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Abstract
As labeling schemas evolve over time, small
differences can render datasets following older
schemas unusable. This prevents researchers
from building on top of previous annotation
work and results in the existence, in discourse
learning in particular, of many small class-
imbalanced datasets. In this work, we show
that a multitask learning approach can com-
bine discourse datasets from similar and di-
verse domains to improve discourse classifica-
tion. We show an improvement of 4.9% Micro
F1-score over current state-of-the-art bench-
marks on the NewsDiscourse dataset, one of
the largest discourse datasets recently pub-
lished, due in part to label correlations across
tasks, which improve performance for under-
represented classes. We also offer an exten-
sive review of additional techniques proposed
to address resource-poor problems in NLP, and
show that none of these approaches can im-
prove classification accuracy in our setting1.

1 Introduction

Learning the discourse structure of a text has been
shown to be helpful for diverse tasks such as event
extraction (Choubey et al., 2020), sentiment analy-
sis (Chenlo et al., 2014), natural language genera-
tion (Celikyilmaz et al., 2020), summarization (Lu
et al., 2019; Isonuma et al., 2019), storyline discov-
ery (Rehm et al., 2019), and even misinformation
detection (Abbas, 2020; Zhou et al., 2020).

However, even as recent advances in NLP allow
us to achieve impressive results across a variety
of tasks, discourse learning, a supervised learning
task, faces the following challenges: (1) discourse
datasets tend to be very class-imbalanced.2 (2)
Discourse learning is a complex task: human anno-
tators require training and conferencing to achieve

1For code and data, see: https://github.com/
alex2awesome/multitask-news-discourse.

2For example, of Penn Discourse Tree-Bank’s 48 classes,
the top 24 are on average 25 times more common than the
bottom 24 (Prasad et al., 2008).

moderate agreement (Das et al., 2017). (3) Dis-
course learning tends to be resource-poor, as an-
notation complexities make large-scale data col-
lection challenging (Table 1). Compounding the
problem, a schema often evolves across different
annotation efforts, preventing the compilation of
smaller datasets into larger ones.3

We observe, however, that certain discourse
schemata appear to offer complementary informa-
tion. For example, Penn Discourse and Rhetor-
ical Structure Theory Treebanks offer intrasen-
tential, low-level discourse information (Prasad
et al., 2008; Carlson et al., 2003), while news dis-
course schemas offer intersentential, high-level,
domain-specific discourse information (Choubey
et al., 2020; Yarlott et al., 2018). Inspired by Col-
lobert and Weston (2008)’s finding that lower-level
NLP tasks (e.g. part of speech tagging) could aid
higher-level tasks (e.g. semantic role labeling),
we hypothesize that a multitask approach incor-
porating multiple discourse datasets can address
the challenges listed above. Specifically, by intro-
ducing complementary information from auxiliary
discourse tasks, we can increase performance for a
primary discourse task’s underrepresented classes.

We propose a multitask neural architecture (Sec-
tion 2) to address this hypothesis. We construct
tasks from 6 discourse datasets, an events dataset,
and an unlabeled news dataset (Section 3), includ-
ing a novel discourse dataset we introduce in this
work. Although different datasets are developed un-
der divergent schemas and have different goals, our
framework learns correlations between schemas,
and does not “waste” labeling work done by gener-
ations of NLP researchers.

Our experiments show that a multitask approach
can help us improve discourse classification on

3See, for instance, datasets based on variations of Van
Dijk’s news discourse schema (Van Dijk, 2013) released in
Choubey et al. (2020), Yarlott et al. (2018) and the present
work.

https://github.com/alex2awesome/multitask-news-discourse
https://github.com/alex2awesome/multitask-news-discourse
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a primary task, NewsDiscourse (Choubey et al.,
2020), from a baseline performance of 62.8% Mi-
cro F1 to 67.7%, an increase of 4.9 points (Section
4), with the biggest improvements seen in under-
represented classes. On the contrary, two data aug-
mentation approaches, Training Data Augmenta-
tion (TDA) and Unsupervised Data Augmentation
(UDA), fail to improve performance.

We give insight into why this occurs (Section
5). In the multitask approach, the primary task’s
underpresented labels are correlated with labels in
other datasets. However, if we only provide more
data without any correlated labels (TDA and UDA),
we overpredict the overrepresented labels. We test
many other approaches proposed to address class-
imbalance and observe similar negative results (Ap-
pendix F). Taken together, this analysis indicates
that the signal from labeled datasets is essential for
boosting performance in class-imbalanced settings.

In summary, our core contributions are:

• We show a 4.9 F1-score improvement above
state-of-the-art on the NewsDiscourse dataset
and introduce a novel dataset with 67 labeled
articles based on an expanded Van Dijk news
discourse schema (Van Dijk, 2013).

• What worked and why: we show that different
discourse datasets in a multitask framework
complement each other; correlations between
labels in divergent schemas provide support
for underrepresented classes in a primary task.

• What did not work and why: training data
augmentation and semi-supervised data aug-
mentation failed to improve above base-
line because they overpredict overrepresented
classes, thus hurting overall performance.

2 Methodology

We formulate a multitask approach to discourse
learning with the NewsDiscourse dataset as our
primary task (Section 3). Our multitask architec-
ture uses shared encoder layers and task-specific
classification heads4.

Our objective is to minimize the weighted sum
of losses across tasks:

minL(D,α) = min
θ

T∑
t=1

Nt∑
i=1

αtLt((xi [, yi])t)

(1)
4Our framework can be seen as a multitask feature learning

architecture (Zhang and Yang, 2017).

where D = {Dt}Tt=1 is our joined dataset, Dt =
{(xi [, yi])}Nti=1 are task-specific datasets for tasks
t = 1, ..., T , each of size Nt (labeled and unla-
beled). Lt is the task-specific loss, and hyperpa-
rameter α = {αt}Tt=1, a coefficient vector that
weights the loss from each task. In each training
step, we randomly sample one task t and one datum
(xi [, yi])t

5 from that task’s dataset, Dt.

2.1 Neural Architecture
Our neural architecture (Figure 1) consists of a
sentence-embedding layer and, in some experimen-
tal variations, embedding augmentations; a clas-
sification layer for the primary task; and separate
classification layers for auxiliary supervised tasks.

The architecture we use to model our supervised
tasks is inspired by previous work in sentence-level
tagging and discourse learning (Choubey et al.,
2020; Li et al., 2021). We use RoBERTa-base
(Liu et al., 2019) to generate sentence embeddings
(Figure 1). Sentences in each document are read
sequentially by the same model, and the </s> token
from each sentence is used as the sentence-level
embedding. The sequence of sentence embeddings
is passed through a Bi-LSTM layer to provide con-
text. These layers are shared between tasks.6

Additionally, we experiment with concatenating
different embeddings to the sentence embeddings
to provide document-level and sentence-positional
information. We concatenate headline embeddings
and document embeddings, generated as described
in Choubey et al. (2020), and sentence-positional
embeddings, described in Vaswani et al. (2017).7

Each output embedding is classified using a task-
specific feed-forward layer.8 Some of our tasks
(including our primary task) are multiclass and oth-
ers are multilabel. We discuss our datasets (and
tasks) in the next section.

3 Datasets

We use 8 datasets in our multitask setup, shown in
Table 1. Four datasets contain sentence-level labels
and no relational labels; two contain annotations of
clausal relations; one is an events-nugget dataset

5[, yi] indicates that for some tasks, labels yi are not
present. See Section 4.3: we decompose UDA into a su-
pervised head and an unsupervised head.

