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Abstract

This paper focuses on paraphrase generation,
which is a widely studied natural language gen-
eration task in NLP. With the development of
neural models, paraphrase generation research
has exhibited a gradual shift to neural meth-
ods in the recent years. This has provided
architectures for contextualized representation
of an input text and generating fluent, diverse
and human-like paraphrases. This paper sur-
veys various approaches to paraphrase genera-
tion with a main focus on neural methods.

1 Introduction

Paraphrases are texts that convey the same meaning
while using different words or sentence structures.
The generation of paraphrases is a longstanding
problem for natural language learning. For exam-
ple, the question How do I improve my English
could be equivalently phrased as What is the best
way to learn English. Paraphrasing can be play
an important role in language understanding tasks,
such as question answering (Dong et al., 2017; Zhu
et al., 2017), machine translation (Seraj et al., 2015;
Thompson and Post, 2020a), and semantic pars-
ing (Berant and Liang, 2014; Cao et al., 2020).
And it is also a good way for data augmentation
(Kumar et al., 2019; Gao et al., 2020). Given a
sentence, paraphrase generation aims to create its
paraphrases that can have a different wording or
different structure from the original sentence, while
preserving the original meaning.

The focus of paraphrase generation has exhibited
a gradual shift from classical approaches to more
advanced neural approaches in the recent years
with the rapid development of various neural mod-
els. Neural models have changed the traditional
way paraphrase generation is performed and also
provided new directions and architectures for the
NLP community.

While several surveys on the traditional methods
and limited neural methods for paraphrase gener-

Sentences Paraphrases
How do I improve my En-
glish

What is the best way to
learn English

How far is Earth from Sun What is the distance be-
tween Sun and Earth

if at any time in the prepa-
ration of this product the in-
tegrity of this container is
compromised it should not
be used .

this container should not
be used if the product is
compromised at any time
in preparation .

Table 1: Examples of paraphrases from available
datasets for paraphrase generation.

ation have been published (Metzler et al., 2011;
Gupta and Krzyżak, 2020), there is no thorough
and comprehensive survey on neural methods for
paraphrase generation. To our best knowledge, this
is the first survey on neural methods for paraphrase
generation. Therefore, our goal in this paper is to
provide a timely survey on paraphrase generation,
with a main focus on neural methods.

In the following section, we will first introduce
the most frequently used datasets for paraphrase
generation (Section 2). Then we list the traditional
evaluation metrics in Section 3. In Section 4, we
present some of the traditional approaches that
were used before the neural methods. Neural mod-
els, the main focus of this paper, will be discussed
in Section 5. After introducing all the methods, we
compare the performance of the different models
for paraphrase generation in Section 6. Finally, we
identify some research gaps in paraphrase genera-
tion.

2 Datasets

In this section, we describe several datasets that
have been extensively used for paraphrase genera-
tion.

PPDB The paraphrase database (Ganitkevitch
et al., 2013) contains over 220 million paraphrase
pairs, consisting of 73 million phrasal and 8 million
lexical paraphrases, as well as 140 million para-
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Dataset Parallel Genre Size Gold Size Length Char Len
PPDB " Phrase, words 220,000,000 220,000,000 2.85 16.25

WikiAnswer " Question 18,000,000 18,000,000 11.43 54.33
MSCOCO " Description 493,186 493,186 10.48 51.56

Quora " Question 404,289 149,263 11.14 52.89
Twitter URL " Twitter 2,869,657 116,000 14.80 -

ParaNMT " Novels, laws 51,409,585 51,409,585 12.94 59.18

Table 2: Highlights of primarily used paraphrase generation datasets. Gold Size represents the size of the subset
used for paraphrase generation when the original dataset was not used for generation. Length is the the average
number of words per sentence and Char Len is the average number of characters per sentence.

phrase patterns that capture meaning-preserving
syntactic transformations. Each paraphrase pair in
PPDB contains a set of associated scores including
paraphrase probabilities and monolingual distribu-
tional similarity scores. Despite its size and variety,
because this dataset only contains phrasal and lexi-
cal paraphrases without any sentence paraphrases,
it has recently fallen out of use.

WikiAnswer This dataset (Fader et al., 2013)
contains approximately 18 million word-aligned
question pairs that are paraphrases. The word align-
ments provided by this dataset also relate the syn-
onyms in the paraphrase sentences. However, all
the sentences provided in this dataset are questions,
which restricts the paraphrases to only questions.

