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Abstract

We develop a novel approach for confidently
accelerating inference in the large and ex-
pensive multilayer Transformers that are now
ubiquitous in natural language processing
(NLP). Amortized or approximate computa-
tional methods increase efficiency, but can
come with unpredictable performance costs.
In this work, we present CATs—Confident
Adaptive Transformers—in which we simul-
taneously increase computational efficiency,
while guaranteeing a specifiable degree of con-
sistency with the original model with high con-
fidence. Our method trains additional pre-
diction heads on top of intermediate layers,
and dynamically decides when to stop allocat-
ing computational effort to each input using a
meta consistency classifier. To calibrate our
early prediction stopping rule, we formulate a
unique extension of conformal prediction. We
demonstrate the effectiveness of this approach
on four classification and regression tasks.1

1 Introduction
Large pre-trained language models have become
the de facto standard approach for solving natu-
ral language processing tasks (Devlin et al., 2019;
Liu et al., 2019). Despite their impressive perfor-
mance, however, their often massive computational
burden makes them costly to run (Schwartz et al.,
2019; Sharir et al., 2020). Concerns about their effi-
ciency have kindled a large body of research in the
field (Sanh et al., 2020; Schwartz et al., 2020; Fan
et al., 2020). For multilayered architectures such
as the Transformer, a popular approach is adap-
tive early exiting (Schwartz et al., 2020; Xin et al.,
2020a, inter alia). Early exiting takes advantage of
the observation that task instances vary in complex-
ity. In this setting, “early” classifiers are added on
top of the simpler features of intermediate layers

*The first two authors contributed equally.
1W https://github.com/TalSchuster/CATs

Figure 1: Our CAT model G can save computational re-
sources by exiting early on certain inputs—while guar-
anteeing predictive consistency with the full model F .

in the base model, and can trigger a prediction be-
fore the full model is executed. Naively deciding
when to preempt computation, however, can result
in unpredictable decreases in model accuracy.

Quantifying the uncertainty in a prediction
in order to decide when additional computation
is needed (or not) is critical to making predic-
tions quickly without excessively sacrificing per-
formance. In this paper, we present Confident
Adaptive Transformers (CATs), a general method
for increasing Transformer-based model efficiency
while remaining confident in the quality of our pre-
dictions. Specifically, given a fixed, expensive l-
layer model F(x), we create an amortized model
G(x) that includes early classifiers {F1, . . . ,Fl}.2
We then make G provably consistent with the origi-
nal F with arbitrarily high probability (e.g., 95%
of the time). This process is illustrated in Figure 1.

Our approach builds on conformal prediction
(CP), a model-agnostic and distribution-free frame-
work for creating well-calibrated predictions (Vovk
et al., 2005). Concretely, suppose we have been

2We simply define the final Fl as Fl(x) , F(x) ∀x.

https://github.com/TalSchuster/CATs
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(Ex.1) Claim: All airports in Guyana were closed for all international passenger flights until 1 May 2020.
Evidence: Airports in Guyana are closed to all international passenger flights until 1 May 2020.

(Ex.2) Claim: Deng Chao broke sales record for a romantic drama.
Evidence: The film was a success and broke box office sales record for mainland-produced romance films.

Figure 2: Confidence levels given by our meta model regarding the consistency of our prediction as computation
progresses. Ex.1 from the VitaminC fact verification dataset is “easy”, and is classified consistently by all early
classifiers Fk (Supports). The meta confidence captures this, and increases with time. Ex.2 is harder—and
the prediction changes (Refutes/NEI) as it propagates though the Transformer layers. Appropriately, the meta
confidence is low. The exact exit layer of G is determined as a function of a user-specified tolerance ε, see Eq. (1).

given n examples, Xi ∈ X , i = 1, . . . , n, as
unlabeled calibration data, that have been drawn
exchangeably from some underlying distribution P .
Let Xn+1 ∈ X be a new exchangeable test exam-
ple for which we would like to make a prediction.
The aim of our method is to construct G such that
it agrees with F with distribution-free marginal
coverage at a tolerance level ε ∈ (0, 1), i.e.,

P
(
G(Xn+1) = F(Xn+1)

)
≥ 1− ε. (1)

We consider G to be ε-consistent if the frequency
of error, G(Xn+1) 6= F(Xn+1), does not exceed
ε.3 By design, this ensures that G preserves at
least (1− ε)-fraction of F’s original performance.
Within these constraints, the remaining challenge
is to make G relatively efficient (e.g., a consistent,
but vacuous, model is simply the identity G , F).

In order to support an efficient G, we need a reli-
able signal for inferring whether or not the current
prediction is likely to be stable. Past work (e.g.,
Schwartz et al., 2020) rely on potentially poorly
correlated metrics such as the early classifier’s soft-
max response. We address this challenge by instead
directly learning meta “consistency predictors” for
each of the l − 1 early classifiers of our l layer
model, by leveraging patterns in past predictions.4

Figure 2 demonstrates the progression of meta con-
fidence scores across layers when applied to “easy”
versus “hard” instances from the VitaminC fact
verification task (Schuster et al., 2021).

3For regression, we define equality as |G(·)−F(·)| ≤ τ .
4We refer to the meta aspect of the classifier, not the opti-

mization process (i.e., not to be confused with meta-learning).

We pair the scores of our meta classifier for each
layer with a stopping rule that is calibrated using a
unique twist on standard conformal prediction. Tra-
ditionally, CP is used to construct prediction sets
that cover the desired target (e.g., Yn+1) with high
probability. We invert the CP problem to first infer
the multi-label set of inconsistent layers, and then
exit at the first layer that falls in its complement.
We then demonstrate that this can be reduced to
setting a simple (but well-calibrated) exit threshold
for the meta classifier scores. Our resulting algo-
rithm is (1) fast to compute in parallel to the main
Transformer, (2) requires only unlabeled data, and
(3) is statistically efficient in practice, in the sense
that it finds low exit layers on average while still
maintaining the required predictive consistency.

We validate our method on four diverse NLP
tasks—covering both classification and regression,
different label space sizes, and varying amounts of
training data. We find that it constitutes a simple-
yet-effective approach to confident adaptive pre-
diction with minimal interventions and desirable
theoretical guarantees. In short, we provide:

1. A novel theoretical extension of conformal pre-
diction to accommodate adaptive prediction;

2. An effective meta consistency classifier for de-
riving a confident “early exiting” model;

3. A demonstration of the utility of our frame-
work on both classification and regression tasks,
where we show significant efficiency improve-
ments, while guaranteeing high consistency.
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2 Related Work
Adaptive computation. Reducing the computa-
tional cost of neural models has received intense
interest. Adaptive approaches adjust the amount of
computation per example to amortize the total infer-
ence cost (see Teerapittayanon et al., 2017; Graves,
2017; Huang et al., 2018; Kaya et al., 2019; Wang
et al., 2018, inter alia). As discussed in §1, our
method is inspired by the approach of Schwartz
et al. (2020) and others (Liu et al., 2020; Geng
et al., 2021; Zhou et al., 2020), where they preempt
computation if the softmax value of any early clas-
sifier is above a predefined threshold. Yet unlike
our approach, their model is not guaranteed to be
accurate. In concurrent work, Xin et al. (2021) pro-
pose a meta confidence classifier similar to ours.
However, as in previous work, they do not address
the calibration part to guarantee consistency.

