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Abstract

Event schemas encode knowledge of stereo-
typical structures of events and their connec-
tions. As events unfold, schemas are cru-
cial to act as a scaffolding. Previous work
on event schema induction focuses either on
atomic events or linear temporal event se-
quences, ignoring the interplay between events
via arguments and argument relations. We in-
troduce a new concept of Temporal Complex
Event Schema: a graph-based schema repre-
sentation that encompasses events, arguments,
temporal connections and argument relations.
In addition, we propose a Temporal Event
Graph Model that predicts event instances fol-
lowing the temporal complex event schema.
To build and evaluate such schemas, we re-
lease a new schema learning corpus contain-
ing 6,399 documents accompanied with event
graphs, and we have manually constructed
gold-standard schemas. Intrinsic evaluations
by schema matching and instance graph per-
plexity, prove the superior quality of our prob-
abilistic graph schema library compared to
linear representations. Extrinsic evaluation
on schema-guided future event prediction fur-
ther demonstrates the predictive power of our
event graph model, significantly outperform-
ing human schemas and baselines by more
than 23.8% on HITS@1. !

1 Introduction

The current automated event understanding task
has been overly simplified to be local and sequen-
tial. Real world events, such as disease outbreaks
and terrorist attacks, have multiple actors, com-
plex timelines, intertwined relations and multiple
possible outcomes. Understanding such events re-
quires knowledge in the form of a library of event
schemas, capturing the progress of time, and per-
forming global inference for event prediction. For

'The programs, data and resources are made publicly

available for research purpose in https://github.com/
limanling/temporal-graph-schema.

example, regarding the 2019 protest in Hong Kong
International Airport, a typical question from an-
alysts would be “How long will the flights being
canceled?” This requires an event understanding
system to match events to schema representations
and reason about what might happen next. The air-
port protest schema would be triggered by “protest”
and “flight cancellation”, and evidence of protesters
(e.g., the number of protesters, the instruments be-
ing used, etc) will suggest a CEO resignation event,
or a flight rescheduling event, or continuous flight
cancellation events with respective probabilities.
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Figure 1: The example schema of the complex event
type car-bombing. A person learned to make bombs
and bought materials as well as a vehicle. Then the
bomb was assembled to the vehicle, and then the at-
tacker drove it to attack people. People can be hurt by
the vehicle, or by the explosion of the bomb, or by the
crash of the vehicle.

Comprehending such a news story requires fol-
lowing a timeline, identifying key events and track-
ing characters. We refer to such a “story” as a
complex event, e.g., the Kabul ambulance bomb-
ing event. Its complexity comes from the inclusion
of multiple atomic events (and their arguments),
relations and temporal order. A complex event
schema can be used to define the typical structure
of a particular type of complex event, e.g., car-
bombing. This leads us to the new task that we
address in this paper: temporal complex event
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schema induction. Figure 1 shows an example
schema about car-bombing with multiple temporal
dependencies between events. Namely, the occur-
rence of one event may depend on multiple events.
For example, the ASSEMBLE event happens after
buying both the bomb materials and the vehicle.
Also, there may be multiple events following an
event, such as the multiple consequences of the
ATTACK event in Figure 1. That is to say, “the
future is not one-dimensional”. Our automatically
induced probabilistic complex event schema can be
used to forecast event abstractions into the future
and thus provide a comprehensive understanding
of evolving situations, events, and trends.

For each type of complex event, we aim to in-
duce a schema library that is probabilistic, tempo-
rally organized and semantically coherent. Low
level atomic event schemas are abundant, and can
be part of multiple, sparsely occurring, higher-level
schemas. We propose a Temporal Event Graph
Model, an auto-regressive graph generation model,
to reach this goal. Given a currently extracted event
graph, we generate the next event type node with
its potential arguments, such as the ARREST event
in Figure 2, and then propagate edge-aware infor-
mation following temporal orders. After that, we
employ a copy mechanism to generate coreferen-
tial arguments, such as the DETAINEE argument is
the ATTACKER of the previous ATTACK event, and
build relation edges for them, e.g., PART_-WHOLE
relation between the PLACE arguments. Finally,
temporal dependencies are determined with argu-
ment connections considered, such as the temporal
edge showing that ARREST is after ATTACK.

Our generative model serves as both a schema
library and a predictive model. Specifically, we can
probe the model to generate event graphs uncon-
ditionally to obtain a set of schemas. We can also
pass partially instantiated graphs to the model and
“grow” the graph either forward or backward in time
to predict missing events, arguments or relations,
both from the past and in the future. We propose a
set of schema matching metrics to evaluate the in-
duced schemas by comparing with human-created
schemas and show the power of the probabilistic
schema in the task of future event prediction as an
extrinsic evaluation, to predict event types that are
likely to happen next.

We make the following novel contributions:

e This is the first work to induce probabilistic
temporal graph schemas for complex events

Symbol | Meaning
Geg Instance graph of a complex event
Ses Schema graph of a complex event type
ecé Event node in an instance graph
veY Entity node in an instance graph
(e, er) Temporal ordering edge between events e;
@5 Cl and e;, indicating e; is before ¢,
Argument edge, indicating v; plays argu-
<ei7 CL, Uj > 1
ment role a in the event e;
(5,7, 05 Relation edge between entities v; and v,
7T k71 and r is the relation type
Argument role set of event e, defined by the
Ale)
IE ontology
Pe The type set of events
by The type set of entities
() A mapping function from a node to its type
I Subgraph of GG containing events before e;
<i :
and their arguments

Table 1: List of symbols

across documents, which capture temporal dy-
namics and connections among individual events
through their coreferential or related arguments.

e This is the first application of graph generation
methods to induce event schemas.

e This is the first work to use complex event
schemas for event type prediction, and also pro-
duce multiple hypotheses with probabilities.

e We have proposed a comprehensive set of met-
rics for both intrinsic and extrinsic evaluations.

e We release a new data set of 6,399 documents
with gold-standard schemas annotated manually.