MSCOCO MSCOCO (Lin et al., 2014) was orig-
inally described as a large-scale object detection
dataset. It contains human-annotated captions of
over 120K images, and each image is associated
with five captions from five different annotators.
There are about 500K pairs of paraphrases in this
dataset. In most cases, annotators describe the most
prominent object/action in an image, which makes
this dataset suitable for paraphrase-related tasks.

Quora Quora1 released a dataset in 2017, which
consists of over 400K lines of potential question
duplicate pairs. Among these potential question
duplicate pairs, there are 150K question pairs anno-
tated as paraphrases. For the paraphrase generation
task only use these valid paraphrase question pairs
are used for training and testing. Like WikiAnswer,
this dataset is restricted to questions.

Twitter URL Twitter URL (Lan et al., 2017)
is constructed by collecting large-scale sentential
paraphrases from Twitter by linking tweets through

1https://www.kaggle.com/c/ quora-question-pairs

shared URLs. This dataset consists of two sub-
sets, each of which contains both paraphrases and
non-paraphrases. One subset is labeled by human
annotators, and the other is labeled automatically.
Only the paraphrase sentence pairs are used for
paraphrase generation. Because this dataset in-
cludes sentence pairs that are labeled automatically
(as paraphrase or not), the annotation is noisy.

ParaNMT ParaNMT (Wieting and Gimpel,
2018) is a dataset of more than 50 million English-
English sentential paraphrase pairs. The pairs were
generated automatically by using back-translation
to translate the non-English side of a large Czech-
English parallel corpus. Owing to its recency, it
has not been used widely.

3 Evaluation Methods

Two general types of evaluation metrics are com-
monly used to evaluate paraphrase generation: au-
tomatic evaluation and human evaluation.

Automatic Evaluation Several automatic evalu-
ation metrics are used for the evaluation of para-
phrase generation. The widely-used metrics in-
clude (1) BLEU (Papineni et al., 2002), which was
originally developed to evaluate machine transla-
tion systems; (2) METEOR (Denkowski and Lavie,
2014), which aims to address BLEU’s weakness
of being unable to measure semantic equivalents
when applied to low-resource languages and has
a better correlation with human judgment at the
sentence/segment level than BLEU; (3) ROUGE
(Lin, 2004), a recall-based evaluation metric orig-
inally developed for text summarization, has also
been used to evaluate paraphrase generation. Its
versions, ROUGE-N (computing the n-gram recall)
and ROUGE-L (focusing on the longest common
subsequence) are mostly used. (4) TER (Snover



5077

et al., 2006), which was also developed to evalu-
ate machine translation. It measures the number
of edits that a human translator would have to per-
form to change a translation so it exactly matches
a reference translation. A TER score is a value in
the range of 0-1, but is frequently presented as a
percentage, where lower is better.

Human Evaluation Due to the fact that auto-
matic evaluation metrics mainly focus on the n-
gram overlaps instead of meaning, human evalua-
tion is used to provide a more accurate and qualita-
tive evaluation of the generated output. In human
evaluation, human annotators are asked to score
generated paraphrases along multiple dimensions
of quality such as similarity, clarity, and fluency.
Owing to the manual annotation efforts, human
evaluation is naturally more costly compared to au-
tomatic evaluation, but more representative of the
quality of the generated output.

4 Traditional Approaches

In this section, some traditional approaches without
neural models will be introduced.

Rule-Based Approaches

Rule-based paraphrase generation approaches build
on hand-crafted or automatically collected para-
phrase rules. In the early works, these rules were
mainly hand-crafted (McKeown, 1983). Due to the
significant manual efforts, some researchers have
sought to collect paraphrase rules automatically
(Lin and Pantel, 2001; Barzilay and Lee, 2003).
However, the limitation of the extracting methods
has led to the generation of long and complex para-
phrase patterns, in turn impacting performance.

Thesaurus-Based Approaches

This approach usually generates paraphrases by
substituting some words in the source sentences
with their synonyms extracted from a thesaurus
(Bolshakov and Gelbukh, 2004; Kauchak and
Barzilay, 2006). Thesaurus-based approaches pro-
ceed by first extracting all synonyms from a the-
saurus for the words to be replaced. Then the opti-
mal candidate is selected according to the context
in the source sentence. Although simple and ef-
fective, this approach is severely limited by the
diversity of the generated paraphrases.