6Variations on our method for generating sentence embed-
dings are reported in Appendix F.1

7For more detail, see Appendix E.1.
8Variations both of the classification tasks and the loss

function, aimed at addressing the class-imbalance inherent in
the VD2 dataset, are reported in Appendix F.2.



500

Dataset Name Label #Docs #Sents #Labels Altered Type Class Imb.
NewsDiscourse VD2 802 18,151 9 No MC 3.01
Van Dijk (Yarlott et al., 2018) VD1 50 1,341 9 No MC 3.81
Van Dijk (present work) VD3 67 2,088 12 No MC 6.36
Argumentation ARG 300 11,715 5 No ML 9.35
Penn Discourse Treebank∗∗+ PDTB-t 194 12,533 5 Yes ML 2.28
Rhetorical Structure Theory∗∗ RST 223 7,964 12 Yes ML 2.90
KBP Events 2014/2015∗∗ KBP 677 24,443 4 Yes ML 4.07
All-The-News∗∗ U 6,000 177,530 N/A N/A N/A N/A

Table 1: List of the datasets used, an acronym, the size, number of labels (k), whether we processed it, whether
each sentence is multiclass (MC) or multilabel (ML) and the class-imbalance. ** indicates dataset was filtered. +

indicates subset of tags was used. (Class Imb. :=
∑bk/2c

j=1 nj

bk/2c /
∑k

j=bk/2c+1 nj

bk/2c+1 . nj is size of class j; n1 > ... > nk).

Figure 1: Sentence-Level classification model used for
each prediction task. The </s> token in the RoBERTa
model is used to generate sentence-level embeddings,
</s>i. Bi-LSTM is used to contextualize these embed-
dings, ci. Finally, FF is used to make class predictions,
pi. RoBERTa and Bi-LSTM are shared between tasks.
FF is the only task-specific layer.

where labels denote the presence of events in sen-
tences; and one is an unlabeled news dataset. See
Tables 4 and 5 for all label names.
Van Dijk (VD1, VD2, VD3) and Argumenta-
tion (ARG) The Van Dijk Schema, developed by
Van Dijk (2013), was applied with no modifications
(Yarlott et al., 2018) to 50 news articles sampled
from the ACE corpus (VD1). Choubey et al. (2020)
expanded Van Dijk’s schema to capture anecdo-
tal discourse (Craig, 2006) and released a dataset,
NewsDiscourse (VD2), consisting of 802 articles
from 3 outlets9. We take VD2 as our primary task
due to its size. As shown in Table 1, VD2 has
9 classes: Main Event (M1), Consequence (M2),
Current Context (C1), Previous Event (C2), Histor-
ical Event (D1), Anecdotal Event (D2), Evaluation
(D3), Expectation (D4) and Error (E).10 VD2 is an
imbalanced dataset; its highest-support class has
1224 samples while its lowest-support has 77.

We introduce a novel news discourse dataset
9nytimes.com, reuters.com and xinhuanet.com

10For a detailed class description, see Choubey et al. (2020).

(VD3) following the Van Dijk Schema. We expand
the schema to capture discourse elements related
to “Explanatory Journalism” (Forde, 2007). VD3
contains 67 news articles with sentence-level labels,
sampled from the ACE corpus without redundancy
to VD1. We additionally label 10 articles from VD1
and find an interannotator agreement of κ = .6911.

A substantial volume of news discourse is not
factual assertion, but analysis, explanation, and pre-
diction (Steele and Barnhurst, 1996). We thus in-
clude the Argumentation dataset (ARG) (Al Khatib
et al., 2016), a dataset consisting of 5 labels applied
to 300 news editorials.12

Each of these four datasets assigns a single la-
bel to each sentence. We treat them as multiclass
datasets, as shown in Table 1.
Penn Discourse Treebank (PDTB) and Rhetori-
cal Structure Theory Treebank (RST) These dis-
course datasets each consist of spans of text in ar-
ticles; labels indicate how different spans relate to
each other. We process each so that sentences are
annotated with the set of all relations occurring at
least once in the sentence13. Then, we downsample
documents in each of these dataset so that the dis-
tribution of document length matches VD2.14 We
match document lengths to control for biases intro-
duced by shorter documents, as the full PDTB and
RST consist of a large amount of short documents
that are not representative of documents in VD2.

Some of Van Dijk’s discourse elements differ

11For more information on the dataset we introduce in this
paper, see Appendix B.1.

12This dataset contains articles from 3 news outlets: al-
jazeera.com, foxnews.com and theguardian.com

13For more details, see Appendix B.2.
14Specifically, if pm(n) and pa(n) are the likelihood of a

document dwith n sentences in the main and auxiliary datasets
respectively, we sample with weight wd = pm(n)/pa(n)
(Austin and Stuart, 2015). pm(n) and pa(n) were determined
empirically by Nn/Ntotal (Nn: # of docs with sentence-
length n in a or m, Ntotal: # of docs in a or m).
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based on temporal relation: for example, some el-
ements describe events occurring before a main
event (e.g. Previous Event (C2)) while others de-
scribe events occurring after (e.g. Consequence
(M2)). To introduce more information about tem-
porality, we use PDTB’s tags pertaining to Tempo-
ral relations (we call this filtered dataset PDTB-t).

When processed as described above, each of
these datasets assign multiple labels to each sen-
tence. We treat them as multilabel datasets.
Knowledge Base Population (KBP) 2014/2015
Some of Van Dijk’s discourse elements differ based
on the presence or absence of an event. For exam-
ple, the elements Previous Event (C2) and Current
Context (C1) both describe the context before a
main event, but the former describes events while
the latter describes general circumstances. We hy-
pothesize that a dataset identifying event occur-
rence can help our model differentiate these el-
ements. We collect an additional non-discourse
dataset, the KBP 2014/2015 Event Nugget dataset,
which annotates the trigger words for events by
event-type. We treat this as a multilabel dataset.
All-The-News (U) For semi-supervised data-
ablation experiments, described in Section 4.3, we
sample 6,000 documents from an unlabeled news
dataset.15 We downsample in the manner described
above for PDTB and RST.

4 Experiments and Results

In this section, we briefly discuss experiments us-
ing VD2 as a single classification task. Then, we
discuss the experiments using VD2 in a multitask
setting. Finally, we discuss our experiments with
data augmentation as ablations. We leave a more
detailed analysis of single-task experiments for Ap-
pendix F, focusing here on multi-task experiments.

4.1 Single Task Experiments

We observe, perhaps unsurprisingly, a 2-point F1-
score improvement by using RoBERTa as a con-
textualized embedding layer rather than Choubey
et al. (2020)’s baseline, ELMo (Peters et al., 2018)
(Roberta in Table 2). We observe an additional
1.5 F1 score improvement by freezing layers in
RoBERTa (+Frozen in Table 2). We find that freez-
ing layers closer to the input results in greater im-
provement, replicating Lee et al. (2019). Finally,

15kaggle.com/snapcrack/all-the-news.
Dataset originally collected from archive.org. We filter
to articles from nytimes.com and reuters.com.