Confident prediction. A large amount of re-
search has been dedicated towards calibrating the
model posterior, pθ(ŷn+1|xn+1), such that the ac-
curacy, yn+1 = ŷn+1, is indeed equal to the esti-
mated probability (Niculescu-Mizil and Caruana,
2005; Gal and Ghahramani, 2016; Guo et al., 2017).
In theory, these estimates could be leveraged to cre-
ate confident early exits—e.g., similar to Schwartz
et al. (2020). Ensuring calibrated probabilities of
this form is hard, however, and existing methods
often still suffer from miscalibration. Additionally,
many methods exist for bounding the true error of a
classifier (Langford, 2005; Park et al., 2021), but do
not give end-users opportunities to control it. More
similar to our work, selective classification (Geif-
man and El-Yaniv, 2017) allows the model to ab-
stain from answering when not confident, in order
to maintain a target error rate only over answered
inputs. Our work gives a different and statistically
efficient technique applied to consistent prediction.

Conformal prediction. CP (Vovk et al., 2005)
typically is formulated in terms of prediction sets
C(Xn+1), where finite-sample, distribution-free
guarantees can be given over the event that C con-
tains Yn+1. As we discuss in §4, internally our
method follows a similar approach in which we try
to conservatively identify the inadmissible set of
all layers that are inconsistent (and exit at the first
layer that falls in that set’s complement). Most rel-
evant to our work, Cauchois et al. (2021) presents
algorithms for conformal multi-label predictions.
We leverage similar methods in our model, but
formulate our solution in terms of the comple-

ment of a multi-label set of inconsistent predictions.
Our work adds to several recent directions that ex-
plore CP in the context of risk-mitigating applica-
tions (Lei and Candès, 2020; Romano et al., 2020;
Bates et al., 2020; Fisch et al., 2021a, inter alia),
or meta-learning settings (Fisch et al., 2021b).

3 Early Exiting Transformers
In the following, we describe our dynamic early ex-
iting model. We summarize early classification (fol-
lowing previous work) for convenience (§3.1), and
then present our novel meta consistency classifier
(§3.2). We focus on classification and regression
tasks, given a model F(x) = y. We assume that F
maps the input x ∈ X into a series of feature rep-
resentations before making the prediction y ∈ Y .
Here, F is a multilayered Transformer (Vaswani
et al., 2017) composed of l layers (although our
method can be applied to any multilayer network).

For all downstream tasks we follow stan-
dard practice and assume that the input con-
tains a [CLS] token whose representation is
used for prediction. For classification, we use a
task-specific head, softmax(Wo(φ(Wph[CLS]))),
where h[CLS] ∈ Rd is the hidden representation of
the [CLS] token,5 φ is a nonlinear activation, and
W∗ are linear projections, where Wp ∈ Rd×d and
Wo ∈ R|Y|×d. Regression is treated similarly, but
uses a 1-d output projection, wo · h[CLS].

3.1 Early predictors
F’s structure yields a sequence of hidden [CLS]
representations, {h(1)

[CLS], . . . ,h
(l)
[CLS]}, where

h
(k)
[CLS] ∈ Rd is the representation after applying

layer k. After each intermediate layer k < l, we
train an early classification head that is similar to
the head used in F , but reduce the dimensionality
of the first projection to W

(k)
p ∈ Rde×d (this is

purely for efficiency6). The final Fl is unchanged
fromF . These extra (l−1)×(de×d+de×|Y|) pa-
rameters are quick to tune on top of a fixed F , and
we can reuse F ’s training data as Dtune.7 The clas-
sifier Fk(x) = softmax(W

(k)
o (φ(W

(k)
p h

(k)
[CLS])))

is then used after layer k to get an early prediction
candidate. Early regression is handled similarly.

3.2 Meta early exit classifier
To decide when to accept the current prediction
and stop computation, we require some signal as

5d varies by F . In Albert-xlarge d = 2048.
6We simply set de = 32 in all our experiments.
7Or if Dtune is unlabeled, we can use F(x) as labels.
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Meta
Feature

Description

ŷk The current prediction.
history The past k − 1 predictions, ŷ1:k−1

(For classification we give pk(ŷk|x)).
pmax
k Prob. of the prediction, pk(ŷk|x).
pdiff
k Difference in prob. of top predictions,

pk(ŷk|x)− argmaxyk 6=ŷk
pk(yk|x).

Table 1: Additional meta features used as input to the
meta early exit classifier, Mk. Where specified, the
probability pk is taken from the model’s early softmax.
pmax
k and pdiff

k are only used for classification tasks.

to how likely it is that Fk(x) = F(x). Previ-
ous work relies on intrinsic measures (e.g., soft-
max response). Here, we present a meta classi-
fier to explicitly estimate the consistency of an
early predictor. Given fixed Fk and F , we train
a small binary MLP, Mk(x) ∈ R, on another
unlabeled (limited) sample of task in-domain data,
Dmeta. As input, we provide the current “early”
hidden state φ(W(k)

p h
(k)
[CLS]), in addition to sev-

eral processed meta features, see Table 1. We then
train Mk with a binary cross entropy objective,
where we maximize the likelihood of predicting
1{Fk(xi) = F(xi)} for xi ∈ Dmeta.

Using the trained Fk andMk, we define the full
adaptive model G using the prediction rule

G(x; τ ) :=


F1(x) ifM1(x) > τ1,
F2(x) else ifM2(x) > τ2,

...
Fl(x) otherwise,

(2)

where τ = (τ1, . . . , τl−1) are confidence thresh-
olds. The key challenge is to calibrate τk such that
G guarantees ε-consistent performance per Eq. (1).

3.3 Warmup: development set calibration
A simple approach to setting τ is to optimize per-
formance on a development set Ddev, subject to a
constraint on the empirical inconsistency:

τ ∗ := minimize
(τ1,...,τl−1)

Êdev[exit(G(X; τ ))]

s.t. Êdev[1{G(X; τ ) = F(X)}] ≥ 1− ε,
(3)

where exit(·) measures the exit layer, and Êdev is
simply the average over Ddev. Using a standard
error bound (Langford, 2005) over a separate split,
Dcal, we can then derive the following guarantee:
Proposition 3.1. Let Xi, i = 1, . . . , n be an i.i.d.
sample with s =

∑n
i=1 1{G(Xi; τ ) = F(Xi)}.