SMT-Based Approach
This approach is based on statistical machine trans-
lation (SMT) and is motivated by the fact that para-
phrase generation can be seen as a special case
of machine translation (i.e., monolingual machine
translation). A machine translation model normally
finds a best translation ê of a text in language f to
a text in language e by utilizing a statistical transla-
tion model p(f |e) and a language model p(e):

ê = argmax
e∈e∗

p(f |e)p(e)

Applying this idea to paraphrase generation,
such a model will find a best paraphrase t̂ of a
text in the source side s to a text in the target side t
obtained as,

t̂ = argmax
t∈t∗

p(s|t)p(t)

For instance, (Wubben et al., 2010) constructed a
large-scale parallel corpus containing paraphrases
collected from the headlines that appeared in
Google News. Then they trained a Phrase-Based
Machine Translation model (PBMT) (Koehn et al.,
2007) on their parallel corpus using the MOSES
package. The trained PBMT is finally used to gen-
erate paraphrases.

5 Neural Approaches

Early works on paraphrasing mainly focused on
template-based or statistical machine translation ap-
proaches. However, the matching of templates and
modeling of a statistical translation model are both
challenging tasks. With the recent advances of neu-
ral networks, especially the sequence-to-sequence
framework, Seq2Seq models were first use for para-
phrase generation by (Prakash et al., 2016). Their
work inspired the wide use of neural models for
paraphrase generation. Below we introduce the
main approaches based on neural models that are
used for paraphrase generation.

5.1 Encoder-Decoder Architecture
Currently, most of the existing paraphrase gener-
ation models are based on sequence-to-sequence
models consisting of an encoder and a decoder. The
encoder will encode the source texts into a contex-
tualized vector representation along with a list of
vector representations capturing the semantics of
each word and context. Then, the decoder will gen-
erate paraphrases based on the vectors given by the
encoder.
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Encoding Side
The main purpose of encoding is to extract the
semantic information for the decoder to generate
paraphrases. With the development of various neu-
ral models, researchers also have multiple choices
for the encoder.

Encoder With a consistent goal of learning better
abstract contextualized representation of the input
text, several architectures have been explored by
researchers. (Prakash et al., 2016) first utilized
a seq2seq model implemented as recurrent neu-
ral networks—long short term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997)—to
process long sequences. A nonvolutional neural
network (CNN) has also been used to construct
seq2seq models as a CNN has fewer parameters and
thus is faster to train (Vizcarra and Ochoa-Luna,
2020). The Transformer model (Vaswani et al.,
2017) has shown state-of-the-art performance on
multiple text generation tasks. Due to the Trans-
former’s improved ability to capture long-range
dependencies in sentences, (Wang et al., 2019)
utilized a Transformer to construct their seq2seq
model. More recently, large language models using
transformer architectures have achieved state-of-
the-art results for many NLP tasks while using less
supervised data than before. Therefore, some re-
searchers also utilized large pretrained language
models such as GPT-2 (Radford et al., 2019) and
BART (Lewis et al., 2020) as their encoder-decoder
framework (Witteveen and Andrews, 2019; Hegde
and Patil, 2020; Garg et al., 2021).

Decoding Side
At the decoding side, the contextualized represen-
tation is used at each decoding step with the vector
representation of previously generated words. Fi-
nally, a distribution over the vocabulary is obtained
and the word with highest probability will be gen-
erated. This method is greedy decoding. Besides, a
more commonly used method called beam search
(Wiseman and Rush, 2016) is used, which identi-
fies the k-best paths up to current timestep during
decoding.

However, greedy decoding and beam search
methods are both generic approaches for all text
generation tasks without a specific focus on para-
phrase generation. Therefore, with the goal of gen-
erating paraphrases and avoiding the words exist-
ing in the source sentences, a few blocking mecha-
nisms have been proposed to prevent the decoder

from generating the same words in the source sen-
tences. This is also a way to guarantee the diversity
of the generated paraphrases and prevent the mod-
els from directly copying the input into the output
paraphrases (Niu et al., 2020; Thompson and Post,
2020b).