Figure 2: Loss coefficient weightings (α vector) across
tasks and Macro vs. Micro F1 Score shown for: (a)
a mix of trials, (First two blue bars; MT-Micro and
MT-Macro trials) (b) pairwise multitask tasks (other
blue bars), (c) baseline (red bar) (d) data ablation (yel-
low bar; UDA and TDA). Tasks are green in strength
proportional to their α value. When U is used, it is
used with UDA head. Hashed VD2, for TDA, is data-
augmented as described in Section 4.3. Pairwise tasks
shown in some rows to emphasize that a soft-weighting
α achieves maximal F1 scores.

we observe a .5 F1 improvement by incorporating
document, headline, and sinusoidal information
(+EmbAug in Table 2).16

4.2 Multi-Task Experiments
As shown in Table 2, multitask achieves better re-
sults than any single-task experiment. We conduct
our multitask experiment by performing a grid-
search over loss-weighting, α (defined in Equation
1). We select top-performing α for Micro F1-score
as well as Macro F1-score based on a validation
split, and report results on a test split17. As can be
seen, in Figure 2, the weighting achieving the top
Micro F1-score includes datasets VD2, ARG, RST
and PDTB-t, while the weighting achieving the
top Macro F1-score includes datasets VD2, ARG,
VD3, and RST.

To understand the effect of each dataset individ-
ually, we run linear regression on the α and F1-
scores found in our grid search18. The regression
coefficients, β, displayed in Table 3, approximate
the effect each dataset has. We conduct over 600
trials in our grid search and thus have confidence
in these results.

16The .5 F1 improvement is observed across different sen-
tence embeddings variations. See Appendix sections F and E,
specifically Figure 8 and Table 9.

17Train, test and validation splits are specified by (Choubey
et al., 2020).

18I.e. y = βX , where X = α, the loss-weighting scheme
for each trial, and y = F1-score.

kaggle.com/snapcrack/all-the-news
archive.org
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M1 M2 C2 C1 D1 D2 D3 D4 E F1-Macro F1-Micro
Support 460 77 1149 284 406 174 1224 540 396 4710 4710
ELMo 50.6 27.0 58.9 35.2 63.4 50.3 70.5 64.3 94.6 57.21 62.85
RoBERTa 52.1 9.4 65.1 27.7 68.1 51.6 72.4 65.4 96.0 56.43 64.97
+Frozen 51.2 29.3 64.3 29.8 72.2 65.8 73.7 67.1 96.5 61.08 66.54
+EmbAug 54.1 28.0 64.7 35.9 71.8 66.3 72.9 65.9 96.3 61.76 66.92
TDA 8.5 5.2 57.1 29.8 61.1 44.3 66.1 58.2 16.4 56.53 59.22
UDA 49.4 0.0 65.0 28.4 56.0 0.0 70.8 69.8 96.2 48.39 62.72
+TSA 51.9 34.2 63.6 33.1 70.7 66.9 72.5 66.7 96.3 61.77 66.29
MT-Mac 54.9 35.5 63.8 35.9 73.7 70.7 73.7 66.3 96.7 63.46 67.51
MT-Mic 55.4 25.0 67.1 32.8 72.5 68.9 73.6 65.8 96.0 61.89 67.70
Human (Blind) 58.8 36.1 28.3 10.5 75.0 40.0 48.6 22.2 100.0 46.18 46.76
Human (Post-Rec.) 68.7 75.0 70.3 33.3 81.2 79.2 83.0 79.7 100.0 73.69 77.63

Table 2: Overview: F1-scores of individual class labels in VD2 and Macro-averaged F1-score (Mac.) and Micro
F1-score (Mic.). ELMo is the baseline used in (Choubey et al., 2020). RoBERTa+Frozen+EmbAug is our
subsequent baseline. TDA refers to Training Data Augmentation. UDA is Unsupervised Data Augmentation
(+TSA is for “Fine-Tuned UDA with TSA”, described in Section 4.3). MT stands for multitask: MT-Mac is a trial
with α chosen to maximize Macro F1-score while MT-Mic is a trial with α chosen to maximize Micro F1-score.
Human is our agreement with Choubey et al. (2020): Human (Blind) shows agreement after reading VD2’s
annotation guidelines, conferencing and not observing labels. Human (Post-Rec.) is after observing VD2 labels.
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Figure 3: Comparison of class-level accuracy vs. la-
bel for three models: MT-Micro, TDA (which under-
performs baseline for lower-represented labels like M2,
C1), and MT-Macro (which overperforms baseline for
lower represented labels M1, M2, D1, D2). Split y-axis
shown for clarity, due to TDA outliers.

4.3 Data Ablation Experiments

To test our hypothesis that labeled information in
the multitask setup helps us achieve higher accu-
racy, we perform the following ablation: we test
using additional data that does not contain new
label information. We test two methods of data
augmentation: Training Data Augmentation (TDA)
and Unsupervised Data Augmentation (UDA).

TDA enhances supervised learning (DeVries and
Taylor, 2017) by increasing the size of the training
dataset through data augmentations on the train-
ing data; it exploits the smoothness assumption
in semi-supervised learning to help our model be
more robust to local data perturbations (Van Enge-

Mic. Mac. Mic. Mac.
Main .83 1.15 ARG .05 .83
RST .50 .73 PDTB -.69 -1.41
VD3 .49 .53 U -1.14 .68
VD1 .21 .61 KBP -2.17 -2.94
β0 66.26 61.13

Table 3: We run LinReg (LR) on the α weights from
multitask trials to predict Micro and Macro F1-scores
(i.e. LR(α) = Mic. F1-score,Mac. F1-score). LR co-
efficients (β) for each dataset show the effects of each
dataset on the scores. E.g. increasing RST’s weight by
+1 yields .5 Mic. F1-score improvement.

len and Hoos, 2020). For each datapoint (xi, yi)
in our primary dataset, we generate k = 10 noisy
samples (xi1, yi), ..., (xik, yi). We use a sampling-
based backtranslation function to generate augmen-
tations for TDA and UDA. (Edunov et al., 2018).19

UDA is a form of semisupervised learning that
propagates signal from labeled to unlabeled data-
points, making use of the manifold assumption in
semi-supervised learning (Xie et al., 2020; Van En-
gelen and Hoos, 2020). UDA seeks to promote
consistency between model predictions on unla-
beled datapoints pθ(xi) and their augmentations
{pθ(x̂i)}kj=1 by minimizing their KL-divergence.20

19To perform backtranslation, we use Fairseq’s English to
German and English to Russian models (Ott et al., 2019). In-
spired by Chen et al. (2020), we generate backtranslations
using random sampling with a tunable temperature parame-
ter instead of beam search, to ensure diversity in augmented
sentences.

20KL-divergence is minimized via consistency loss:
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Both techniques were chosen as they have been
shown to boost performance of low-resource NLP
classifiers above other semi-supervised methods
(DeVries and Taylor, 2017; Berthelot et al., 2019;
Chen et al., 2020; Xie et al., 2020; Hyun et al.,
2020). Because both techniques introduce more
data without introducing more labels, they address
the question: did multitask learning improve accu-
racy only by introducing more data?

As shown in Table 2 and Figure 2, TDA and
UDA fail to improve performance above single-
task experiments (RoBERTa+EmbAug). To inter-
rogate further, we explored approaches introduced
by Xie et al. (2020) and Hyun et al. (2020) to im-
prove convergence of UDA. Specifically, we use a
confidence threshold, r, to mask out uncertain un-
labeled data; Training Signal Annealing (TSA), to
mask out uncertain labeled data; suppression coeffi-
cient β, to decrease unsupervised loss contributions
for low-support classes; and other methods.21

We test a range of values for each of these hyper-
parameters. In particular, we find that TSA with a
Linear schedule has a dramatic effect on accuracy,
nearly rescuing the performance of UDA. We show
UDA with and without TSA (Figure 3, Table 2) to
demonstrate, yet we are unable to achieve a setting
whereby UDA or TDA beats multitask. Addition-
ally, we add UDA as an unsupervised head in our
multitask setup, similar to Collobert and Weston
(2008) introducing language modeling as an unsu-
pervised head. We find only one setting where it
contributes to our multitask accuracy (MT-Macro
in Figure 2 and Table 3).