Then, up to a confidence level δ, we have that

P(P(G(X; τ ) = F(X)) ≥ 1− ε̃) ≥ 1− δ, (4)

where ε̃ is the solution to Beta(s, n− s+ 1) = δ,
and Beta is the incomplete beta function.

A proof is given in Appendix A. Though in prac-
tice ε̃ might be close to ε for most well-behaved
distributions, unfortunately Eq. (4) does not give a
fully specifiable guarantee as per Eq. (1). Readjust-
ing τ based on Dcal requires correcting for multi-
ple testing in order to remain theoretically valid,
which can quickly become statistically inefficient.
In the next section, we provide a novel calibration
approach that allows us to guarantee a target per-
formance level with strong statistical efficiency.

4 Conformalized Early Exits
We now formulate the main contribution of this pa-
per, which is a distribution-free and model-agnostic
method based on CP for guaranteeing any perfor-
mance bound an end-user chooses to specify.8 Our
training (§3), conformal calibration (§4), and infer-
ence pipelines are summarized in Algorithm 1.

4.1 Conformal formulation
Let I(x) := {i : Fi(x) 6= F(x)} be the index set
of layers that are inconsistent with the final model’s
prediction. To maintain ε-consistency, we must
avoid using any of the predictions specified by this
set, Fi(x) where i ∈ I(x), more than ε-fraction of
the time for x ∈ X . In §4.2, we show howM1:l−1

can be paired with a conformal procedure to obtain
calibrated thresholds τ = (τ1, . . . , τl−1) such that
we obtain a conservative prediction of I(x),

Cε(x) := {k :Mk(x) ≤ τk}, (5)

where we ensure that I(x) ⊆ Cε(x) with probabil-
ity at least 1− ε. Proposition 4.1 states our guaran-
tee when τ is paired with G following Eq. (2).

Proposition 4.1. Assume that examples Xi, i =
1, . . . , n+ 1 are exchangeable. For any ε ∈ (0, 1),
let the index set Cε (based on the first n examples)
be the output of conformal procedure satisfying

P(I(Xn+1) ⊆ Cε(Xn+1)) ≥ 1− ε. (6)

Define K := min{j : j ∈ Ccε (Xn+1)}, the first
exit layer selected by G following Eq. (2).9 Then

P(FK(Xn+1) = F(Xn+1)) ≥ 1− ε. (7)

Remark 4.2. Note that Eq. (6) is stricter than
necessary. Fundamentally, we only require that

8See Shafer and Vovk (2008) for a concise review of CP.
9Here Ac denotes the complement index set {i : i 6∈ A}.
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P(K ∈ Ic(Xn+1)) ≥ 1− ε. Nevertheless, Eq. (6)
is easier to calibrate, and leads to strong empirical
results despite being theoretically conservative.

Remark 4.3. During inference we do not fully con-
struct Cε; it is only used to calibrate τ beforehand.

4.2 Conformal calibration
We now describe our conformal procedures for
calibrating τ . Conformal prediction is based on
hypothesis testing, where for a given input x and
possible output y, a statistical test is performed to
accept or reject the null hypothesis that the pairing
(x, y) is correct. In our setting, we consider the null
hypothesis that layer k is inconsistent, and we use
Mk(x) as our test statistic. SinceMk is trained
to predict 1{Fk(xi) = F(xi)}, a high value of
Mk(x) indicates how “surprised” we would be
if layer k was in fact inconsistent with layer l for
input x. Informally, a low level of surprise indicates
that the current input “conforms” to past data. To
rigorously quantify the degree of conformity via the
threshold τk for predictorMk, we use a held-out
set of n unlabeled, exchangeable examples, Dcal.

4.2.1 Independent calibration
As a first approach, we construct Cε(x) by compos-
ing l − 1 separate tests for Fk(x) 6= F(x), each
with significance αk, where αk are corrected for
multiple testing. Let v(1:n,∞)

k denote the inflated
empirical distribution of inconsistent layer scores,

{Mk(xi) : xi ∈ Dcal,Fk(xi) 6= F(xi)} ∪ {∞}.

Inflating the empirical distribution is critical to our
finite sample guarantee, see Appendix A. We then
define τ ind

k = Quantile
(
1 − αk, v

(1:n,∞)
k

)
, and

predict the inconsistent index set at x ∈ X as

Cind
ε (x) =

{
k :Mk(x) ≤ τ ind

k

}
. (8)

The following theorem states how to set each αk
such that the quantiles τ ind

k yield a valid Cind
ε .

Theorem 4.4. Let αk = ωk · ε, where ωk is a
weighted Bonferroni correction, i.e.,

∑l−1
k=1 ωk = 1.

Then Cind
ε (Xn+1) is a valid set that satisfies Eq. (6).

Remark 4.5. ω1:l−1 can be tuned on a develop-
ment setDdev as long asDdev is distinct fromDcal.

4.2.2 Shared calibration

Cind
ε has the advantage of calibrating each layer

independently. As l grows, however, αk will tend
to 0 in order to retain validity (as specified by The-
orem 4.4). As a result, Cind

ε will lose statistical

Algorithm 1 Consistent accelerated inference.
Definitions: F is a multilayered classifier trained on Dtrain.
Dtune, Dmeta and Dscale are collections of in-domain unla-
beled data points (in practice, we reuse Dtrain and divide it to
70/20/10%, respectively). Dcal has in-domain unlabeled ex-
amples not inDtrain (in practice, we take a subset of the task’s
validation set). ε is the user-specified consistency tolerance.

1: function TRAIN (F , Dtune, Dmeta)
2: # Learns F1...l−1 andM1...l−1 components
3: # of amortized model G for Eq. (2) (see §3.1 and §3.2).
4: Initialize G from F and add early prediction heads.
5: # (All of F’s base parameters in G are frozen.)
6: Train prediction heads F1...l−1 on Dtune.
7: Add meta early exit classifiersM1...l−1 to G.
8: # (All of G’s other parameters are frozen.)
9: Train meta early exit classifiersM1...l−1 on Dmeta.