5.2 Improvements Based on
Encoder-Decoder Architecture

The numerous attempts that have been made to im-
prove the Encoder-Decoder architecture for para-
phrase generation can be broadly categorized into
two types based on their focus: A. Model-focused;
and B. Attribute-focused. Next we introduce
them respectively with more fine-grained divisions.

A. Model-focused
Model-focused improvements only aim to utilize
various mechanisms to enhance the encoder or the
decoder without paying special attention to the at-
tributes of the generated paraphrases (e.g., gran-
ularity level such as word-level, phrase-level and
sentence-level).

Attention The Attention mechanism (Bahdanau
et al., 2015) enables the decoder to focus on some
words/phrases that are of high relevance when gen-
erating a word. First, a weight for each token in the
source sequence in each timestep is computed to
indicate the importance, emphasizing the important
information from the input and de-emphasizing the
unimportant information. Given the weight distri-
bution over all the tokens in the source sequence,
this extra input vector, the context vector, is pro-
vided to the decoder..

Copy To counter the effect of rare and out-
of-vocabulary words in neural sequence models,
(Vinyals et al., 2015) proposed a pointer network.
A pointer network copies an element from the input
sequence directly into the output. Similarly, copy
mechanism copies a span of elements from the
input sequence decided by attention mechanism
directly into the output. With copy mechanism,
the decoder is able to determine whether a gener-
ate mode or a copy mode should be used at each
timestep. First introduced by Gu et al. (2016) for
abstractive summarization, Cao et al. (2017) haev
also applied the copy mechanism to paraphrase
generation. Despite the advantage of generating
well-formed paraphrases by using the copy mech-
anism, it leads to the undesirable consequence of
making a paraphrase contain many of the phrases
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in the original sentence and limits diversity. This
calls for a controlled use of the copy mechanism
during paraphrase generation.

Variational autoencoder (VAE) The VAE
(Kingma et al., 2014) is able to learn rich, nonlin-
ear representations for high-dimensional inputs.
Provided a latent representation z ∼ N (µ, σ) with
the distribution learned from inputs by the encoder,
the VAE decoder is equipped with the ability of
producing realistic outputs conditioned on the
latent representation and the learned distribution.
The learning is achieved by reconstructing the
original input from the latent code z. Therefore,
with the help of VAE, the paraphrase patterns are
encoded into the latent representation z ∼ N (µ, σ),
which provides the model with control over the
capacity of the learned distribution. Multiple
paraphrase patterns and related words/phrases
are grouped under the same latent assignment.
Every time we sample a latent code z from the
distribution N (µ, σ), we get a new paraphrase
pattern. Researchers have explored VAEs with
different encoders and decoders. For examples,
Gupta et al. (2017) implemented the encoder and
decoder with LSTMs, whereas the transformer is
utilized by Roy and Grangier (2019).

Reinforcement Learning As pointed out by
(Ranzato et al., 2015), a well-known problem of
the encoder-decoder architecture is exposure bias:
the decoding of current word is conditioned on the
gold references during training but on the generated
output from the last timestep during testing. There-
fore, the error might be accumulated and propa-
gated when testing. Another problem lies in the
mismatch between the training goal and the evalua-
tion metrics. While the generated paraphrases are
finally evaluated automatically using the previously
mentioned metrics, the network is trained to max-
imize the probability of generating the reference
paraphrases. Therefore, minimizing the training
loss might not correspond to optimizing the evalu-
ation metric. To address this limitation, reinforce-
ment learning (RL) is leveraged. RL aims to train
an agent to interact with the environment with the
goal of maximizing its reward. Toward finding an
optimal policy, RL can be used to maximize the
reward indicated as a desired evaluation metric or
a combination of multiple desired metrics. Rather
than minimizing loss (the conventional approach),
Li et al. (2018) first utilized RL to maximize the

reward given by an evaluator which outputs a real
value to represent the matching degree between two
sentences as paraphrases of each other. Other re-
ward functions have been explored by researchers,
including ROUGE score, perplexity score and lan-
guage fluency (Siddique et al., 2020; Liu et al.,
2020).