5 Discussion

As shown in Figure 3, a multitask approach sig-
nificantly increases performance for underrepre-
sented classes while not hurting performance for
others. This is in contrast to pure data augmen-
tation approaches, like UDA or TDA. Improving
performance in low-support classes improves over-
all Macro F1, as expected, and Micro F1 (Table 2).

Multitask learning can help learn part of the data
manifold where an underrepresented class exists by
learning signal from a class which is correlated. Ta-

Lcon = Ek[D(pθ(xi)||pθ(x̂i,k))]
21See Appendix G for a detailed discussion on these ap-

proaches and our reported explorations. The top-performing
hyperparameters we found were: r = .8, TSA = Linear,
β = 0, k = 5, p = 8, αUDA = .8, τ = .8,; Xie et al. (2020)
do not share their explorations; we find that the choice of p
(the number of unlabeled data) and k (the number of augmen-
tations per datum) have significant impact on performance.
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Figure 5: Change in Confusion between MT-Macro
and Baseline (RoBERTa+EmbAug). Except for Histor-
ical Event, all classes show an improvement. Classes
with Event-Based and Temporal error improvement
highlighted (see Section 5 for discussion on confusion
categories.)

bles 4 and 5 show the correlation between class la-
bels predicted by our multitask model on the same
dataset using different heads.

One insight from Table 4 is a simple sanity
check: the Van Dijk datasets largely agree on the
labels that share similar definitions. For example,
there is a strong correlation between sentences la-
beled Main Event (M1) by the VD2 head and those
labeled Main Event by the VD3 head.

However, a more interesting insight is the
strong correlation existing between underrepre-
sented classes in the VD2 dataset and classes in
other datasets. Classes Consequence (M2) and
Anecdotal Event (D2) are two of the lowest-support
classes, yet they each have strong correlations with
labels in every other dataset.

We pause to comment on the differences in task
weightings observed in Figure 2 for MT-Micro and
MT-Macro. For example, ARG is one of the most
important datasets for MT-Micro, but ignored in
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Argumentation VD3 Dataset VD1 Dataset

Table 4: Spearman correlations between labels predicted with VD2 head and Argumentation, VD3 and VD1 heads.
Note that the two Van Dijk datasets have high correlations between most labels that they have in common. Corre-
lations above |r| > .2 shown.
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RST Dataset PDTB-t Dataset

Table 5: Spearman correlation between labels predicted with VD2 head and RST head and PDTB-t head, on the
Evaluation split of VD2. Note that PDTB-t relations, which tend to be temporally-based, have a positive correlation
with Consequence and Historical Event labels, which are both defined in temporal relation to the Main Event label.
Correlations above |r| > .2 shown.

MT-Macro. In class imbalanced settings, Micro
F1-score is weighted more towards high-support
classes while Macro F1-score favors each class
equally. Because different auxiliary tasks boost
performance for different classes, it is reasonable
to assume that the same α will lead to different
Macro F1 and Micro F1 scores22

One future direction is to identify criteria for
including promising discourse tasks in a multi-
task framework. Bingel and Søgaard (2017) per-
formed such an analysis for multitask setups in-
cluding POS-tagging and Keyphrase detection and
the present work demonstrates the impact such cri-
teria could have in aiding discourse tagging. One
criteria for inclusion might be based on the label
correlations between the main discourse task and
a candidate task. However, obtaining correlations
would require training a multitask model; at that
point, directly calculating the accuracy boost would
be trivial. Identifying discourse-relevant features
in the input data, x, as Bingel and Søgaard (2017)
did in their work, might be more fruitful.

22For more information, see Appendix D.

A competing explanation to our hypothesis that
multitask improves performance through label cor-
relations is that additional datasets simply expose
the model to more of the data-input space, x. Both
UDA and TDA serve as ablation studies for this.

Hyun et al. (2020) show that, for class-
imbalanced problems, regions of the data manifold
that contain the underrepresented classes general-
ize poorly when data augmentation is used. Indeed,
we show in Figure 4 that TDA and UDA over-
predict overrepresented classes, perhaps showing
that the algorithms misjudge the extent of under-
represented classes on the data manifold.

One approach to improving semi-supervision
would be to consider a more sophisticated anneal-
ing algorithm. As discussed in Section 4.3, TSA
nearly rescued UDA’s performance for all labels.
Another would be to generate more augmenta-
tions for underrepresented classes (Shorten and
Khoshgoftaar, 2019); on the training data for TDA
(Chawla et al., 2002) or using a model to identify
promising unlabeled points for UDA. Upsampling
underrepresented labels in sequences, which our
data are, presents a challenge because we can only
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sample the entire sequence (i.e. the document).
Thus, if we try to upsample individual underrepre-
sented classes (i.e. sentences), we will also be up-
sampling overrepresented classes in the sequence.

As a final piece of analysis on our multitask
setup, we show the reduction of confusion between
MT-Macro and Baseline in Figure 5.23 We iden-
tify reductions in two main classes of confusion:
Temporal confusion, or confusion between tempo-
ral ordering of discourse elements (i.e. Previous
Event and Consequence); and Event-based confu-
sion, or confusion between tags semantically simi-
lar except for the presence of an event (i.e. Current
Context and Previous Event). While we hypothe-
size the reduction is due to the addition of temporal
information in PDTB-t and event information in
RST, more experimentation is needed to confirm.

We close our discussion with an analysis of
VD2’s task difficulty. We ask expert annotators
to relabel VD2 data. Our annotators read Choubey
et al. (2020)’s annotation guidelines and labeled a
few trial examples. Then they sampled and anno-
tated 30 documents from VD2 without observing
VD2’s labels. Annotations in this Blind pass were
significantly worse than predictions made by our
best model (Table 2). Then, our annotators ob-
served VD2’s labels on the 30 articles, discussed,
and changed where necessary. Surprisingly, even
in this Post-Reconciliation pass, our annotators
rarely scored more than 80% F1-score.

Thus, Van Dijk labeling task might face an in-
herent level of legitimate disagreement, which MT-
Macro seems to be approaching. However, there
are two classes, M1 and M2, where MT-Macro un-
derperformed even the Blind annotation. For these
classes, at least, we expect that there is further room
for modeling improvement through: (1) annotating
more data, (2) incorporating more auxiliary tasks in
the multitask setup, or (3) learning from unlabeled
data, by fine-tuning RoBERTa (Mosbach et al.,
2021), using an adapter-based method (Wang et al.,
2020) or another semi-supervised algorithm (one
candidate besides UDA is Berthelot et al. (2019)).

6 Related Work

Ruder (2017) gives a good overview of multitask
learning in NLP more broadly. A major early work
by Collobert and Weston (2008) uses a single CNN
architecture to jointly learn 5 different supervised
NLP tasks (e.g. Part-of-Speech Tagging) and one

23For a more extended analysis, see Appendix C

unsupervised task (Language Modeling), improv-
ing performance in their main task. Our work dif-
fers in several key aspects: (1) we are concerned
with sentence-level tasks; (2) we consider a softer
approach to task inclusion, α; (3) we perform a
deeper analysis of why multitask helps, including
examining inter-task prediction correlations and
class-imbalance.

