod-
ule for prediction. See Figure 1 as an illustration.
Assume the input sequence x = [x1, . . . , xT ] and
label sequence y = [y1, . . . , yT ], where T is the se-
quence length, and let N be the number of possible
labels for any given token in NER. The output of
BERTbase is first projected into emission scores
l(x) = [l(x1), . . . , l(xT )], where each l(xt), for
t = 1, . . . , T , is an N -dimensional vector contain-
ing scores for each class. Given l(x), the CRF
module generates the probability of predicting la-
bel sequence y, i.e., pθ(y|x), where θ denotes all
model parameters.
CRF module: Let [l(xt)]j be the j-th entry of the
N -dimensional vector l(xt). Define A ∈ RN×N
as the transition matrix soAj1,j2 corresponds to the
(unnormalized) score for the transition from label

Algorithm 1 Computing the normalization term in
CRF.

Input: Assuming T > 1, l ∈ RT×N , A ∈
RN×N and s ∈ RN .
Output: NM(l, A, s) as in eq (2).
Initialization: Let l[t, :] be the tth row of l.
Reshape s ∈ R1×N . Initialize variable p as
p = s+ l[1, :].
for t=2,· · · , T do
p = logColumnSum(exp (

pT1TN +A+ 1N l[t, :]))
end for
NM(l, A, s) = log sum(exp(p))

j1 to label j2, and s ∈ RN as the starting vector
where its j-th element sj is a score for y1 = j. The
prediction score for label sequence y accounting
for transitions is given by

score(y, x) = sy1 + [l(x1)]y1

+
T∑
t=2

(
Ayt−1,yt + [l(xt)]yt

)
.

(1)

The log likelihood of predicting y given x with the
CRF can be evaluated by normalizing the scores in
(1) by that of all possible label sequences, i.e.,

log pθ(y|x) = score(y, x)

− log
∑
y′∈Y

exp{score(y′, x)}

︸ ︷︷ ︸
logQ=NM(l(x),A,s)

, (2)

where Y is the set of all possible label sequences
of length T . The normalization factor in (2) can
be computed with dynamic programming from
{l(x), A, s} as in Algorithm 1.

3.2 Unsupervised Consistency Training
Consider a small labeled NER dataset Dl =
{X l, Y l}, where X l and Y l are collections of to-
ken sequences and label sequences, respectively.
We seek to learn a NER model with Dl, by tak-
ing advantage of an external unlabeled dataset
Du = {Xu}. The learning objective for unsu-
pervised consistency training is

L = λExu∼Du [Lc(x
u, q(xu))]

− E(xl,yl)∼Dl [log pθ(y
l|xl)],

(3)

where Lc(·, ·) is the consistency loss, λ is a balanc-
ing parameter and q(·) is the perturbation function
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used for augmentation. For instance, when q(·)
is token replacement (Lowell et al., 2020), Lc(·, ·)
penalizes the difference in predicted label distribu-
tions on each sequence position, i.e.,

Lc =
1

T

T∑
t=1

KL (pθ(yt|x)||pθ(yt|q(x))) (4)

where KL(·||·) is the Kullback-Leibler divergence.

3.3 Consistency with Paraphrasing

With the understanding of the concerns associ-
ated with token replacement discussed above, we
propose using back-translation to paraphrase un-
labeled sequences as an alternative way of data
augmentation. Note that in (4), q(·) cannot be im-
plemented as back-translation, provided the align-
ment of labels and tokens between x and q(x), its
paraphrased version, is unclear, i.e., though all the
entities in x should be also present in q(x), their lo-
cations will likely be different, which makes using
the token-wise consistency loss in (4) problematic.
Therefore, we propose encouraging consistency on
the prediction of entity occurrences between x and
q(x), rather than the consistency given the loca-
tion as in (4). For instance, if a location (LOC) is
predicted from x, one should expect to also see it
predicted from q(x). In doing so, we circumvent
the token alignment issues between x and q(x).

Specifically, we convert the CRF objective
in (2) into a multi-label classification objec-
tive targeting the consistency of the occur-
rence of entity labels in augmented data. As-
sume we have a set G with M entity labels,
e.g., G = {LOC,PER,ORG,MISC} in the
CONLL2003 dataset. In the BIO format, each
token can take labels in the set {O,Be, Ie}e∈G,
where O represents an irrelevant token, Be denotes
the label for the beginning of entity e, and Ie is
the label of a token belonging to entity e other
than its first token, e.g., BLOC and ILOC stands
for B −LOC and I −LOC. In this setting, token
labels can take N = 2M + 1 distinct values from
M entities of interest.

We can evaluate the likelihood of a sequence x
containing entities of e as

pe(x) =
∑
y∈Se

pθ(y|x)

= 1−
∑
y∈Y\S

exp{score(y, x)}/Q, (5)

where Se = {y|∃t, yt = Ie ∨ yt = Be}, is the
set of all label sequences containing at least one
occurrence of entity e. Then, since NM(l(x), A, s)
in (2) allows one to evaluate the likelihood of all
possible label sequences given x, to evaluate (5)
we can use (2) but by changing the sum over Y to
be over Y\S , so

pe(x) = 1− exp{NM(l′(x), A′, s′)}/Q, (6)

where l′(x) ∈ RT×(N−2), A′ ∈ R(N−2)×(N−2)

and s′ ∈ RN−2 are entries of l(x) ∈ RT×N ,
A ∈ RN×N and s ∈ RN without the dimensions
corresponding to entity label e. Moreover, the con-
sistency loss can be written as multi-label classifi-
cation objective as

Lc =
∑
e∈G

BCE(pe(x), pe(q(x))), (7)

where BCE(·, ·) is the binary cross-entropy loss.
Note that i) (7) is a multi-label classification objec-
tive because it accounts for the fact that any given
sequence x can have occurrences of multiple dif-
ferent entities; and ii) we have effectively adapted
the CRF objective in (2) to a multi-label scenario
where we encourage the consistence of the occur-
rence of the entities rather than the consistency of
their locations as in (4).