2 Problem Formulation

From a set of documents describing a complex
event, we construct an instance graph G which
contains event nodes £’ and entity nodes (argument
nodes) V. There are three types of edges in this
graph: (1) event-event edges (e;, ;) connecting
events that have direct temporal relations; (2) event-
entity edges (e;, a, vj) connecting arguments to the
event; and (3) entity-entity edges (v;, 7, vi) indi-
cating relations between entities. We can construct
instance graphs by applying Information Extraction
(IE) techniques on an input text corpus. In these
graphs, the relation edges do not have directions
but temporal edges between events are directional,
going from the event before to the event after.

For each complex event type, given a set of in-
stance graphs G, the goal of schema induction is
to generate a schema library S. In each schema
graph S, the nodes are abstracted to the types
of events and entities. Figure 1 is an example
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Figure 2: The generation process of Temporal Event Graph Model.

of schema? for complex event type car-bombing.
Schema graphs can be regarded as a summary ab-
straction of instance graphs, capturing the reoccur-
ring structures.

3 Our Approach

3.1 Instance Graph Construction

To induce schemas for a complex event type, such
as car-bombing, we construct a set of instance
graphs, where each instance graph is about one
complex event, such as Kabul ambulance bombing.

We first identify a cluster of documents that de-
scribes the same complex event. In this paper, we
treat all documents linked to a single Wikipedia
page as belonging to the same complex event, de-
tailed in §4.1.

We use OnelE, a state-of-the-art Information Ex-
traction system (Lin et al., 2020), to extract enti-
ties, relations and events, and then perform cross-
document entity (Pan et al., 2015, 2017) and event
coreference resolution (Lai et al., 2021) over the
document cluster of each complex event. We fur-
ther conduct event-event temporal relation extrac-
tion (Ning et al., 2019; Wen et al., 2021b) to de-
termine the order of event pairs. We run the entire

*For simplification purposes, we mention “schema graphs”
as “schemas”, and “events” in schemas are only “event types”.

pipeline following (Wen et al., 2021a) 3, and the
detailed extraction performance is reported in the
paper.

After extraction, we construct one instance graph
for each complex event, where coreferential events
or entities are merged. We consider the isolated
events as irrelevant nodes in schema induction, so
they are excluded from the instance graphs during
graph construction. Considering schema graphs
focus on type-level abstraction, we use type label
and node index to represent each node, ignoring the
mention level information in these instance graphs.

3.2 Temporal Event Graph Model Overview

Given an instance graph G , we regard the schema
as the hidden knowledge to guide the generation
of these graphs. To this end, we propose a tem-
poral event graph model that maximizes the prob-
ability of each instance graph, parameterized by
[Igeg P(G). Ateach step, based on the previous
graph G.;, we predict one event node e; with its
arguments to generate the next graph G;,

(@) =T (GG,

=0

*https://github.com/RESIN-KAIROS/
RESIN-pipeline-public
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We factorize the probability of generating new
nodes and edges as:

p(GilGi) = pleilGai) [] p((eis ag,v)ler aj)

ajeA(e;)
1T (v v og, o) T [ ((ess en) e, er). (1)
v €G < e €G;

As shown in Figure 2, an event node e; is generated
first according to the probability p(e;|G;). We
then add argument nodes based on the IE ontol-
ogy. We also predict relation (vj, 7, vi) between
the newly generated node v; and the existing nodes
v € G ;. After knowing the shared and related
arguments, we add a final step to predict the tem-
poral relations between the new event e; and the
existing events ¢; € G ;.

In the traditional graph generation setting, the
order of node generation can be arbitrary. However,
in our instance graphs, event nodes are connected
through temporal relations. We order events as a
directed acyclic graph (DAG). Considering each
event may have multiple events both “before” and
“after”, we obtain the generation order by traversing
the graph using Breadth-First Search.

We also add dummy START/END event nodes to
indicate the starting/ending of the graph generation.
At the beginning of the generation process, the
graph G has a single start event node esog). We
generate egog) to signal the end of the graph.

3.3 Event Generation

To determine the event type of the newly generated
event node e;, we apply a graph pooling over all
events to get the current graph representation g,,

,€i_1}).

We use bold to denote the latent representations of
nodes and edges, which will be initialized as zeros
and updated at each generation step via message
passing in § 3.4. We adopt a mean-pooling oper-
ation in this paper. After that, the event type is
predicted through a fully connected layer,

g; = Pooling({eo, -

exp(W¢(ez)gl)

> ¢reacupoc) XP(W g g;)

Once we know the event type of e;, we add all
of its arguments in .4(e;) defined in the IE ontol-
ogy as new entity nodes. For example, in Figure 2,
the new event ¢; is an ARREST event, so we add
three argument nodes for DETAINEE, JAILOR, and
PLACE respectively. The edges between these ar-
guments and event e; are also added into the graph.

p(€i|G<i) =

3.4 Edge-Aware Graph Neural Network

We use a Graph Neural Network (GNN) (Kipf and
Welling, 2017) to update node embeddings follow-
ing the graph structure. Before we run the GNN on
the graph, we first add virtual edges between the
newly generated event and all previous events, and
between new entities and previous entities, shown
as dashed lines in Figure 2. The virtual edges en-
able the representations of new nodes to aggregate
the messages from previous nodes, which has been
proven effective in (Liao et al., 2019).