Aside from using different datasets that share
the same language, researchers have also used
datasets from one language to perform tasks in
another. From Information Extraction (Wiedemann
et al., 2018; Névéol et al., 2017; Poibeau et al.,
2012), Event Detection (Liu et al., 2018; Lejeune
et al., 2015; M’hamdi et al., 2019), Part-of-Speech
tagging (Cardenas et al., 2019; Plank et al., 2016;
Naseem et al., 2009), to even Discourse Analysis
(Liu et al., 2020), English datasets have been trans-
lated into a target language, a target language has
been translated into English, or a joint multilingual
space has been learned. Our task may also have
benefited from multilingual discourse datasets.

Most state-of-the-art research in discourse anal-
ysis specifically has focused on classifying the dis-
course relations between pairs of clauses, as is
practice in the Penn Discourse Treebank (PDTB)
(Prasad et al., 2008) and Rhetorical Structure The-
ory (RST) dataset (Carlson et al., 2003). Cor-
pora and methods have been developed to predict
explicit discourse connectives (Miltsakaki et al.,
2004; Lin et al., 2009; Das et al., 2018; Malmi
et al., 2018; Wang et al., 2018) as well as implicit
discourse relations (Rutherford and Xue, 2016; Liu
et al., 2016; Lan et al., 2017; Lei et al., 2017).
Choubey et al. (2020) built a news article corpus
where each sentence was labeled with a discourse
label defined in Van Dijk schema (Van Dijk, 2013).

Since discourse analysis has limited resources,
some work has explored a multitask framework to
learn from more than one discourse corpus. Liu
et al. (2016) propose a CNN based multitask model
and Lan et al. (2017) propose an attention-based
multitask model to learn implicit relations in PDTB
and RST. The main difference in our work is the
coverage and flexibility of our framework. This
work is able to learn both explicit and implicit dis-
course relations; multilabel and multiclass tasks;
and labeled data and unlabeled data in one frame-
work, which makes it possible to fully take advan-
tage of corpora like PDTB and RST as well as
corpora developed using the Van Dijk schema.
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7 Conclusion

We have shown a state-of-the-art improvement of
4.9 Micro F1-score above baseline, from 62.8%
F1-score to 67.7% F1-score, for discourse tagging
on the NewsDiscourse dataset, the largest dataset
currently available for Van Dijk discourse tagging.
This dataset has a number of challenges: distinc-
tions between discourse labels are complex and
multifaceted and this dataset is class-imbalanced,
with the overrepresented classes being 3 times more
likely than the underrepresented classes.

We showed that a multitask approach is espe-
cially helpful in this circumstance, improving per-
formance for underrepresented labels. One reason
might be the high correlations observed between la-
bel predictions between tasks, indicating that auxil-
iary tasks are giving signal to our primary task’s un-
derrepresented labels. This includes a novel dataset
that we introduce based on the same schema with
some minor alterations. We show an additional
benefit that our approach can reconcile datasets
with slightly different schema, allowing NLP re-
searchers not to “waste” valuable annotations.

Finally, we perform a comparative analysis of
other strategies proposed in the literature for deal-
ing with small datasets or class-imbalanced prob-
lems. We show in exhaustive experiments, in Ap-
pendix F, that these approaches do not help us im-
prove above baseline. These negative experiments
include extensive analyses and provide a justifica-
tion for the necessity of our multitask approach.
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A Appendices Overview

The appendices convey two broad areas of analy-
sis: (1) Additional explanatory information for our
multitask setup and (2) Negative Experiments and
Results.

Appendix B contains more information on the
datasets used, including labelsets for previously
published work, the schema and annotation guide-
lines for the novel dataset we introduce, and pro-
cessing information for RST and PDTB. Appendix
C and D contain explanatory analysis. Appendix C
shows that our multitask setup is reducing confu-
sion between several important pairs of tags, giving
further information and discussion beyond Figure 5
in the main body. Appendix D shows, for each tag,
which α-weighting across tasks yields the highest
score.

Appendix F provides more information about
the negative results we obtained throughout our
research and the explorations we performed, in-
cluding details and mathematical definitions char-
acterizing the additional experiments we ran. We
believe that it is important to publish about negative
results, to help fight against publication bias (East-
erbrook et al., 1991) and to help other researchers
considering similar techniques. Where possible,
we conducted explorations to understand why such
results were negative, and what hyperparameters
might be tuned to produce a positive results.

B Additional Information on Multi-task
Datasets

We summarize the tag-set in each of the datasets
we used in Table 6. For all previously published
datasets, the tag schema can be found in reference
datasets.

B.1 Schema Definition Introduced in VD3
We provide additional information into VD3, the
novel dataset we provide in this work. Tagging
was done by the first author, who has worked at
The New York Times, a major newspaper, for 4
years. We consider him an expert annotator, and as
mentioned in Section 3, he checked his process by
relabeling 10 articles from VD1, finding an intean-
notator agreement of κ = .69.

The schema used for VD3 was based off the
schema introduced by Van Dijk (2013). As such,
the classification guidelines were:

Lede: A hook to engage the reader in the main
event: can be an anecdote, question or observation.

Main Event: The major subject of the news
report. It can be the most recent event that gave rise
to the news report, or, in the case of an analytical
news report, it can be a general phenomenon, a
projected event, or a subject.

Consequence: An event or phenomenon that is
caused by the main event or that directly succeeds
the main event.

Previous Event: A specific event that occurred
shortly before the main event. It either directly
caused the main event, or provides context and
understanding for the main event.

Circumstances: The general context or world-
state immediately preceding the main event. Simi-
lar to Previous Event, but not necessarily tied to a
specific event.

Secondary Event: An event occurring in paral-
lel to the main event, also succeeding and/or be-
ing caused by previous events or circumstances,
usually used discursively to illustrate a trend. For
example, "lax oversight" (circumstance) might be
the cause of "major oil spill #1" (main event), and
also "minor oil spills #2, #3 and #4" (secondary
events).

Historical Event: An event occurring more than
2 weeks prior to the main event. Might still impact
or cause the main event, but is more distal.

Expectation: An analytical insight into future
consequences or projections made by the journalist.

Evaluation: A summary, opinion or comment
made by the journalist on any of the other discourse
components.

Explanation: A comment or opinion made by
the journalist or source seeking to either establish
a causal relation or justify in some other manner
why events are occurring.

Verbal Reaction: A comment made by a source
in a news article that does not necessarily serve an-
other discursive purpose. Note: VD2 discards this
category and includes another dimension (yi,2 =
“Speech” or “Not Speech”) on each sentence to
capture this tag.

B.2 Additional Information on PDTB and
RST Processing

Both PDTB and RST are relational discourse
datasets, which provide span-level annotations and
relational links between spans. We process each as
shown in Figure 6 to better fit these datasets into our
multitask framework. We process each so that rela-
tional labels are mapped onto sentences if a span
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Figure 6: We processed the Penn Discourse Treebank
and Rhetorical Structure Theory datasets, which are
both hierarchical and relation-focused, to be sentence-
level annotation tags.

exists within that sentence that is originally part of
that relation. As shown in the figure, this holds for
intersentential and intrasentential relations, and it
results in a multilabel schema.

In Table 7, we show the heuristic mapping
scheme that we developed to reduce the dimen-
sionality of the RST dataset.