10: Optionally apply temperature scaling using Dscale.
11: return G
12: function CALIBRATE (G, Dcal, ε)
13: # Sets thresholds τ of amortized model G for Eq. (2)
14: # using shared calibration (see §4.2.2).
15: M ← {∞}
16: for x ∈ Dcal do
17: S← {}
18: # Record all inconsistent layers for input x.
19: # Keep the highest (false) confidence score.
20: for k ∈ [1, l − 1] do
21: if Fk(x) 6= F(x) then
22: S← S ∪Mk(x)

23: M ←M ∪max (S)

24: # Share one threshold across layers.
25: τ share← Quantile

(
1− ε,M

)
26: return [τ share]× (l − 1)

27: function PREDICT (G, τ , x)
28: # Implements Eq. (2) to exit early with confidence.
29: for k ∈ [1, l − 1] do
30: Compute the k-th prediction head of G, Fk(x).
31: ifMk(x) > τk then
32: return Fk(x)

33: # Fallback to prediction using full computation.
34: return Fl(x)

efficiency. Following a similar approach to Cau-
chois et al. (2021) and Fisch et al. (2021a), we
compute a new test statistic,Mmax, as

Mmax(x) = max
k∈[l−1]

{Mk(x) : Fk(x) 6= F(x)}. (9)

We discard ill-defined values when Mmax(x) =
max∅. Mmax(x) reflects the worst-case confi-
dence across inconsistent layers for input x (i.e.,
where Mk(x) predicts a high consistency likeli-
hood for layer k when layer k is, in fact, inconsis-
tent). This worst-case statistic allows us to keep a
constant significance level ε, even as l grows. Let
m(1:n,∞) denote the inflated empirical distribution,

{Mmax(xi) : xi ∈ Dcal, ∃k Fk(xi) 6= F(xi)} ∪ {∞}.

We then define a single threshold shared across
layers, τ share = Quantile

(
1 − ε,m(1:n,∞)

)
, and
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Dataset |Y| Train Dev. Test F test perf.

IMDB 2 20K 5K 25K 94.0
VitaminC 3 370K 10K∗ 55K 90.6
AG News 4 115K 5K 7.6K 94.4
STS-B ∞ 5.7K 1.5K 1.4K 89.8

Table 2: Task dataset and label space sizes. The right-
most column reports either test accuracy (classification)
or Pearson-correlation (regression). ∗We downsample
the 63K public development set to expedite validation.

predict the inconsistent index set at x ∈ X as

Cshare
ε (x) =

{
k :Mk(x) ≤ τ share

}
(10)

Theorem 4.6. For any number of layers l ∈ N+,
Cshare
ε (Xn+1) is a valid set that satisfies Eq. (6).

5 Experimental Setup
For our main results, we use an Albert-xlarge
model (Lan et al., 2020) with 24 Transformer lay-
ers. Results using an Albert-base model and a
RoBERTa-large model (Liu et al., 2019) are in Ap-
pendix C. See Appendix B for implementation de-
tails. We did not search across different values for
the hyper-parameters of F or G as our approach is
general and guarantees consistency for any F with
any nonconformity measure (See Appendix C.2).
Tuning the hyper-parameters could further improve
the efficiency of G while preserving consistency.

5.1 Tasks
We evaluate our methods on three classification
tasks with varying label space size |Y| and diffi-
culty: IMDB (Maas et al., 2011) sentiment analy-
sis on movie reviews, VitaminC (Schuster et al.,
2021) fact verification with Wikipedia articles, and
AG (Gulli, 2004; Zhang et al., 2015) news topic
classification. We also evaluate on the STS-B (Cer
et al., 2017) semantic textual similarity regression
task where Y ∈ [0, 5] ⊂ R. Dataset statistics,
along with the test set performance of our original
F model (Albert-xlarge), are contained in Table 2.

5.2 Baselines
In addition to our main methods discussed in §4.2,
we compare to several non-CP baselines. Note that
the following methods are not guaranteed to give
well-calibrated performance (as our CP ones are).

Static. We use the same number of layers for all
inputs. We choose the exit layer as the first one that
obtains the desired consistency on average on Dcal.

Softmax threshold. Following Schwartz et al.
(2020), we exit on the first layer where pmax

k ≥

1− ε, where pmax
k denotes the maximum softmax

response of our early classifier. Softmax values are
calibrated using temperature scaling (Guo, 2017)
on another held-out (labeled) data split, Dscale.

Meta threshold. Even if perfectly calibrated,
pmax
k from softmax thresholding is not measuring

consistency likelihood P(G(X) = F(X) | X =
x), but rather P(G(X) = Y | X = x). This is
equivalent if F is an oracle, but breaks down when
F is not. We also experiment with thresholding the
confidence value of our meta classifier (§3.2) in a
similar way (i.e., exiting when it exceeds 1− ε).
5.3 Evaluation
For each task, we use a proper training, validation,
and test set. We use the training set to learn F and
G. We perform model selection on the validation
set, and report final numbers on the test set. For all
methods, we report the marginalized results over 25
random trials, where in each trial we partition the
data into 80% Dcal (x1:n) and 20% Dtest (xn+1).
In order to compare different methods across all
tolerance levels, we plot each metric as a function
of ε. Shaded regions show the 16-84th percentiles
across trials. We report the following metrics:

Consistency. We measure the percent of inputs
for which the prediction of the CAT model G is the
same as the full Transformer on our test prediction,
i.e., G(Xn+1) = F(Xn+1). For regression tasks,
we count a prediction as consistent if it is within
a small margin τ from the reference (we use τ =
0.5). As discussed in §1, if G is ε-consistent, we can
also derive an average performance lower bound: it
will be at least (1−ε)×F ’s average performance.10

Layers (�). We report the computational cost
of the model as the average number of Trans-
former layers used. Our goal is to improve the
efficiency (i.e., use fewer layers) while preserving
ε-consistency. We choose this metric over abso-
lute run-time to allow for implementation-invariant
comparisons, but we provide a reference analysis
next, to permit easy approximate conversions.

5.4 Absolute runtime analysis
The exact run-time of G depends on the efficiency
of the hardware, software, and implementation
used. Ideally, the early and meta classifiers can run
in parallel with the following Transformer layer
(layer k+1). As long as they are faster to compute

10In practice, the performance is likely to be higher than
this lower bound, since inconsistencies with F could lead to a
correct prediction when F would have otherwise been wrong.
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(a) IMDB (b) VitaminC (c) AG News

Figure 3: Classification results (dev). While both our CP-based methods give valid consistencies (above diagonal),
shared calibration generally results in earlier exits. This advantage is especially pronounced at smaller tolerance
levels (right-hand side), where it significantly outperforms other approaches. Our meta-learned confidence measure
Mk improves over using the softmax response as a drop-in replacement, especially for tasks with larger |Y|. Note
that we care more about the right-hand side behavior, (i.e., larger 1− ε), as it corresponds to higher consistency.

concurrently than a single layer, this will avoid in-
curring any additional time cost. An alternative
naive synchronous implementation could lead to
inefficiencies when using a small tolerance ε.

We provide a reference timing for the IMDB task
implemented with the Transformers (Wolf et al.,
2020) library, PyTorch 1.8.1 (Paszke et al., 2019),
and an A100-PCIE-40GB Nvidia GPU with CUDA
11.2. A full forward path of an Albert-xlarge takes
22.32ms per input, 0.85ms×24 for the transformer
layers and 1.95ms for the embedding layer and
top classifier. Our early classifier takes 0.20ms
and the meta classifier takes 0.11ms. Therefore,
with a naive implementation, a CAT model G with
an average exit layer less than 17.6 with the meta
classifier, or 19.5 without, will realize an overall
reduction in wall-clock time relative to the full F .