To capture rich semantics of edge types, we pass
edge-aware messages during graph propagation.
An intuitive way is to encode different edge types
with different convolutional filters, which is similar
to RGCN (Schlichtkrull et al., 2018). However,
the number of RGCN parameters grows rapidly
with the number of edge types and easily becomes
unmanageable given the large number of relation
types and argument roles in the IE ontology.* In-
stead, we learn a vector representation for each
relation type r and argument role a. The message
passed through each argument edge (e;, a, v;) is:

m; j = ReLU (W ,((e; — v;) || a)),

where || denotes concatenation operation. Similarly,
the message between two entities v; and vy, is:

m;, = ReLU (W ,.((vj —vi) || 7)).

Considering that the direction of the temporal edge
is important, we parametrize the message over this
edge by assigning two separate weight matrices to
the outgoing and incoming vertices:

'I’nu = ReLLU (berei — Waft€[> .

We aggregate the messages using edge-aware
attention following (Liao et al., 2019)°

a;j = o(MLP(e; — €;)),

where o is the sigmoid function, and MLP contains
two hidden layers with ReLU nonlinearities.

The event node representation e; is then updated
using the messages from its local neighbors N (e;),
similar to entity node representations:

e; +— GRU <€i || Zje/\f(e') a,-7jm,-7j> .

*There are 131 edge types according to the fine-grained
LDC Schema Learning Ontology.

>Compared to (Liao et al., 2019), we do not use the posi-
tional embedding mask because the newly generated nodes
have distinct roles.
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3.5 Coreferential Argument Generation

After updating the node representations, we detect
the entity type of each argument, and also predict
whether the argument is coreferential to existing
entities. Inspired by copy mechanism (Gu et al.,
2016), we classify each argument node v; to either
a new entity with entity type ¢(v;), or an exist-
ing entity node in the previous graph G;. For
example, in Figure 2, the DETAINEE should be
classified to the existing ATTACKER node, while
JAILOR node is classified as PERSON. Namely,

p({ei, aj,vj)lei, a;)

_ {p<<ei7aj,vj>,g|ei,aj>

p(<ei7 aj, vj)? C’€i7aj)

if v; is new,

otherwise,

where p((e;,aj,v;),gles,a;) is the generation
probability, classifying the new node to its entity
type ¢(v;):

p(lei, aj, v;), glei, aj) = exp(W y()v5)/ Z

The copy probability p(({e;, a;,v;), cle;, a;) selects

the coreferential entity v from the entities in exist-
ing graph, denoted by V;,

p((ei,aj,v5), clei, aj) = exp(vaj)/Z.
Here, Z is the shared normalization term,
Z = Zd)/ exp (W yvy) +Z ) ijp

If determined to copy, we merge coreferential enti-
ties in the graph.

v/;)

3.6 Entity Relational Edge Generation

In this phase, we determine the virtual edges to
be kept and assign relation types to them, such as
PARTWHOLE relation in Figure 2. We model the
relation edge generation probability as a categor-
ical distribution over relation types, and add [O]
(OTHER) to the typeset R to represent that there is
no relation edge:

eXp(MLPT(’Uj — ’Uk))

p<<vj77n7 Uk)’”j’”"f) - Z exp(MLP /(’U' — vk))
r'€RU[O] ’

We use two hidden layers with ReLLU activation
functions to implement the MLP.

3.7 Event Temporal Ordering Prediction

To predict the temporal dependencies between the
new events and existing events, we connect them
through temporal edges, as shown in Figure 2.
These edges are critical for message passing in
predicting the next event. We build temporal edges
in the last phase of generation, since it relies on
the shared and related arguments. Considering that
temporal edges are interdependent, we model the
generation probability as a mixture of Bernoulli
distributions following (Liao et al., 2019):

Z r)/b b,Z,lv
Y1+ v = Softmax (Z” MLP(e; — el)> :
011, 0B =0 (MLPy(e; —e;)),

p(<€7,7 € |67,7 6[

where B is the number of mixture components.
When B = 1, the distribution degenerates to factor-
ized Bernoulli, which assumes the independence
of each potential temporal edge conditioned on the
existing graph.

3.8 Training and Schema Decoding

We train the model by optimizing the negative log-
likelihood loss,

L= ZGegm,m ~ log; p(G).

To compose the schema library for each complex
event scenario, we construct instance graphs from
related documents to learn a graph model, and then
obtain the schema using greedy decoding.

4 Evaluation Benchmark

4.1 Dataset

We conduct experiments on two datasets for both
the general scenario and a more specific scenario.
We adopt the DARPA KAIROS® ontology, a newly
defined fine-grained ontology for Schema Learn-
ing, with 24 entity types, 46 relation types, 67 event
types, and 85 argument roles. 7 Our schema induc-
tion method does not rely on any specific ontology,
only the IE system is trained on a given ontology
to create the instance event graphs.

General Schema Learning Corpus: The Schema
Learning Corpus, released by LDC (LDC2020E25),
includes 82 types of complex events, such as Dis-
ease Outbreak, Presentations and Shop Online.

https://github.com/NextCenturyCorporation/

kairos-pub/tree/master/data-format/ontology
"The ontology has been released in LDC2020E25.
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Each complex event is associated with a set of
source documents. This data set also includes
ground-truth schemas created by LDC annotators,
which were used for our intrinsic evaluation.