C Confusion Matrices

We identify two main classes of error, Temporal
and Event-based error, from the confusion matrix
shown in Figure 7a.

In the first case, temporal error, we observe con-
fusion based on the temporal relation of events in
discourse elements. For example, Previous Events,
Historical Events and Current Contexts happen be-
fore the Main Event, while Consequences and Ex-
pectations happen after. The confusion between
Previous Event and Consequence is one example of
a temporal confusion, as is the confusion between
Expectation and Previous Event. To address this
confusion, we introduced a filtered down PDTB
to include temporal relations. As can be seen in
Table 4, PDTB-t is positively correlated with Con-
sequence, and as shown in Table 5, PDTB-t con-
tributes to temporal tags, like Previous Event and
Expectation.

In the second case, Event-based error, we ob-
serve confusion between discourse elements with
similar meaning except for the present or absence
of an event. For example, Current Context and
Previous Event contextualize a Main Event, but
Previous Event contains the literal description of
an event, while Current Context does not. A similar
confusion can be seen between Anecdotal Event
and Evaluation. We hypothesized that adding an
KBP, a dataset specifically focused on identifying
events, would reduce this error type, however, that
was not observed. Further work tuning the size of
the event dataset, or further tuning α, might yield
more favorable results.
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(a) Baseline confusion matrix (for RoBERTa +EmbAug.) Ma-
jor classes of confusion are: (a)Temporal, ex. between Conse-
quence and Previous Event (b) Semantic, ex. between Current
Context and Previous Event.
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(b) MT-Macro confusion matrix. We see a significant reduction
in uncertainty for both event-based and temporal confusions.

Figure 7: Confusion Matrices for Baseline RoBERTa
compared with MT-Macro.

Overall, the addition of the multitask datasets
decreased confusion in these two main error classes,
as shown in Figure 7b.

D Interrogating Multitask Dataset
Contributions

In the main body of the paper, we interpreted the
effects of the multitask setup by examining the
overall increase in performance (Figure 2), the re-
gressive effects of each dataset (Table 3) and the
correlations between tag-predictions (Tables 4, 5).
Another way to examine the contributions of each
task is to analyze which combination of datasets
results in the highest F1-score for each tag.

In Table 8, we show the α-weighting that results
in the optimal F1-score for each tag. This gives us
a sense of which datasets are important for that tag
and how much of an improvement they give over
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Schema Name Tagset
Van Dijk Schema { Lede, Main Event (M1), Consequence (M2), Circumstances (C1), Previous Event (C2),

Historical Event (D1), Expectation (D4), Evaluation (D3), Verbal Reaction }
VD2 Van Dijk ⊕ { Anecdotal Event (D2) }
VD3 Van Dijk ⊕ { Explanation, Secondary Event }
Argumentation { Anecdote, Assumption, Common-Ground, Statistics, Testimony }
Penn Discourse Tree-
bank

{ Temporal, Asynchronous, Precedence, Synchrony, Succession }

Rhetorical Structure
Theory

{ Elaboration, Joint, Topic Change, Attribution, Contrast, Explanation, Background, Evaluation,
Summary, Cause, Topic-Comment, Temporal }

KBP Event Nugget { Actual Event, Generic Event, Event Mention, Other }

Table 6: Overview of the tagsets for each of the datasets used.

RST Tag-Class RST Tags in Class
Attribution Attribution, Attribution-negative
Evaluation Evaluation, Interpretation, Conclusion, Comment
Background Background, Circumstance
Explanation Evidence, Reason, Explanation-argumentative
Cause Cause, Result, Consequence, Cause-result
Joint List, Disjunction
Comparison Comparison, Preference, Analogy, Proportion
Manner-Means Manner, Mean, Means
Condition Condition, Hypothetical, Contingency, Otherwise
Topic-
Comment

Topic-comment, Problem-solution, Comment-topic, Rhetorical-question, Question-answer

Contrast Contrast, Concession, Antithesis
Summary Summary, Restatement, Statement-response
Elaboration Elaboration-additional, Elaboration-general-specific, Elaboration-set-member, Example, Definition,

Elaboration-object-attribute, Elaboration-part-whole, Elaboration-process-step
Temporal Temporal-before, Temporal-after, Temporal-same-time, Sequence, Inverted-sequence
Enablement Purpose, Enablement
Topic Change Topic-shift, Topic-drift

Table 7: The mapping we developed to reduce dimensionality of the RST Treebank. The left column shows the
tag-class which we ended up using for classification and the right column shows the RST tags that we mapped to
that category. We determined this tag-mapping heuristically.

the baseline MT-Micro.

For instance, a strong .3 weight for PDTB-t in-
creases the performance for the Expectation tag and
a strong .27 weight for RST increases the perfor-
mance of the Historical Event tag. This is possibly
because both the Expectation tag and the Historical
Event tag describes events either far in the future
or far in the past relative to the Main Event, and
both PDTB-t and RST contain information about
temporal relations.

Interestingly, and perhaps conversely, a strong
α-weighting for the ARG dataset (> .25) increases
performance for Main Event, Previous Event, and
Current Context. This set of tags might seem coun-
terintuitive, since they are all dealing with factual
statements and events, and by definition contain
less commentary and opinion than tags like Ex-
pectation and Evaluation. However, if we cross-
reference Table 8 with Table 4, we see strong posi-
tive correlations between these tags and ARG tags

like Common Ground, Statistics and Anecdote24

E Additional Explanatory Results for
Single Task Experiments

E.1 Embedding Augmentations

We experiment with concatenating different em-
beddings to our sentence-level embeddings. These
help us incorporate information on document-
topic and sentence-position: headline embeddings
(Hi) generated via the same method as sentence-
embeddings; sentence-level positional embeddings
(vanilla (Pi,j) and sinusoidal (P (s)

i,j ) (Vaswani et al.,
2017)); document embeddings (Di), and document
arithmetic (Ai,j).25

24We were surprised that ARG’s Anecdote tag does not
correlate with VD2’s Anecdotal Event tag, but perhaps the
definitions are different enough that, despite the semantic sim-
ilarity between the labels, they are in fact capturing different
phenomena.

25Di and Ai,j are generated for sentence j of document
i by using self-attention on input sentence-embeddings to
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ARG

VD3

VD1

RST PD
TB-t

KBP
Uns

up
.

Tag F1-Score (MT-Micro)
Main Event .28 .19 .05 58.37 (54.91)
Consequence .18 .27 .09 40.00 (35.48)
Previous Event .30 .010 .010 67.06 (63.76)
Current Context .27 .09 .09 .09 38.75 (35.94)
Historical Event .18 .27 .09 77.02 (73.71)
Anecdotal Event .09 .09 .09 .09 .09 .09 75.84 (70.73)
Evaluation .18 .09 .18 .09 74.78 (73.71)
Expectation .010 .010 .30 68.94 (66.26)

Table 8: Maximum multitask weighting, α, by tag, for secondary datasets. Tag F1-score shows the maximum
F1-score for the tag, and the left columns show the α that achieves this weighting. Right-most column is shown
simply for comparison. Note that PDTB-t contributes most to Expectation, while Argumentation contributions
most to Main Event, Previous Event and Current Context.