We report example speedup times with the
naive implementation in §6.3, as well as an imple-
mentation invariant multiply-accumulate operation
(MACs) reduction measure. The added computa-
tional effort per layer of the early predictor and
meta-classifier is marginal (only 66, 304 and 1, 920
MACs, respectively). In comparison, Albert-xlarge
with an input length of 256 has ∼ 3 · 1011 MACs.

6 Experimental Results
We present our main results. We experiment with
both our meta classifier Mk confidence score
(Meta, §3.2), and, for classification tasks, the early

classifier’s softmax response, pmax
k (SM), as a drop-

in replacement forMk (at no additional computa-
tional cost). Appendix C reports results with other
drop-inMk replacements, in addition to results us-
ing our naive development set calibration approach
(§3.3). Appendix D provides qualitative examples.

6.1 Classification results

Figure 3 summarizes the average consistency and
number of layers used by G as a function of ε, while
Table 3 presents results for specific ε on task test
sets. Independent calibration proves to be quite
conservative due to the loss of statistical power
from the loose union bound of the Bonferroni cor-
rection for large l (here l = 24). At some levels of
ε, non-CP baselines perform competitively, how-
ever, they lack formal guarantees. Overall, for the
most critical tolerance levels (small ε, right-hand
side of the plots), our shared method leads to sig-
nificant efficiency gains while still maintaining the
desired level of consistency (above the diagonal).

The effectiveness of our meta predictor,Mk, is
most pronounced for tasks with |Y| > 2, where
the drop-in softmax score (SM) becomes less in-
dicative of consistency. Both SM and Meta are
relatively well-calibrated for IMDB and VitaminC,
which makes the threshold-based exit rule a com-
petitive baseline. Still, our Shared/ Meta method
provides both reliable and significant gains.

The computational advantage of our CAT model
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Method IMDB VitaminC AG News
Consist. Acc. Layers Consist. Acc. Layers Consist. Acc. Layers

1− ε = 0.95: (88.50) (86.10) (89.02)

Static 95.54 92.88 18.36 95.51 89.40 21.00 95.48 93.20 22.00
Thres./ SM 99.65 94.01 16.55 99.83 90.59 20.07 100.00 94.44 22.28
Thres./ Meta 99.98 93.96 17.73 99.73 90.59 19.67 99.41 94.00 16.21
Indep./ Meta 99.66 93.82 15.69 99.07 89.97 19.60 99.81 94.31 20.58
Shared/ SM 97.17 93.24 12.65 96.87 88.99 17.58 97.15 93.43 13.24
Shared/ Meta 97.15 92.71 10.83 96.91 89.01 16.79 97.08 92.50 10.17

1− ε = 0.90: (83.84) (81.57) (84.33)

Static 90.82 89.47 14.00 92.57 87.80 19.00 90.88 89.10 14.00
Thres./ SM 98.88 93.93 14.71 99.05 90.27 18.91 99.68 94.21 19.53
Thres./ Meta 99.75 93.86 15.30 99.10 90.31 18.45 98.90 93.82 13.50
Indep./ Meta 99.39 93.67 14.85 98.29 89.42 18.50 99.60 94.18 17.65
Shared/ SM 94.34 91.77 10.30 93.73 87.00 16.40 94.50 92.01 10.79
Shared/ Meta 94.36 90.78 9.01 93.83 86.89 15.33 94.29 90.26 8.35

Table 3: Classification results (test) for specific tolerance levels. We report the accuracy lower bound guaranteed
by our CP methods in parentheses. Shared/ Meta is reliably the most efficient method (and is ε-consistent). Greyed
rows reflect approaches without guarantees; our CAT approaches with guarantees are presented below them.

Figure 4: Dev results for the STS-B regression task.

is dependent on the average difficulty of the task
and the implementation. As Table 3 shows, allow-
ing up to an ε of 10% inconsistency, for two of the
tasks we cut down the average Transformer layer
to only 9 out of 24 using our Shared/ Meta model.
This leads to an approximate speedup of 1.8× with
a synchronous implementation and of 2.7× with a
concurrent one, compared to running the full model.
Moreover, Figure 5 illustrates the user’s control
over available computational resources via mod-
ulating ε. Decreasing ε increases the confidence
level required before committing to the early clas-
sifier’s prediction (thereby increasing the average
number of required layers), and vice-versa.

Method Consist. Layers

1− ε = 0.95:
Static 100.00 24.00
Thres./ Meta 99.87 19.19
Indep./ Meta 99.29 23.60
Shared/ Meta 96.42 17.64

1− ε = 0.90:
Static 92.51 20.00
Thres./ Meta 99.19 18.53
Indep./ Meta 97.77 20.26
Shared/ Meta 92.65 17.29

Table 4: Test results for the STS-B regression task.

6.2 Regression results
Table 4 and Figure 4 present results for our regres-
sion task, where we see similar trends. Here, an
attractive advantage of our meta confidence pre-
dictor is its generalizability to multiple task output
types. Notice that the event space of 1{G(X) =
F(X)} = {0, 1} always, regardless of the original
Y .11 This allows it to be easily adapted to tasks
beyond classification, such as regression, where
traditional softmax-based confidence measures (as
used in, e.g., Schwartz et al. (2020)) are absent.

6.3 Example efficiency gains
Following the analysis in §5.4, we compute the
amortized inference time with a naive implementa-
tion and report its percentage out of the full model.
As Table 5 shows, our Shared calibration is the
most efficient method on all four tasks. For tasks
with many easy inputs (IMDB and AG News), our
Shared/ Meta method can save 45% - 49% of the

11As long as equality is suitably defined, e.g., for STS-B
we define consistent outputs as being within τ = 0.5 away.



4970

Figure 5: Distribution of exit layers per tolerance level ε for the IMDB task (dev set) with Shared/ Meta. Larger ε
allows the CAT model to shift its predictions earlier by permitting for more inconsistencies with the full model F .

Method Amortized time (100 · TG/TF ) MACs reduction (|F|/|G|)
IMDB VitaminC AG News STS-B IMDB VitaminC AG News STS-B

Thres./ SM 76.91 96.66 99.58 N/A 1.63 1.27 1.23 N/A
Thres./ Meta 87.22 103.59 77.87 104.01 1.57 1.30 1.78 1.30
Indep./ Meta 84.88 103.85 99.44 113.00 1.62 1.30 1.36 1.18
Shared/ SM 56.16 84.86 58.47 N/A 2.33 1.46 2.22 N/A
Shared/ Meta 54.53 % 87.38 % 51.10 % 97.56 % ×2.66 ×1.57 ×2.87 ×1.39

Table 5: Reference time speedup and model complexity reduction for 1 − ε = 0.90 (see Table C.2 for 0.95). We
compute the amortized time with the naive synchronous implementation (§5.4). A more efficient implementation
can further reduce the time of G. The MACs reduction measure is implementation agnostic and expresses the ratio
of computational effort saved by G. Our CAT models (non-greyed lines) not only guarantee 1− ε consistency with
F , but are also significantly more efficient in practice when using Shared calibration.

inference time when 1− ε = 0.90. Unsurprisingly,
the absolute speedup is less significant for harder
tasks, but increases with higher tolerance levels.