Dataset Split #doc #graph #event #arg #rel
Train 451 451 6,040 10,720 6,858
General Dev 83 33 1,044 1,762 1,112
Test 83 83 1,211 2,112 1,363
Train 5,247 343 41,672 136,894 122,846
IED Dev 575 42 4,661 15,404 13,320
Test 577 45 5,089 16,721 14,054

Table 2: Data statistics. Each instance graph is about
one complex event.

IED Schema Learning Corpus: The same type of
complex events may have many variants, which de-
pends on the different types of conditions and par-
ticipants. In order to evaluate our model’s capabil-
ity at capturing uncertainty and multiple hypothe-
ses, we decided to dive deeper into one scenario
and chose the improvised explosive device (IED)
as our case study. We first collected Wikipedia
articles that describe 4 types of complex events,
1.e., Car-bombing IED, Drone Strikes IED, Suicide
IED and General IED. Then we followed (Li et al.,
2021) to exploit the external links to collect the
additional news documents with the corresponding
complex event type.

The ground-truth schemas for this IED corpus
are created manually, through a schema curation
tool (Mishra et al., 2021). Only one human schema
graph was created for each complex event type,
resulting in 4 schemas. In detail, for each com-
plex event type, we presented example instance
graphs and the ranked event sequences to annota-
tors to create human (ground truth) schemas. The
event sequences are generated by traversing the in-
stance graphs, and then sorted by frequency and the
number of arguments. Initially we assigned three
annotators (IE experts) to each create a version of
the schema and then the final schema was merged
through discussion. After that, two annotators (lin-
guists) performed a two-pass revision. Human cu-
ration focuses on merging and trimming steps by
validating them using the reference instance graphs.
Also, temporal dependencies between steps were
further refined, and coreferential entities and their
relations were added during the curation process.
To avoid bias from the event sequences, linguists in
the second round revision were not presented with
the event sequences. All annotators were trained

and disagreements were resolved through discus-
sion.

4.2 Schema Matching Evaluation

We compare the generated schemas with the ground
truth schemas based on the overlap between them.
The following evaluation metrics were employed:®
Event Match: A good schema must contain the
events crucial to the complex event scenario. F-
score is used to compute the overlap of event nodes.
Event Sequence Match: A good schema is able to
track events through a timeline. So we obtain event
sequences following temporal order, and evaluate
F-score on the overlapping sequences of lengths
l=2and! = 3.

Event Argument Connection Match: Our com-
plex event graph schema includes entities and their
relations and captures how events are connected
through arguments, in addition to their temporal
order. We categorize these connections into three
categories: (1) two events are connected by shared
arguments; (2) two events have related arguments,
i.e., their arguments are connected through entity
relations; (3) there are no direct connections be-
tween two events. For every pair of overlapped
events, we calculate F-score based on whether
these connections are predicted correctly. The hu-
man schemas of the General dataset do not contain
arguments and the relations between arguments, so
we only compute this metric for the IED dataset.

4.3 Instance Graph Perplexity Evaluation

To evaluate our temporal event graph model, we
compute the instance graph perplexity by predict-
ing the instance graphs in the test set,

1
g 2 logap(G)
[Gtest| &G 2 ' (1)

PP =2
We calculate the full perplexity for the entire graph
using Equation (1), and event perplexity using only
event nodes, emphasizing the importance of cor-
rectly predicting events.

4.4 Schema-Guided Event Prediction

To explore schema-guided probabilistic reasoning
and prediction, we perform an extrinsic evalua-
tion of event prediction. Different from traditional
event prediction tasks, the temporal event graphs
contain arguments with relations, and there are

8We cannot use graph matching to compare between base-

lines and our approach due to the difference in the graph
structures being modeled.
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type labels assigned to nodes and edges. We cre-
ate a graph-based event prediction dataset using
our testing graphs. The task aims to predict ending
events of each graph, i.e., events that have no future
events after it. An event is predicted correctly if
its event type matches one of the ending events in
the graph. Considering that there can be multiple
ending events in one instance graph, we rank event
type prediction scores and adopt MRR (Mean Re-
ciprocal Rank) and HITS@ ] as evaluation metrics.

5 Experiments

5.1 Experiment Setting

Baseline 1: Event Language Model (Rudinger
et al., 2015; Pichotta and Mooney, 2016) is the
state-of-the-art event schema induction method. It
learns the probability of temporal event sequences,
and the event sequences generated from event lan-
guage model are considered as schemas.

Baseline 2: Sequential Pattern Mining (Pei et al.,
2001) is a classic algorithm for discovering com-
mon sequences. We also attach arguments and
their relations as extensions to the pattern. Consid-
ering that the event language model baseline cannot
handle multiple arguments and relations, we add
sequential pattern mining for comparison. The fre-
quent patterns mined are considered as schemas.
Reference: Human Schema is added as a base-
line in the extrinsic task of event prediction. Since
human-created schemas are highly accurate but not
probabilistic, we want to evaluate their limits at
predicting events in the extrinsic task. We match
schemas to instances and fill in the matched type.
Ablation Study: Event Graph Model w/o Argu-
ment Generation is included as a variant of our
model in which we remove argument generation
(§3.5 and §3.6). It learns to generate a graph con-
taining only event nodes with their temporal rela-
tions, aiming to verify whether incorporating argu-
ment information helps event modeling.