4 Experiments

4.1 General Setup
We focus the low resource scenario where there
are only several hundred or one thousand labeled
sequences. Following the implementation of Chen
et al. (2020a), we use German as the pivot lan-
guage for back-translation. For Dl, we choose
three target datasets: CONLL2003, Wikigold and
Wall Street Journal (WSJ). We use the full dataset
of CoNLL2003 and Wikigold with entity LOC,
PER, ORG and MISC. We randomly split
Wikigold into 1096 for training, 200 for evalua-
tion and 400 for testing. For low resource training,
we only use a subset of 2K training instances from
WSJ. Our unlabeled data is from the One Billion
Word Benchmark (Chelba et al., 2013). To gen-
erate the unlabeled data, we train a binary text
classifier based on the BERT model, distinguishing
between the labeled dataset and the One Billion
Word Benchmark. We use the publicly available
pretrained De-En and En-De translation models
from Huggingface1 for back-translation. For all the

1https://github.com/huggingface/transformers



5306

Figure 2: Augmented examples from CoNLL2003. Red denotes entities and their correspondence in augmentation.

(a) CoNLL2003 (14K) (b) Wikigold (1.1K) (c) WSJ (2K)

Figure 3: F1 scores with different amount of labeled data.

experiments, We training our BERT_CRF model
with learning rate 5e-5 using Adam optimizer and
linear learning rate scheduler. We set the balncing
parameter λ = 1. Here, we introduce the definition
of methods we are comapring with.

• Baseline: We train our model only using the
labeled data, i.e., without consistency training.

• Token Replacement: We implement the token
replacement strategy as in Lowell et al. (2020),
where the tokens are replace by outputs from
language modeling with BERTbase.

• SeqVat: We compare with the recently pro-
posed SeqVat (Chen et al., 2020b), which is a
variant of Virtual Adversarial Training for the
model with CRF.

4.2 Multi-label Classification vs. NER
Provided we do not count with sequence labels for
the unlabeled data, we use the multi-label classi-
fication objective in (7) for consistency training
as a substitute (proxy) for the NER objective in
(2). One natural question is whether errors of the
two objectives are related. Further, one may hy-
pothesize that the performance of NER and the
multi-label prediction of entity occurrences are not
equally affected by sequence length. To examine
this, we define Error I as test sequences for which
the NER sequence labels are incorrectly predicted
but multi-label predictions are correct, and denote

Error II as the sequence for which, both NER and
multi-label predictions are wrong.

With models trained on each target dataset
(CONLL2003, Wikigold and WSJ), in Figure 4, we
show the proportion of Error II relative to all errors
(Error I and II) as a function of the test sequence
length. We observe that: i) Error II accounts for the
majority of the errors, i.e., most errors in NER label
sequences are also multi-label classification errors;
and ii) the proportion of Error II decreases with
sentence length, which is reasonable because pre-
dicting label sequences becomes more difficult as
sequence length increases, whereas predicting en-
tity label occurrences does not necessarily becomes
more difficult. For instance, for long sentences that
contain multiple occurrences of different types of
entities, error in predicting one of the entities for
NER may not affect the result of multi-label classi-
fication for appearance of entity labels. Motivated
by the reasoning above and the results in Figure 4,
we exclude sentences with length longer then 40
tokens when selecting Du for consistency training.

4.3 Results
Figure 3 shows the results of consistency training
with different amounts of labeled data. Every point
is an average of three runs with different random
seeds. We find that, though SeqVat may outperform
the proposed model when there is a large amount of
labeled data, our approach outperforms all compet-
ing approaches when the labeled data is scarce, e.g.
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Figure 4: Percentage of Error II during testing.

several hundred or one thousand. Specifically, we
have the F1 score improvement of 1.94 and 11.01
over SeqVat and Baseline, respectively, with 100
labeled instances for CoNLL2003. The improve-
ments of the non-Baseline methods compared to
Baseline is less obvious on Wikigold, probability
because BERT model has been pretrained on the
Wikipedia corpus. Note that in agreement with the
experimental results in Xie et al. (2019) on clas-
sification tasks, our results with back-translation
perform consistently better than token replacement,
further supporting the value of high-quality aug-
mentations for consistency training.

In Figure 2, we show examples of different aug-
mentations. We find that the token labels can be
changed after replacement, e.g. “Levy" (B−PER)
to “He" (O). Also, there may sometimes be un-
necessary punctuation in the generated context
(#3). Alternatively, our paraphrasing with back-
translation tend to keep the entities in the original
sequence, generating new context that is not con-
strained by the original sequence length.

5 Conclusion

In this paper, we explored the use of paraphrasing
as data augmentation strategy in unsupervised con-
sistency training for NER. Experiments show that
our approach outperforms token replacement and
another state-of-the-art semi-supervised learning
approach in low-resource scenarios.
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