Generative adversarial networks (GAN) Pro-
posed by Goodfellow et al. (2014), GANs consist
of generators and discriminators, where generators
try to generate realistic outputs that match the real
distribution and discriminators try to distinguish
between the samples generated by generators and
the samples that are real. GAN is originally trained
by minimax optimization proposed in (Goodfellow
et al., 2014). However, when GAN is applied in
text generation, the traditional training method can-
not be used because generating discrete words is
non-differentiable. Therefore, the idea of policy
gradient (Sutton et al., 1999) is leveraged to solve
this problem (Yu et al., 2017). With policy gradient
applied, discriminators act like the reward function
in RL. Moreover, different discriminators can pro-
vide different desired rewards and thus equip the
model with the capacity to generating text with dif-
ferent conditions. Here, a model is usually trained
in an adversarial way: generators and discrimina-
tors are first pretrained, then generators are trained
to maximize the loss of the fixed discriminators,
then generators are fixed and discriminators are
again trained to minimize the loss by provided the
real samples and the samples generated by the fixed
generators. For the task of paraphrase generation,
different discriminators are designed to distinguish
between generated samples and real samples, para-
phrases and non-paraphrases (Yang et al., 2019;
Vizcarra and Ochoa-Luna, 2020).

B. Attribute-focused
For attribute-focused improvements, their purpose
is to improve the quality of generated paraphrases
in some specific aspects such as diversity and also
provide control over some attributes of generated
paraphrases such as syntax and granularity level.
These attribute-focused works usually use the previ-
ously mentioned models as their backbone models.
Based on the backbone models, different mecha-
nisms are applied for different focuses.

Diversity Attempts focusing on diversity aim to
generate multiple diverse paraphrases for a given
sentence. Some works control diversity by provid-
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Quora MSCOCO

Models ROUGE-1 ROUGE-2 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 BLEU-2 BLEU-4

Seq2Seq (Prakash et al., 2016) 57.27 33.04 40.41 24.97 40.11 14.31 47.14 21.65
Seq2Seq-attn (Prakash et al., 2016) 57.10 32.86 40.49 24.89 41.07 15.26 49.65 23.66
Seq2Seq-attn-copy (Gu et al., 2016) 61.96 36.07 - - - - - -
Seq2Seq-VAE (Gupta et al., 2017) 56.44 30.12 36.89 23.06 40.10 15.18 52.42 25.99
Transformer (Vaswani et al., 2017) 61.25 34.23 42.91 30.38 - - - -
Seq2Seq-LBOW (Fu et al., 2019) 58.79 34.57 42.03 26.17 42.08 16.13 51.14 25.27
RbM (Li et al., 2018) 64.39 38.11 43.54 - - - - -
DB (Niu et al., 2020) 67.49 42.33 - - - - - -
DNPG (Li et al., 2019) 63.73 37.75 - 25.03 - - - -
FSET (Kazemnejad et al., 2020) 66.17 39.55 51.03 33.46 - - - -
SCSVED (Chen et al., 2020) 60.28 35.26 41.56 27.37 40.90 15.70 54.35 28.24
SGCP (Kumar et al., 2020) 66.9 45.0 - - - - - -

Table 3: State-of-the-art performance on Quora dataset and MSCOCO dataset.

ing control signals to the decoder. Random pattern
embeddings are used by (Xu et al., 2018). (Ku-
mar et al., 2019) utilized a submodular mechanism
to maximize submodular functions measuring fi-
delity and diversity. (An and Liu, 2019), (Chen
et al., 2020) and (Cao and Wan, 2020) all gener-
ate diverse paraphrases by providing the decoder
with different latent patterns as control signal. Fur-
thermore, (Cao and Wan, 2020) also incorporated
their model with a diversity loss to control diversity.
(Liu et al., 2020) use RL with multiple reward func-
tions to generate diverse paraphrases. One of the
reward functions computes ROUGE score between
a generated sentence and original sentence, which
can focus on the word variations and diversity. Act-
ing like a reward function in RL, discriminators
naturally can be used to provide control over some
desired attributes. (Qian et al., 2019) utilized multi-
ple generators in GAN to generate multiple diverse
paraphrases. A generator discriminator is used to
distinguish sentences generated by different gener-
ators and guarantee the generated paraphrases are
diverse enough.