5.2 Implementation Details

Training Details. For our event graph model,
the representation dimension is 128, and we use
a 2-layer GNN. The value of B is 2. The number
of mixture components in temporal classifier is 2.
The learning rate is le-4. To train event language
model baseline, instead of using LSTM-based ar-
chitecture following (Pichotta and Mooney, 2016),
we adopt the state-of-the-art auto-regressive lan-
guage XLNet (Yang et al., 2019). In detail, we

first linearize the graph using topological sort, and
then train XLNet’ using the dimension of 128 (the
same as our temporal event graph model), and the
number of layers is 3. The learning rate is le-4. We
select the best model on the validation set. Both
of our model and event language model baseline
are trained on one Tesla V100 GPU with 16GB
DRAM. For sequential pattern mining, we perform
random walk, starting from every node in instance
graphs and ending at sink nodes, to obtain event
type sequences, and then apply PrefixSpan (Pei
et al., 2001) ' to rank sequential patterns.
Evaluation Details. To compose the schema li-
brary, we use the first ranked sequence as the
schema for these two models. To perform event
prediction using baselines, we traverse the input
graph to obtain event type sequences, and conduct
prediction on all sequences to produce an averaged
score. For human schemas, we first linearize them
and the input graphs, and find the longest common
subsequence between them.

5.3 Results and Analysis

Intrinsic Evaluation. In Table 3, the significant
gain on event match demonstrates the ability of our
graph model to keep salient events. On sequence
match, our approach achieves larger performance
gain compared to baselines when the path length
[ is longer. It implies that the proposed model is
capable of capturing longer and wider temporal de-
pendencies. In the case of connection match, only
sequential pattern mining in the baselines can pre-
dict connections between events. When compared
against sequential pattern mining, our generation
model significantly performs better since it consid-
ers the inter-dependency of arguments and encodes
them with graph structures.

Extrinsic Evaluation. On the task of schema-
guided event prediction, our graph model obtains
significant improvement (see Table 4.) The low
performance of human schema demonstrates the
importance of probabilistically modeling schemas
to support downstream tasks. Take Figure 3 as an
example. Human schemas produce incorrect event
types such as TRAILHEARING, since it matches the
sequence ATTACK—DIE—TRAILHEARING, incapable
of capturing the inter-dependencies between se-
quences. However, our model is able to customize
the prediction to the global context of the input

*https://github.com/huggingface
https://github. com/chuanconggao/
PrefixSpan-py
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Event Sequence Match | Connection Event Full
Dataset | Model Match =2 =3 Match Perplexity  Perplexity
Event Language Model 54.76 22.87 8.61 - - -
General Sequential Pattern Mining 49.18 20.31 7.37 - - -
Event Graph Model 58.15 24.79 9.18 - 24.25 137.18
w/o ArgumentGeneration 56.96 2247 8.21 - 68.59 -
Event Language Model 49.15 17.77 5.32 - - -
IED Sequential Pattern Mining 47.91 18.39 4.79 5.41 - -
Event Graph Model 59.73 21.51 7.81 10.67 39.39 168.89
w/o ArgumentGeneration 55.01 18.24 6.67 - 51.98 -

Table 3: Intrinsic evaluation results, including schema matching F1 score (%) and instance graph perplexity.

Dataset| Model MRR | HITS@1
Event Language Model 0.367 0.497
Sequential Pattern Mining | 0.330 0.478
Human Schema 0.173 0.205

General
Event Graph Model 0.401 0.520

w/o ArgumentGeneraion| 0.392 0.509
Event Language Model 0.169 0.513
Sequential Pattern Mining | 0.138 0.378

IED Human Schema 0.072 0.222

Event Graph Model 0.224 0.741
w/o ArgumentGeneraion| 0.210 0.734

Table 4: Schema-guided event prediction performance.

graph, and take into account that there is no AR-
REST event or justice-related events in the input
graph. Also, the human schema fails to predict
INJURE and ATTACK, because it relies on the exact
match of event sequences of lengths [ > 2, and
cannot handle the variants of sequences. This prob-
lem can be solved by our probabilistic schema, via
modeling the prediction probability conditioned on
the existing graph. For example, even though AT-
TACK mostly happens before DIE, we learn that
ATTACK might repeat after DIE event if there are
multiple ATTACK and DETONATE in the existing
graph, which means the complex event is about a
series of conflict events.

Ablation Study. Removing argument generation
(“w/o ArgumentGeneration”) generally lowers the
performance on all evaluation tasks, since it ignores
the coreferential arguments and their relations, but
relies solely on the overly simplistic temporal order
to connect events. This is especially apparent from
the instance graph perplexity in Table 3.
Learning Corpus Size. An average of 113 in-
stance graphs is used for each complex event type

Input Graph Prediction Result
existing events Broadcast FireExplosion
events to be predicted . Die :

Die Attack S}'Icuhn;amr; TrialHearing |

Attack P Transportation |
Sentence
! Detonate Di Die Broadcast
: Attack Explode Ie
: Do Die
Contact i_Graph Injure
i i Temporal
Injure i | Schema Attack
j : Broadcast
Injure Die ImpedelnterfereWith' Arrest

Figure 3: An event prediction example (IED scenario).

in the IED scenario, and 383 instance graphs to
learn the schema model in the General scenario.
The better performance on the IED dataset in Ta-
ble 3 shows that the number of instance graphs
increases the schema induction performance.
Effect of Information Extraction Errors. Based
on the error analysis for schemas induced in Table
1, the effect of extraction errors can be categorized
into: (1) temporal ordering errors: 43.3%; (2) miss-
ing events: 34.4%; (3) missing coreferential events:
8.8%; (4) incorrect event type: 7.7%; (5) miss-
ing coreferential arguments: 5.5%. However, even
on automatically extracted event graphs with ex-
traction errors, our model significantly performs
better on event prediction compared to human-
constructed schemas, as shown in Table 4. It
demonstrates that our schema induction method
is robust and effective to support downstream tasks,
even when only provided with noisy data with ex-
traction errors.