Embedding Augmentations δ Micro F1
⊕P (s)

i ⊕Di ⊕Ai ⊕Hi .38
⊕P (s)

i ⊕Di ⊕Ai .37
⊕P (s)

i ⊕Di ⊕Hi .35
⊕Pi ⊕Di ⊕Ai ⊕Hi .33
⊕Hi .11
⊕Di .00
⊕Di ⊕Ai .00
⊕Pi -.01
⊕P (s)

i -.08

Table 9: Sample of embedding augmentation combina-
tions. Micro F1-score increase gained by adding the
embedding augmentation above +Frozen. P

(s)
i is si-

nusoidal and Pi is vanilla positional embeddings. Di is
document embeddings andAi is document embeddings
arithmetic. Hi is headline embeddings.

Headline embeddings are generated for docu-
ments with a headline via the same method as
sentence-embeddings, and treated as sentence 0.
Vanilla positional embeddings and sinusoidal em-
beddings are as described in (Vaswani et al., 2017),
but on the sentence-level rather than the word level.

Table 9 shows the results of these embedding
augmentation experiments. As can be seen, these
embeddings interact to increase accuracy: while
no embedding along increases the accuracy, com-
binations of different additional embeddings have
a higher increase in F1 improvement. Such aug-
mentations, as we and others have demonstrated,
are very important for document-level tasks such
as discourse analysis, likely because they increase
the amount of document-level information that is
available (Choubey et al., 2020; Li et al., 2021).

generate a document-level embedding, and performing the
following arithmetic: Di = Self-Att({Si,j}Ni

j=1), and Ai,j =
Di ∗ Si,j ⊕Di − Si,j , as described in Choubey et al. (2020).
Si,j is the sentence-embedding for sentence j of document i,
and self-attention is defined by Cheng et al. (2016).

Figure 8: Here we show a sample of the different layer-
wise freezing that we performed. “Emb.” block is the
embedding lookup table for word-pieces. “Encoder”
blocks closer to the input are visualized on the left, and
blocks to the right are closer to the output. The red bar
indicates unfrozen RoBERTa.

E.2 Layer-Wise Freezing

As explored by Lee et al. (2019), layerwise-
freezing for BERT-based architectures can have
a dramatic effect on the training accuracy. This is
especially true when the datasets are small. We
experimented with freezing different layers of our
RoBERTa architecture. As shown in Figure 8, we
observed a 1.5 F1-score boost from freezing all
but the top-two layers. We found that freezing
combinations of higher-level layers yielded similar
boosts, while freezing combinations of lower-level
layers was detrimental. As suggested by Lee et al.
(2019), this is likely due to the higher-level seman-
tic information contained in the higher-level layers.
This finding is especially relevant in a discourse
task, where the labels convey abstract semantic
information.
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F Additional Negative Results

In this section, we describe additional negative ex-
periments. We hope that by sharing our exploration
in this Appendix, we might inspire researchers
working with similar tasks to consider these meth-
ods, or advancements of them. Table 11 shows the
results of the experiments described in this section.

F.1 Sentence Embedding Variations

There are, as of this writing, three different tech-
niques that use BERT-based word embeddings to
perform sentence-embeddings in the literature (i.e.
they go beyond simply using BERT’s [CLS] to-
ken): Sentence-BERT, Sentence Weighted-BERT
(Reimers and Gurevych, 2019), and SBERT-WK
(Wang and Kuo, 2020). Sentence-BERT trains a
Siamese network to directly update the [CLS] to-
ken. Sentence Weighted BERT learns a weight
function for the word embeddings in a sentence.
SBERT-WK proposes heuristics for combining
the word embeddings to generate a sentence-
embedding.

None of the sentence-embedding variations
yielded any improvement above the RoBERTa
<s> token. It’s possible that these models, which
were designed and trained for NLI tasks, do not
generalize well to discourse tasks. Addition-
ally, we test two baselines: using the CLS to-
ken from BERT-base embeddings and generating
sentence-embeddings using self-attention on Elmo
word-embeddings, as described in (Choubey et al.,
2020). These baselines show no improvement
above RoBERTa. We see a need for a general pre-
trained sentence embedding model that can transfer
well across tasks. We envision a sort of masked-
sentence model, instead of a masked-word model.
Such a model would extend next sentence predic-
tion (Devlin et al., 2019); instead of simply pre-
dicting the next sentence based on the previous
embedding, we would predict arbitrarily masked
sentences from a sequence of sentences, thus giving
greater contextualization. We leave this direction
to future research.

F.2 Supervised Head Variations

F.2.1 Classification Task Variations
For variations on the classification task, we con-
sider using a Conditional Random Field layer in-
stead of a simple FF layer, which has been shown
to improve results (Li et al., 2021). However, we
do not see an improvement in this case, possibly be-

cause the Bi-LSTM layer prior to classification al-
ready induces sequential information to be shared.

We also experiment with a hierarchical clas-
sification approach. Inspired by Silva-Palacios
et al. (2017), we construct K clusters, c0, ..., ck,
of semantically-related labels in labelset Y such
that each class falls into one cluster of size
Nc0 , ...Nck .26 We construct variables from each
class-label yi: ŷi(c), ŷi(c0)...ŷi(ck):

ŷi
(c) = {1(yi ∈ cluster j)}Kj=1

ŷi
(c0) = {1(yi = l)}Nc0l=1

...

ŷi
(ck) = {1(yi = l)}Nc0+...+Nckl=Nc0+...+Nck−1

where L = Nc0 + ... + Nck−1
is the original

number of labels. We try modeling these vari-
ables two ways. (1) As a 2-level hierarchy, where
the top-level, ŷi(c), is one task and each sublayer,
ŷi

(c0)...ŷi
(ck), is a separate task or (2) as a multil-

abel classification task of ŷi, where ŷi = ŷi
(c) ⊕

ŷi
(c0) ⊕ ...⊕ ŷi(ck).
Our hierarchical classification shows no im-

provement above vanilla multiclass classification.
It’s possible that the transformer architecture is al-
ready learning the label hierarchy implicitly, and
the information we try to pass in by structuring the
output space does not improve the prediction.

F.2.2 Loss Variations

Method Mac. Mic.
GDL 55.45 64.41
GDL(2) 49.90 62.82
GADL 29.39 41.97
(MT-Micro) 61.89 67.70

Table 10: Macro-F1 (Mac.) and Micro F1 (Mic.)
scores for variations of Multiclass Dice Loss. DL:
Vanilla Dice Loss, DL(2): the Square Form of Dice
Loss, ADL: self-adjusting dice loss (Li et al., 2020).
Multiclass generalized as in (Sudre et al., 2017).