Word-Level Works on word-level paraphrasing
mainly focus on generating paraphrases by replac-
ing original words in the source texts with syn-
onyms. Some works leveraged external linguistic
knowledge (Cao et al., 2017; Lin et al., 2020). (Cao
et al., 2017) utilized an alignment table capturing
many synonym mappings based on the IBM Model
(Chahuneau et al., 2013). (Lin et al., 2020) uti-
lized WordNet (Miller, 1995) to retrieve synonyms.
Other works instead proposed special mechanisms
to learn a mapping of synonyms (Ma et al., 2018;
Fu et al., 2019). For example, (Ma et al., 2018) uti-
lized retrieved-based method to learn such a map-
ping. (Fu et al., 2019) incorporates a novel latent

bag-of-word mechanism into seq2seq model for
content planning, which mainly provides candidate
synonyms for words in the source texts. However,
generating paraphrases only on a word-level makes
the quality and diversity of generated paraphrases
limited. Therefore, paraphrasing has also been
studied on other granularity level, e.g. syntax level.

Syntax Works in this category explore methods
to provide control over the syntax of generated
paraphrases. Basically, all the methods used by
previous works can be split into two classes: 1.
Explicit Control and 2. Implicit Control. Meth-
ods in the first class first encode the syntax tree
of an exemplar sentence into a list of vector rep-
resentations and then feed them into decoder at
each timestep when decoding (Iyyer et al., 2018;
Chen et al., 2019; Goyal and Durrett, 2020; Kumar
et al., 2020). These methods can provide explicit
control over the syntax of generated paraphrases
and thus has better interpretability. The second
class of methods will first learn a distribution over
syntax information by VAE. Then a latent syntax
variable sampled from the learned distribution will
be fed into decoder at each decoding step (Chen
et al., 2020). Although the control provided by this
method is implicit, it does not require exemplar sen-
tences and also can group multiple related syntax
under the same latent assignment.

Multi-Level Focusing on a single granularity
level of paraphrasing still makes generated para-
phrases limited. Therefore, researchers also ex-
plore methods to combine multiple granularity lev-
els together. Such attempts equip their model with
the capacity of generating synonyms, substituting
phrases and also rearrange sentential structures (Li
et al., 2019; Huang et al., 2019; Kazemnejad et al.,
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Dataset Evaluation

Models WikiAnswer MSCOCO Quora Twitter ParaNMT BLEU METEOR ROUGE TER Human

(Prakash et al., 2016) " " % % % " " % " %

(Gupta et al., 2017) % " " % % " " % " "

(Fu et al., 2019) % " " % % " % " % %

(Li et al., 2018) % % " " % " " " % "

(Niu et al., 2020) % % " % " " % " % "

(Li et al., 2019) " % " % % " % " % "

(Kazemnejad et al., 2020) % % " " % " " " % "

(Chen et al., 2020) % " " % % " % " % %

(Kumar et al., 2020) % % " % " " " " % "

Table 4: Datasets and evaluation metrics used by different works on paraphrase generation. Twitter represents
Twitter URL corpus. Only (Prakash et al., 2016) used PPDB. Therefore, we did not include PPDB into this table.

2020). By using multiple encoders, (Li et al., 2019)
and (Kazemnejad et al., 2020) both enable their
models to capture paraphrasing patterns on differ-
ent granularity levels. (Huang et al., 2019) instead
utilized the help of external linguistic knowledge
from the paraphrase database (Ganitkevitch et al.,
2013) to retrieve and learn word-level and phrase-
level paraphrases. With different methods, both
of them successfully combine multiple granularity
levels together when generating paraphrases.

6 State-of-the-Art Performance

Table 3 shows the ROUGE and BLEU scores of
state-of-the-art performance on some most fre-
quently used evaluation corpus in recent years:
MSCOCO and Quora. Due to the facts that dif-
ferent metrics are used in different works, different
datasets are used in different works and many of
them did not release their codes, Table 3 is not fully
filled. However, with most of the table filled, we
can still have some observations worth mentioning.

First, the use of attention mechanism achieves a
close performance on Quora but has a better per-
formance on MSCOCO (row 1 and 2). Similarly,
the simple application of VAE also achieves a close
performance on Quora but further improves the
performance on MSCOCO (row4). With the copy
mechanism, the Seq2Seq model is able to retain
some words and thus yields a much better results
(row 3). Transformer (row 5) outperforms all the
Seq2Seq-based models without copy mechanism
(row 1,2,4,6), which shows the advantages of Trans-
former and meanwhile also proves the effectiveness
of copy mechanism.

Second, a model that employs RL (row 7) has a
great advantage for generating better paraphrases
because of the reward provided. Therefore, a well

designed optimization goal plays an important role
in the task of paraphrase generation.