6 Related Work

The definition of a complex event schema sep-
arates us from related lines of work, namely
schema induction and script learning. Previous
work on schema induction aims to characterize
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event triggers and participants of individual atomic
events (Chambers, 2013; Cheung et al., 2013;
Nguyen et al., 2015; Sha et al., 2016; Yuan et al.,
2018), ignoring inter-event relations. Work on
script learning, on the other hand, originally lim-
ited attention to event chains with a single protago-
nist (Chambers and Jurafsky, 2008, 2009; Rudinger
etal., 2015; Jans et al., 2012; Granroth-Wilding and
Clark, 2016) and later extended to multiple partic-
ipants (Pichotta and Mooney, 2014, 2016; Weber
et al., 2018). Recent efforts rely on distributed
representations encoded from the compositional
nature of events (Modi, 2016; Granroth-Wilding
and Clark, 2016; Weber et al., 2018, 2020; Zhang
et al., 2020), and language modeling (Rudinger
et al., 2015; Pichotta and Mooney, 2016; Peng
and Roth, 2016). All of these methods still as-
sume that events follow linear order in a single
chain. They also overlook the relations between
participants which are critical for understanding
the complex event. However, we induce a com-
prehensive event graph schema, capturing both the
temporal dependency and the multi-hop argument
dependency across events.

Recent work on event graph schema induc-
tion (Li et al., 2020) only considers the connections
between a pair of two events. Similarly, their event
prediction task is designed to automatically gener-
ate a missing event (e.g., a word sequence) given a
single or a sequence of prerequisite events (Nguyen
etal., 2017; Hu et al., 2017; Li et al., 2018b; Kiy-
omaru et al., 2019; Lv et al., 2019), or predict a
pre-condition event given the current events (Kwon
et al., 2020). In contrast, we leverage the automat-
ically discovered temporal event schema as guid-
ance to forecast the future events.

Existing script annotations (Chambers and Ju-
rafsky, 2008, 2010; Modi et al., 2016; Wanzare
et al., 2016; Mostafazadeh et al., 2016a,b; Kwon
et al., 2020) cannot support a comprehensive graph
schema induction due to the missing of critical
event graph structures, such as argument relations.
Furthermore, in real-world applications, complex
event schemas are expected to be induced from
large-scale historical data, which is not feasible
to annotate manually. We propose a data-driven
schema induction approach, and choose to use IE
systems instead of using manual annotation, to in-
duce schemas that are robust and can tolerate ex-
traction errors.

Our work i1s also related to recent advances in

modeling and generation of graphs (Li et al., 2018a;
Jin et al., 2018; Grover et al., 2019; Simonovsky
and Komodakis, 2018; Liu et al., 2019; Fu et al.,
2020; Dai et al., 2020; You et al., 2018; Liao et al.,
2019; Yoo et al., 2020; Shi et al., 2020). We are the
first to perform graph generation on event graphs.

7 Conclusions and Future Work

We propose a new task to induce temporal complex
event schemas, which are capable of representing
multiple temporal dependencies between events
and their connected arguments. We induce such
schemas by learning an event graph model, a deep
auto-regressive model, from the automatically ex-
tracted instance graphs. Experiments demonstrate
the model’s effectiveness on both intrinsic evalu-
ation and the downstream task of schema-guided
event prediction. These schemas can guide our un-
derstanding and ability to make predictions with
respect to what might happen next, along with
background knowledge including location-, and
participant-specific and temporally ordered event
information. In the future, we plan to extend our
framework to hierarchical event schema induction,
as well as event and argument instance prediction.

Acknowledgement

This research is based upon work supported by U.S.
DARPA KAIROS Program Nos. FA8750-19-2-
1004 and Air Force No. FA8650-17-C-7715. The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein.

References

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797-1807,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789-797, Columbus,
Ohio. Association for Computational Linguistics.

5211


https://www.aclweb.org/anthology/D13-1185
https://www.aclweb.org/anthology/D13-1185
https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P08-1090

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 602—610, Suntec,
Singapore. Association for Computational Linguis-
tics.

Nathanael Chambers and Dan Jurafsky. 2010. A
database of narrative schemas. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic frame induction. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 837-846, Atlanta, Georgia. Association for
Computational Linguistics.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale
Schuurmans. 2020. Scalable deep generative model-
ing for sparse graphs. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
2302-2312. PMLR.

Dongqi Fu, Dawei Zhou, and Jingrui He. 2020. Local
motif clustering on time-evolving graphs. In KDD
'20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pages 390-400. ACM.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings
of the Thirtieth AAAI Conference on Artificial In-
telligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 2727-2733. AAAI Press.

Aditya Grover, Aaron Zweig, and Stefano Ermon.
2019. Graphite: Iterative generative modeling of
graphs. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 2434-2444. PMLR.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631-1640, Berlin, Germany. Association for
Computational Linguistics.

Linmei Hu, Juanzi Li, Ligiang Nie, Xiaoli Li, and Chao
Shao. 2017. What happens next? future subevent
prediction using contextual hierarchical LSTM. In
Proceedings of the Thirty-First AAAI Conference on

Artificial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA, pages 3450-3456. AAAI
Press.