On VitaminC, even though the Meta measure
allows exiting on earlier layers, its additional meta
classifiers result in slightly slower inference on
average at this tolerance level, compared to our
Shared/ SM. With a more efficient concurrent im-
plementation, the Meta measure will be favorable.

We also compute the MACs reduction metric
which is independent of the specific implementa-
tion or hardware and shows the number of multiply-
accumulate operations of the full model compared
to our CAT model. As demonstrated in Table 5, our
Shared/ Meta method is most effective in reducing
the computational effort across all tasks for the two
examined tolerance levels.

7 Conclusion
The ability to make predictions quickly without
excessively degrading performance is critical to
production-level machine learning systems. In fact,
being capable of quantifying the uncertainty in a
prediction and deciding when additional computa-
tion is needed (or not) is a key challenge for any
intelligent system (e.g., see the System 1 vs. Sys-
tem 2 dichotomy explored in Kahneman (2011)).

In this work, we addressed the crucial challenge

of deciding when to sufficiently trust an early pre-
diction of Transformer-based models by learning
from their past predictions. Our Confident Adap-
tive Transformers (CATs) framework leverages
meta predictors to accurately assess whether or not
the prediction of a simple, early classifier trained
on an intermediate Transformer representation is
likely to already be consistent with that of the full
model F(X) (i.e., after all l layers of F are com-
puted). Importantly, we develop a new confor-
mal prediction approach for calibrating the con-
fidence of the meta classifier that is (1) simple to
implement, (2) fast to compute alongside the Trans-
former, (3) requires only unlabeled data, and (4)
provides statistically efficient marginal guarantees
on the event that the prediction of the faster, amor-
tized CAT model is consistent with that of the full
F . Our results on multiple tasks demonstrate the
generality of our approach, and its effectiveness in
consistently improving computational efficiency—
all while maintaining a reliable margin of error.
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A Proofs
We first state the following useful lemma on in-
flated sample quantiles.

Lemma A.1. Let Quantile(α;F ) denote the
α quantile of distribution F . Let V1:n de-
note the empirical distribution over random
variables {V1, . . . , Vn}. Furthermore, assume
that Vi, i = 1, . . . , n + 1 are exchange-
able. Then for any α ∈ (0, 1), we have
P (Vn+1 ≤ Quantile(α, V1:n ∪ {∞})) ≥ α.

Proof. This is a well-known result. Given support
points v1, . . . , vn ∈ R for a discrete distribution
F , let q = Quantile(α;F ). Any points vi > q
do not affect this quantile, i.e., if we consider a
new distribution F̃ where all points vi > q are
mapped to arbitrary values also larger than q then
Quantile(α;F ) = Quantile(α; F̃ ). Accordingly,
for the exchangeable Vi, we have

Vn+1 > Quantile(α;V1:n ∪ {∞})⇐⇒
Vn+1 > Quantile(α;V1:(n+1)).

Equivalently, we also have that

Vn+1 ≤ Quantile(α;V1:n ∪ {∞})⇐⇒
Vn+1 ≤ Quantile(α;V1:(n+1)).

Given the discrete distribution over the n+ 1 vari-
ables Vi, Vn+1 ≤ Quantile(α;V1:(n+1)) implies
that Vn+1 is among the dα(n + 1)e smallest of
V1:(n+1). By exchangeability, this event occurs

with probability at least dα(n+1)e
n+1 ≥ α.

A.1 Proof of Proposition 3.1
Proof. This result is based on Clopper-Pearson
confidence interval for Binomial random vari-
ables (Clopper and Pearson, 1934). As the bi-
nary events 1{G(Xi; τ ) = F(Xi)} are i.i.d., the

sum s is Binomial. Directly applying a one-sided
Clopper-Pearson lower bound on the true success
rate, P(G(Xi; τ ) = F(Xi)), gives the result.

A.2 Proof of Proposition 4.1
Proof. We prove by simple calculation using the
property assumed in Eq. (6).

P(FK(Xn+1) = F(Xn+1))

= P(min Ccε (Xn+1) ∈ Ic(Xn+1))

≥ P(Ccε (Xn+1) ⊆ Ic(Xn+1))

= P(I(Xn+1) ⊆ Cε(Xn+1))

≥ 1− ε.

A.3 Proof of Theorem 4.4

Proof. For a given k, let V (i)
k :=Mk(Xi) denote

the random meta confidence values used for cal-
ibration, and V (n+1)

k := Mk(Xn+1) the random
test point. For all k,Mk is trained and evaluated
on separate data (Dmeta vs Dcal ∪ Dtest), preserv-
ing exchangeability. Therefore, as X1:n+1 are ex-
changeable, then V (1:n+1)

k are also exchangeable.
Layer k is included in Cind

ε iff V
(n+1)
k ≤

Quantile(1 − αk, V
(1:n)
k ∪ {∞}). For a given k,

this happens with probability at least 1 − αk by
Lemma A.1. Taken over all k ∈ I(Xn+1) where
|I(Xn+1)| is at most l− 1 (i.e., all early layers are
inconsistent), we have

P(I(Xn+1) ⊆ Cind
ε (Xn+1))

= 1− P
( ⋃
k∈I
{k 6∈ Cind

ε (Xn+1)}
)

≥ 1−
∑
k∈I

P(k 6∈ Cind
ε (Xn+1)

= 1−
∑
k∈I

αk

≥ 1− ε.

The last inequality is given by the Bonferroni con-
straint, i.e., αk = ωk · ε, where

∑l−1
i=1 ωi = 1

A.4 Proof of Theorem 4.6
Proof. By the same argument as Theorem 4.4, the
meta scores Mk(Xi) are exchangeable. Since
Mmax operates symmetrically across all Xi,
M (i) =Mmax(Xi) are also exchangeable.

Let M (n+1) denote the maximum meta score
across inconsistent layers for the new test point.
By Lemma A.1, this falls below Quantile(1 −

https://www.aclweb.org/anthology/2021.eacl-main.8
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
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ε,M (1:n) ∪ {∞}) with probability at least 1 − ε.
Since M (n+1) reflects the maximum meta score,
this entails that the meta scores of all other incon-
sistent layers k ∈ I(Xn+1) forXn+1 will be below
Quantile(1− ε,M (1:n) ∪ {∞}) if M (n+1) is, and
thereby be included in Cshare

ε (Xn+1). This gives
the bound in Eq. (6).