Third, a novel decoding algorithm based on large
pretrained language models helps to generate better
paraphrases at the word level (row 8) because of
the strength of large pretrained language models
and the synonyms learned by decoding algorithm.

Fourth, the attempts to improve paraphrase gen-
eration with a special focus on combining multi-
ple granularity levels also yield good performance
(row 9,10). When learning to generate paraphrase
in word level, phrase level and sentence level at the
same time, their models improve the performance
on multiple metrics compared with their backbone
Transformer model (row 5).

Finally, incorporating syntax control into para-
phrase generation will also yield better results at
word level and sentence level (row 11,12). Com-
pared with implicit control (row 11), explicit con-
trol has a much better performance (row 12) based
on Quora.

It should be noted that most of the works utilize
two datasets for experiments (as shown in Table 4)
with one of them focusing on question paraphrases
and the other focusing on general sentence para-
phrases. Quora is the most popular dataset for ques-
tion paraphrases. However, for corpus focusing on
general sentnece paraphrases, different works have
different choices among MSCOCO, Twitter URL
and ParaNMT. MSCOCO is more preferred for less
noise compared with Twitter URL and ParaNMT.
Therefore, a combination of MSCOCO and Quora
is more reasonable.

For evaluation metrics, BLEU is the most fre-
quently used one. However, as proposed by (Niu
et al., 2020), current automatic evaluation metrics
are limited for evaluating paraphrase generation



5082

BLEU Quality Target Generated Paraphrase
High High a picture of someone taking a picture of herself a woman taking a picture with a cell phone.
High Low a batter swinging a bat at a baseball a batter swinging a baseball at a bat
Low High a man in sunglasses laying on a green kayak. the man lying on a boat in the water.
Low Low people on a gold course enjoy a few games a group of peaple walking

Table 5: Samples of generated paraphrases and their quality. Selected from (Niu et al., 2020).

because of “curse of BLEU on paraphrase evalu-
ation”. As shown in Table 5, examples with low
BLEU scores might include both relatively good
and bad paraphrasing because BLEU scores only
measure the overlap between outputs and refer-
ences. However, a generated paraphrase might still
be a good paraphrase even it is not same with the
reference. Therefore, for evaluation, it is better
to combine automatic evaluation metrics and hu-
man evaluation together for a more comprehensive
evaluation.

7 Conclusion

Although recent neural models have shown great
advances, state-of-the-art results are still not satis-
factory enough. Therefore, more advanced para-
phrasing models still need to be explored. Below
we discuss several potential directions of research
that we believe are worth studying.

Pretrained language models Virtually all re-
cent work related to the application of pretrained
language models on paraphrase generation is quite
naive. Therefore, we could combine the large
pretrained language models with other mecha-
nisms, for example reinforcement learning, VAE
and GAN.

Multi-level controllable paraphrase generation
Most recent works on multi-level paraphrase gen-
eration only focus on word-level paraphrasing and
phrase-level paraphrasing. However, more gran-
ularity levels can be incorporated. We believe it
is worthwhile to study the combination of various
levels, including word-level, phrase-level, syntax-
level and sentence-level.

Transfer learning With the goal of generating
different surfaces of given sentences while preserv-
ing the meaning, text summarization, text simpli-
fication and paraphrase generation are essentially
similar. Therefore, one could utilize transfer learn-
ing of these three tasks to improve the performance.

Stylistic paraphrase generation Currently,
word- and phrase-substitution in paraphrase gener-

ation cannot be carefully controlled. Therefore, it
is hard to control the style of generated paraphrases.
We believe it is worthwhile to explore methods
of incorporating specific styles into generated
paraphrases. For instance, by controlling the types
of words and phrases, we can incorporate metaphor
and idiomatic expressions into paraphrases (Zhou
et al., 2021b,a), which could also help to enhance
creativity and diversity of generated paraphrases.

Evaluation metrics As stated in Section 6,
BLEU scores and other automatic evaluation met-
rics based on similar principle are not good enough
to evaluate paraphrase generation. Thus there is a
need for better automatic evaluation methods. One
possible method is to utilize paraphrase identifi-
cation in the automatic evaluation metrics to ex-
plicitly provide an evaluation of if the generated
sentence and input sentence are paraphrases.
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