Bram Jans, Steven Bethard, Ivan Vuli¢, and
Marie Francine Moens. 2012. Skip n-grams
and ranking functions for predicting script events.
In Proceedings of the 13th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 336344, Avignon, France.
Association for Computational Linguistics.

Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola.
2018. Junction tree variational autoencoder for
molecular graph generation. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmcissan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2328-2337. PMLR.

Thomas N. Kipf and Max Welling. 2017.  Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Hirokazu Kiyomaru, Kazumasa Omura, Yugo Mu-
rawaki, Daisuke Kawahara, and Sadao Kurohashi.
2019. Diversity-aware event prediction based on a
conditional variational autoencoder with reconstruc-
tion. In Proceedings of the First Workshop on Com-
monsense Inference in Natural Language Process-
ing, pages 113-122, Hong Kong, China. Association
for Computational Linguistics.

Heeyoung Kwon, Mahnaz Koupaee, Pratyush Singh,
Gargi Sawhney, Anmol Shukla, Keerthi Kumar
Kallur, Nathanael Chambers, and Niranjan Balasub-
ramanian. 2020. Modeling preconditions in text
with a crowd-sourced dataset. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 3818-3828, Online. Association for
Computational Linguistics.

Tuan Lai, Heng Ji, Trung Bui, Quan Hung Tran, Franck
Dernoncourt, and Walter Chang. 2021. A context-
dependent gated module for incorporating symbolic
semantics into event coreference resolution. In
Proc. The 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics - Human Language Technologies (NAACL-
HLT2021).

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020. Connecting the dots: Event graph
schema induction with path language modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 684-695, Online. Association for Computa-
tional Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gen-
eration. In Proceedings of the 2021 Conference of

5212


https://www.aclweb.org/anthology/P09-1068
https://www.aclweb.org/anthology/P09-1068
https://www.aclweb.org/anthology/P09-1068
http://www.lrec-conf.org/proceedings/lrec2010/pdf/58_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/58_Paper.pdf
https://www.aclweb.org/anthology/N13-1104
http://proceedings.mlr.press/v119/dai20b.html
http://proceedings.mlr.press/v119/dai20b.html
https://dl.acm.org/doi/10.1145/3394486.3403081
https://dl.acm.org/doi/10.1145/3394486.3403081
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11995
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11995
http://proceedings.mlr.press/v97/grover19a.html
http://proceedings.mlr.press/v97/grover19a.html
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14324
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14324
https://www.aclweb.org/anthology/E12-1034
https://www.aclweb.org/anthology/E12-1034
http://proceedings.mlr.press/v80/jin18a.html
http://proceedings.mlr.press/v80/jin18a.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/D19-6014
https://doi.org/10.18653/v1/D19-6014
https://doi.org/10.18653/v1/D19-6014
https://doi.org/10.18653/v1/2020.findings-emnlp.340
https://doi.org/10.18653/v1/2020.findings-emnlp.340
https://doi.org/10.18653/v1/2020.emnlp-main.50
https://doi.org/10.18653/v1/2020.emnlp-main.50

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 894-908.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu,
and Peter Battaglia. 2018a. Learning deep gener-
ative models of graphs. In Proceedings of the 35
th International Conference on Machine Learning,
Stockholm, Sweden, PMLR 80.

Zhongyang Li, Xiao Ding, and Ting Liu. 2018b.
Constructing narrative event evolutionary graph for
script event prediction. In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pages 4201-4207. ijcai.org.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang,
William L. Hamilton, David Duvenaud, Raquel Ur-
tasun, and Richard S. Zemel. 2019. Efficient graph
generation with graph recurrent attention networks.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 4257—
4267.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999-8009, Online. Association for
Computational Linguistics.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and
Kevin Swersky. 2019. Graph normalizing flows. In
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December §-
14, 2019, Vancouver, BC, Canada, pages 13556—
13566.

Shangwen Lv, Wanhui Qian, Longtao Huang, Jizhong
Han, and Songlin Hu. 2019. Sam-net: Integrat-
ing event-level and chain-level attentions to predict
what happens next. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 6802-6809.
AAAI Press.

Piyush Mishra, Akanksha Malhotra, Susan Windisch

Brown, Martha Palmer, and Ghazaleh Kazeminejad.
2021. Schema curation interface: Enhancing user
experience in curation tasks. In Proc. The Joint Con-
ference of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (ACL-IJCNLP 2021) Demo Track.

Ashutosh Modi. 2016. Event embeddings for seman-
tic script modeling. In Proceedings of The 20th

5213

SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 75-83, Berlin, Germany. As-
sociation for Computational Linguistics.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,

and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3485—
3493, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong

He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016a. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839-849, San Diego,
California. Association for Computational Linguis-
tics.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael

Chambers, James Allen, and Lucy Vanderwende.
2016b. CaTeRS: Causal and temporal relation
scheme for semantic annotation of event structures.
In Proceedings of the Fourth Workshop on Events,
pages 51-61, San Diego, California. Association for
Computational Linguistics.

Dai Quoc Nguyen, Dat Quoc Nguyen, Cuong Xuan

Chu, Stefan Thater, and Manfred Pinkal. 2017. Se-
quence to sequence learning for event prediction. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2:
Short Papers), pages 37-42, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret,

and Romaric Besancon. 2015. Generative event
schema induction with entity disambiguation. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 188—
197, Beijing, China. Association for Computational
Linguistics.

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019.