B Implementation Details
We implement our early exit Transformers (§3)
on top of the Transformers library (Wolf et al.,
2020).12 We set de to 32 in our experiments. For
each task we fix a pre-trained F and train the early
and meta classifiers. We reuse the same training
data that was used for F and divide it to 70/10/20%
portions for Dtune,Dscale and Dmeta, respectively.
For classification tasks, we add the temperature
scaling step (Guo et al., 2017) after the early train-
ing to improve the calibration of the softmax. We
run the scaling for 100 steps on Dscale using an
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 10−3. For the early and meta train-
ing we use the same optimizer as for F .

We fix F rather than train it jointly with the new
components of G to avoid any reduction in F’s
performance (Xin et al., 2020b). This also makes
our method simple to train over any existing Trans-
former without having to retrain the whole model
which could be very costly. Training all parameters
of G jointly can lead to more efficient inference as
the early representations will be better suited for
classification (Schwartz et al., 2020; Geng et al.,
2021), but potentially with the cost of reducing
the accuracy of Fl. In the case of joint training,
our CATs will provide consistency guarantees with
respect to the jointly-trained Fl.

We implement the conformal calibration process
in Python and perform retrospective analysis with
different random splits of Dcal and Dtest. For The-
orem 4.4, we simply use the uniform Bonferroni
correction, setting wk = 1

l−1 ∀k. For the naive
development set calibration, we use a shared thresh-
old across all layers in order to reduce the examined
solution space in Equation 3.

C Additional Results
In this section, we provide complementary results
for the experiments in the main paper. All results,

12As discussed in §3, our methods can also be applied to
any multilayered model such as BERT (Devlin et al., 2019),
GPT (Brown et al., 2020), ResNet (He et al., 2015), and others.

except for sections C.4 and C.5, are with an Albert-
xlarge model as F , similar to the main paper. How-
ever, we note that the results in these tables are
based on the development sets, while the tables in
the main paper report the test set results.

C.1 Naive development set calibration
For completeness, we evaluate the simple, but
naive, calibration method described in §3.3. Recall
that in this approach we first tune τ on a develop-
ment set, and then bound the resulting G’s accuracy
using another heldout calibration split. The bound
we get is static; we are not able to guarantee that it
will satisfy our performance constraint in Eq. (1).

Table C.1 gives results for our models when us-
ing either the Meta or SM confidence measures
(which we threshold with τ ). We use half of
Dcal to find the minimal threshold that provides
ε-consistency. Then, we evaluate the threshold on
the second half of Dcal to get the empirical error.
We compute the test set bound on this error with
a confidence of δ = 10−2. As expected, the lower
bound we compute is often significantly below 1−ε,
as it reflects the uncertainty that our measured con-
sistency is accurate. Often the measured empirical
consistency is also slightly below 1− ε. At a high
level, the overall consistency vs. efficiency trade-
off is otherwise broadly similar to the one obtained
by the Shared CP calibration.

C.2 Nonconformity measure comparison
The test statistic used for a conformal prediction
is typically called a nonconformity measure (i.e.,
in our work this isMk(x)). We experiment with
different nonconformity measures as drop-in re-
placements for Mk(x), and report the results in
Table C.2. The conformal calibration guarantees
validity with any measure, even a random one, as
long as they retain exchangeability. Good measures
are ones that are statistically efficient, and will min-
imize the number of layers required for prediction
at the required confidence level. This is a result of
smaller Cε sets, that tightly cover the inconsistent
layers (and hence are more judicious with the com-
plement, Ccε ). To be consistent with previous work
where softmax metrics are used (such as Schwartz
et al., 2020), we use pmax

k as our non-Meta baseline
in the main paper. In some settings, however, pdiff

k

performs slightly better.

C.3 Exit layer statistics
Figure C.1 depicts the distribution of exit layers for
the different tasks with three reference tolerance
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Nonconformity IMDB VitaminC AG News
measure Consist. Bound Layers Consist. Bound Layers Consist. Bound Layers

1− ε = 0.95:
SM 95.16 93.74 10.39 94.84 94.04 16.60 95.02 93.75 11.63

Meta 94.96 93.72 9.13 94.93 94.12 15.60 94.86 93.58 9.37

1− ε = 0.9:
SM 90.22 88.30 7.35 89.85 88.59 14.93 89.72 88.01 8.98

Meta 90.19 88.36 7.13 90.00 88.70 13.67 90.14 88.48 6.85

Table C.1: Results (dev) using the naive development set calibration method (see §3.3). This method tunes the
early exit thresholds to get efficient ε-consistent predictions on a development set, but does not guarantee that
prediction will be ε-consistent on new data. “Consist.” measures the empirical consistency on a test set, from
which we compute a guaranteed lower bound (“Bound”) to 99% confidence. The bound is significantly lower than
our target 1− ε, and the measured consistency in our experiments also falls slightly bellow 1− ε in some cases.

Nonconformity IMDB VitaminC AG News
measure Consist. Acc. Layers Consist. Acc. Layers Consist. Acc. Layers

1− ε = 0.95: (88.50) (85.17) (89.02)

Random 97.23 91.56 21.57 96.91 87.42 22.71 97.11 91.58 21.60
DKL(pk−1||pk) 97.36 92.49 19.33 96.84 88.85 22.28 97.08 92.46 20.18
H(pk) 97.28 92.84 12.49 96.79 88.28 17.44 97.15 92.79 14.55
pdiff
k 97.28 92.84 12.49 96.83 88.38 17.42 96.96 92.80 12.89
pmax
k (SM) 97.28 92.84 12.49 96.79 88.31 17.40 97.08 92.81 13.23

Meta 96.99 92.24 10.75 96.91 88.29 16.49 96.98 91.98 10.60

1− ε = 0.90: (83.84) (80.69) (84.33)

Random 94.52 89.68 19.21 93.94 85.44 21.47 94.27 89.28 19.01
DKL(pk−1||pk) 94.48 91.36 12.13 93.76 86.81 20.49 93.88 89.98 14.59
H(pk) 94.49 91.31 9.91 93.67 86.41 16.29 94.54 90.80 13.08
pdiff
k 94.49 91.31 9.91 93.67 86.53 16.11 94.02 90.56 10.69
pmax
k (SM) 94.49 91.31 9.91 93.68 86.44 16.13 94.05 90.76 11.01

Meta 94.40 90.45 8.80 93.74 86.17 15.09 94.08 89.72 8.88

Table C.2: Results (dev) of our Shared model on the classification tasks using different nonconformity measures.
pdiff
k and pmax

k are defined in Table 1, DKL(pk−1||pk) is the Kullback-Leibler Divergence between the previous
layer’s softmax outputs and the current layer, and H(pk) is the entropy of the softmax outputs. Our CP-based
Shared method provides the guaranteed consistency with any measure, even random. The benefit, however, of
using a better measure is in confidently exiting earlier. Our Meta measure allows the use of least Transformer
layers meeting the consistency requirement with enough confidence.

levels. Reducing ε requires greater confidence be-
fore exiting, resulting in later exits on average. We
provide example inputs with their respective exit
layer in Appendix D.