An improved neural baseline for temporal relation
extraction. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 6203-6209, Hong Kong, China. Association
for Computational Linguistics.

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,

and Kevin Knight. 2015. Unsupervised entity link-
ing with abstract meaning representation. In Proc.
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics — Human Language Technologies (NAACL-HLT
2015).


https://doi.org/10.24963/ijcai.2018/584
https://doi.org/10.24963/ijcai.2018/584
https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://proceedings.neurips.cc/paper/2019/hash/1e44fdf9c44d7328fecc02d677ed704d-Abstract.html
https://doi.org/10.1609/aaai.v33i01.33016802
https://doi.org/10.1609/aaai.v33i01.33016802
https://doi.org/10.1609/aaai.v33i01.33016802
https://doi.org/10.18653/v1/K16-1008
https://doi.org/10.18653/v1/K16-1008
https://www.aclweb.org/anthology/L16-1555
https://www.aclweb.org/anthology/L16-1555
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/W16-1007
https://www.aclweb.org/anthology/I17-2007
https://www.aclweb.org/anthology/I17-2007
https://doi.org/10.3115/v1/P15-1019
https://doi.org/10.3115/v1/P15-1019
https://doi.org/10.18653/v1/D19-1642
https://doi.org/10.18653/v1/D19-1642

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946-1958, Vancouver,
Canada. Association for Computational Linguistics.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen
Pinto, Qiming Chen, Umeshwar Dayal, and Me-
ichun Hsu. 2001. Prefixspan: Mining sequential pat-
terns by prefix-projected growth. In Proceedings of
the 17th International Conference on Data Engineer-
ing, pages 215-224.

Haoruo Peng and Dan Roth. 2016. Two discourse
driven language models for semantics. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 290-300, Berlin, Germany. Association
for Computational Linguistics.

Karl Pichotta and Raymond Mooney. 2014. Statisti-
cal script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 220-229, Gothenburg, Sweden. As-
sociation for Computational Linguistics.

Karl Pichotta and Raymond J. Mooney. 2016. Learn-
ing statistical scripts with LSTM recurrent neural
networks. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA, pages 2800-2806.
AAALI Press.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681-1686, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593-607. Springer.

Lei Sha, Sujian Li, Baobao Chang, and Zhifang Sui.
2016. Joint learning templates and slots for event
schema induction. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 428-434, San Diego,
California. Association for Computational Linguis-
tics.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan
Zhang, Ming Zhang, and Jian Tang. 2020. Graphaf:
a flow-based autoregressive model for molecular
graph generation. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

5214

Martin Simonovsky and Nikos Komodakis. 2018.

Graphvae: Towards generation of small graphs using
variational autoencoders. In International Confer-
ence on Artificial Neural Networks, pages 412-422.
Springer.

Lilian DA Wanzare, Alessandra Zarcone, Stefan Thater,

and Manfred Pinkal. 2016. A crowdsourced
database of event sequence descriptions for the ac-
quisition of high-quality script knowledge.

Noah Weber, Niranjan Balasubramanian, and

Nathanael Chambers. 2018. Event representations
with tensor-based compositions. In Proceedings
of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018,
pages 4946-4953. AAAI Press.

Noah Weber, Rachel Rudinger, and Benjamin

Van Durme. 2020. Causal inference of script knowl-
edge. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7583-7596, Online. Association
for Computational Linguistics.

Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha

Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu
Wang, Hongming Zhang, et al. 2021a.  Resin:
A dockerized schema-guided cross-document cross-
lingual cross-media information extraction and
event tracking system. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Demonstrations, pages
133-143.

Haoyang Wen, Yanru Qu, Heng Ji, Qiang Ning, Jiawei

Han, Avi Sil, Hanghang Tong, and Dan Roth. 2021b.
Event time extraction and propagation via graph at-
tention networks. In Proc. The 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics - Human Language Tech-
nologies (NAACL-HLT2021).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-

bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 5754-5764.

Sanghyun Yoo, Young-Seok Kim, Kang Hyun Lee,

Kuhwan Jeong, Junhwi Choi, Hoshik Lee, and
Young Sang Choi. 2020. Graph-aware transformer:
Is attention all graphs need? arXiv preprint
arXiv:2006.05213.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamil-

ton, and Jure Leskovec. 2018. Graphrnn: Generat-


https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P16-1028
https://doi.org/10.18653/v1/P16-1028
https://doi.org/10.3115/v1/E14-1024
https://doi.org/10.3115/v1/E14-1024
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12157
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12157
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12157
https://doi.org/10.18653/v1/D15-1195
https://doi.org/10.18653/v1/D15-1195
https://doi.org/10.18653/v1/N16-1049
https://doi.org/10.18653/v1/N16-1049
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17126
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17126
https://doi.org/10.18653/v1/2020.emnlp-main.612
https://doi.org/10.18653/v1/2020.emnlp-main.612
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
http://proceedings.mlr.press/v80/you18a.html

ing realistic graphs with deep auto-regressive mod-
els. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stock-
holmsmdssan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Re-
search, pages 5694-5703. PMLR.

Quan Yuan, Xiang Ren, Wenqi He, Chao Zhang, Xinhe
Geng, Lifu Huang, Heng Ji, Chin-Yew Lin, and Ji-
awei Han. 2018. Open-schema event profiling for
massive news corpora. In Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, pages 587-596. ACM.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal order-
ing with WikiHow. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630-4639, Online. As-
sociation for Computational Linguistics.

5215


http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html
https://doi.org/10.1145/3269206.3271674
https://doi.org/10.1145/3269206.3271674
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374