C.4 Albert-base results

Figure C.2 reports the classification and regression
results with an Albert-base 12-layers model. The
trends are similar to the larger 24-layers version.
Again, we see the efficacy of our Shared conformal
calibration and the Meta nonconformity scores. For
example, the AG News CAT Shared/ Meta model
can preserve 95% consistency while using less than
5 Transformer layers on average.

C.5 RoBERTa-large results

Figure C.3 shows the results of our methods on
top of the RoBERTa-large 24-layers Transformer.
One main difference between RoBERTa and Albert,
is that Albert shares the same parameters across
all layers, essentially applying the same function
recursively, whereas RoBERTa learns different pa-
rameters per layer. Yet, our method is agnostic
to such differences and, as observed in the plots,
results in similar trends. The value of our Meta
classifier compared to the softmax response is even
greater with the RoBERTa model.

D Example Predictions
Table D.1 reports examples of inputs for different
tasks and the number of layers that our Albert-
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(a) VitaminC

(b) AG News

(c) STS-B

Figure C.1: Distribution of exit layers per tolerance level ε (dev sets) with our Shared/ Meta Albert-xlarge model.
See Figure 5 for IMDB.

Method Amortized time (100 · TG/TF ) MACs reduction (|F|/|G|)
IMDB VitaminC AG News STS-B IMDB VitaminC AG News STS-B

Thres./ SM 85.56 102.12 112.52 N/A 1.45 1.20 1.08 N/A
Thres./ Meta 99.85 109.93 91.95 107.44 1.35 1.22 1.48 1.25
Indep./ Meta 89.25 109.57 114.66 130.36 1.53 1.22 1.17 1.02
Shared/ SM 67.22 90.41 69.99 N/A 1.90 1.37 1.81 N/A
Shared/ Meta 63.99 % 94.97 % 60.56 % 99.38 % ×2.22 ×1.43 ×2.36 ×1.36

Table C.2: Complementary results for Table 5 with 1− ε = 0.95.

xlarge CAT with ε = 0.1 required. These examples
suggest that “easier” inputs (e.g., containing cue
phrases or having large overlaps in sentence-pair
tasks) might require less layers. In contrast, more
complicated inputs (e.g., using less common lan-
guage or requiring numerical analysis) can lead to

additional computational effort until the desired
confidence is obtained.
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(a) IMDB (b) VitaminC (c) AG News

(d) STS-B

Figure C.2: Development set results with an Albert-base 12-layers model as F .
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(a) IMDB (b) VitaminC (c) AG News

(d) STS-B

Figure C.3: Development set results with an RoBERTa-large 24-layers model as F .



4979

Exit
layer

Gold
label

Input

IMDB (Maas et al., 2011)

1 Pos Without question, film is a powerful medium, more so now than ever before, due to the accessibility of
DVD/video, which gives the filmmaker the added assurance that his story or message is going to be seen
by possibly millions of people. [...]

4 Neg This movie was obscenely obvious and predictable. The scenes were poorly written and acted even worse.

10 Pos I think Gerard’s comments on the doc hit the nail on the head. Interesting film, but very long. [...]

15 Pos here in Germany it was only shown on TV one time. today, as everything becomes mainstream, it’s
absolute impossible, to watch a film like this again on the screen. maybe it’s the same in USA [...]

20 Neg I tried to be patient and open-minded but found myself in a coma-like state. I wish I would have brought
my duck and goose feather pillow... [...]

24 Neg Hypothetical situations abound, one-time director Harry Ralston gives us the ultimate post-apocalyptic
glimpse with the world dead, left in the streets, in the stores, and throughout the landscape, sans in the
middle of a forgotten desert. [...]

VitaminC (Schuster et al., 2021)

3 Sup Claim: Another movie titled The SpongeBob Movie: Sponge on the Run is scheduled for release in 2020.
Evidence: A second film titled The SpongeBob Movie : Sponge Out of Water was released in 2015, and
another titled The SpongeBob Movie: Sponge on the Run is scheduled for release in 2020.

5 Sup Claim: Julie Bishop offered a defence of her nation’s intelligence cooperation with America.
Evidence: The Australian Foreign Minister Julie Bishop stated that the acts of Edward Snowden were
treachery and offered a staunch defence of her nation’s intelligence co-operation with America.

10 NEI Claim: The character Leslie hurts her head on the window in the film 10 Cloverfield Lane.
Evidence: Michelle realizes Howard was right and returns his keys.

15 Sup Claim: Halakha laws are independent of being physically present in the Land of Israel.
Evidence: The codification efforts that culminated in the Shulchan Aruch divide the law into four sections,
including only laws that do not depend on being physically present in the Land of Israel.

20 Sup Claim: Germany has recorded less than 74,510 cases of coronavirus , including under 830 deaths.
Evidence: 74,508 cases have been reported with 821 deaths and approximately 16,100 recoveries.

24 NEI Claim: For the 2015-16 school year , the undergraduate fee at USF is under $43,000.
Evidence: Undergraduate tuition at USF is $44,040 for the 2016-17 school year.

AG News (Gulli, 2004; Zhang et al., 2015)

1 Business Crude Oil Rises on Speculation Cold Weather May Increase Demand Crude oil futures are headed for
their biggest weekly gain in 21 months [...]

5 Sports NHL Owner Is Criticized for Talking of Replacement Players The day before the regular season was
supposed to open [...]

15 World Scotch Whisky eyes Asian and Eastern European markets (AFP) AFP - A favourite tipple among connois-
seurs the world over, whisky is treated with almost religious reverence on the Hebridean [...]

20 Business Arthritis drug withdrawn after trial A prescription painkiller used by more than 250,000 Australians to
treat arthritis has been withdrawn from sale after a clinical trial found it doubled the risk [...]

24 Sci/Tech Airbus drops out of Microsoft appeal Aircraft builder withdraws its request to intervene in Microsoft’s
antitrust appeal; Boeing also forgoes intervention.

STS-B (Cer et al., 2017)

10 0.6 Sent. 1: A child wearing blue and white shorts is jumping in the surf.
Sent. 2: A girl wearing green twists something in her hands.

15 2.8 Sent. 1: Saudi Arabia gets a seat at the UN Security Council
Sent. 2: Saudi Arabia rejects seat on UN Security Council

20 4.2 Sent. 1: a small bird sitting on a branch in winter.
Sent. 2: A small bird perched on an icy branch.

24 3.0 Sent. 1: It depends entirely on your company and your contract.
Sent. 2: It depends on your company.

Table D.1: Number of Transformer layers used for example inputs from the task’s test sets with our Shared/Meta
CAT with a tolerance level of ε = 0.1