We consider losses other than a vanilla Cross-
Entropy loss for the multiclass tasks and Binary
Cross-Entropy loss for the multilabel tasks. Specif-
ically, we experiment with variations of Dice Loss
for the multiclass tasks, which has been proposed
for class-imbalanced classification problems in
computer vision (Milletari et al., 2016) and NLP

26Semantic-relatedness is given a priori by the tag defini-
tions (Yarlott et al., 2018; Choubey et al., 2020).
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M1 M2 C2 C1 D1 D2 D3 D4 E F1-Macro F1-Micro
SBERT 52.0 11.2 61.7 31.1 67.9 43.1 69.9 64.9 96.6 55.39 63.38
+Frozen 54.8 19.3 62.6 29.9 70.2 53.5 70.0 61.8 96.2 57.59 64.14
+EmbAug 54.6 25.0 62.8 33.0 69.8 45.7 71.9 65.2 95.7 58.20 64.95
SWBERT 51.3 14.5 61.3 30.2 70.1 55.1 71.2 64.3 97.0 57.23 64.14
+Frozen 52.4 20.6 62.6 31.5 68.7 61.1 73.9 66.0 95.9 59.17 65.62
+EmbAug 52.2 12.0 64.6 31.7 72.2 50.0 73.0 66.8 96.7 57.68 65.79
Hier. 47.5 0.0 59.4 24.3 68.3 66.0 71.6 63.8 91.3 54.68 62.51
Dice 55.4 18.5 63.7 29.5 70.8 25.2 72.9 64.2 95.6 55.09 64.41
CRF 54.6 16.4 62.8 30.0 70.1 65.5 72.3 64.2 96.2 59.13 65.43
class scale 53.8 33.8 62.1 32.1 71.4 68.5 72.8 65.5 95.9 61.76 66.06
MT-Mic 55.35 25.0 67.06 32.78 72.5 68.88 73.63 65.8 96.0 61.89 67.70

Table 11: Negative Results: We show the results of experiments and manipulations that did not increase the
accuracy of our model. For all variations that we report, we report the maximum score observed under an array of
hyperparameter settings. All of these tasks include +Freezing and +EmbAug.

(Li et al., 2020). Dice Loss seeks to directly opti-
mize F1-score. It differentiates F1, with binary
yi ∈ {0, 1}, by defining precision of a single
prediction as Prec(xi) = p(yi = 1|xi) = pi,
and recall as Recall(xi) = yi. Then, F1(xi) =
2Prec(xi)×Recall(xi)
Prec(xi)+Recall(xi)

=
2pi,1yi,1
pi,1+yi,1

= Dice Score(xi).

Across a dataset, Binary Dice Loss can be ex-
pressed as DL(X) = 1 − 2

∑
i pi,1yi,1+Nγ∑

i pi,1+
∑
i yi,1+Nγ

,
where γ is a hyperparameter (typically γ = 1)
to ensure that negative examples (yi = 0) also
contribute to the loss. Binary Dice loss can also be
expressed in the square form (Milletari et al., 2016),
DL(2)(X) = 1− 2

∑
i pi,1yi,1+Nγ∑

i p
2
i,1+

∑
i y

2
i,1+Nγ

. Additionally,

(Li et al., 2020) proposed a self-adjusting Binary
Dice Loss (ADL) by multiplying pi by (1− pi) to
downweight “easy” examples, or examples where
pi is close to 0 or 1.

A multiclass Dice Loss for k classes can be
derived either through macro-averaging, micro-
averaging, or a squared sum, GDL(X) =∑k

j=1
1
N2
j
∗DL(pj , yj), introduced by (Sudre et al.,

2017). As shown in Table 10, Dice Loss (DL) and
Self-Adjusting Dice Loss (SDL) fail to improve
above Cross-Entropy Loss. The top-scoring loss
was the Vanilla DL formulation, with Sudre et al.
(2017)’s generalization scheme. In all trials, DL
and DL(2) are comparable but SDL underperforms.

The addition in ADL of the term (1−pi,1) down-
weights tags that the model is more confident about.
This idea has a similar aim as TSA (Xie et al.,
2020), which excludes high-confidence predictions.
The model becomes more confident as it is trained
further; however, under ADL, it thus gets down-
weighted more. It’s possible that with a TSA-like
decay schedule, ADL would not underperform.
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(b) The effect of different numbers of augmentations per
each unlabeled datapoint on F1-score, k.

Figure 9: We investigate two different proportions
of unlabeled dataset size. While we have found p’s
plateau, we have not yet found k’s.

F.3 Multitask Head Freezing

Additionally, we experiment with freezing auxiliary
heads (heads for tasks that are not VD2) in order
to propagate more of the gradient into the shared
layers. Note, according to Figure 1, that this is only
the FF layer, which is not a major architectural
change. We find that this yields no improvement.

G Unsupervised Data Augmentation:
Analysis

Semi-supervised learning approaches can often
achieve high accuracy with a only a small labeled
dataset (Van Engelen and Hoos, 2020). For in-
stance, Blum and Mitchell (1998) achieve a 95% ac-
curacy with a labeled set 63 times smaller than their
unlabeled set. However, there are cases, such as
in domain-shifted settings, where more unlabeled
data might hurt semisupervised training (Ruder and
Plank, 2018).
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Figure 10: The effect of increasing the unsuper-
vised/supervised dataset ratio p, on class predictions.
As the p increases, the number of underrepresented
classes predicted approaches the true number, Ytrue.

G.1 Dataset size exploration

In their original paper, (Xie et al., 2020) do not
give insight into how many unlabeled datapoints
researchers should use in their semisupervised se-
tups. Here we explore that by varying the size of
our semi-supervised dataset in two dimensions: (a)
the size of the unlabeled set relative to the labeled
set, p and (b) the number of augmentations, k per
unlabeled datum. We show our results in Figure 9.
As shown in Figure 9a, we reach a plateau between
p = 6–10. We do not observe a plateau for the
number of augmentations per datum (Figure 9b).

We hypothesize that the effect of increasing p is
to help the model better predict underrepresented
classes. As shown in Figure 10, as p increases,
UDA is much better able to generalize the data
manifold, and not to overpredict overrepresented
classes. We did not explore, however, the effects
of varying p for different classes; there are still
many underepresented classes where the optimal p
is higher than 10.

We hypothesize that adding more augmentations
per unlabeled datapoint is helpful in training be-
cause more augmentations might help the model
more robustly explore the region of space around
each unlabeled datapoint, thus mapping that region
better. It’s also possible that with more augmenta-
tions, say, k = 10, 20, 30, we would have enough
signal to propagate to even more unlabeled data.
We leave this question to future work.

G.2 Learning-techniques

Minimizing consistency loss, as a specific approach
to semi-supervised learning, has been explored
prior to the proposal of UDA, most notably with
the Mean Teacher method (Tarvainen and Valpola,
2017) and the Π method (Laine and Aila, 2017),
and UDA mirrors such methods in the core opti-
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Figure 11: F1-Score on evaluation data across training
for UDA with different TSA training schedules: Linear,
Exponential and Log. UDA without TSA is shown for
comparison.

mization setup. However, simply minimizing con-
sistency loss along with supervised loss fails to
converge to a global optimum.

To address this problem, Xie et al. (2020) in-
troduce curriculum learning techniques, including:
(1) Training Signal Annealing (TSA), (2) softmax
temperature sharpening, and (3) confidence-based
thresholding. Authors do not show how parameters
to these effect the training output, so we produce
an analysis here. Based on our analysis, we find
that their most important tool for our task is TSA.

G.2.1 TSA
TSA is defined as:

min
θ

1

Z

∑
x,y∗∈B

[−1 [pθ(y
∗|x) < ηt] log pθ(y

∗|x)]

Z =
∑

x,y∗∈B
1 [pθ(y

∗|x) < ηt]

In other words, training examples are only con-
sidered if the model is confidet in them, pθ(y∗|x),
is above a certain value, ηt. ηt is increased through-
out training; it is set to ηt = αt ∗ (1 − 1

K ) + 1
K ,

where K is the number of classes (y ∈ {1, ...,K})
and αt increases either with a linear ( tT ), log
(1−exp(− t

T ∗5)) or exponential (exp(( tT −1)∗5))
schedule, where T is the number of training itera-
tions.

We show the results of using a linear-decay
schedule, an exponential-decay schedule and a
logarithmic-decay schedule in Figure 11. As can
be seen, both linear-decay and exponential decay
achieve the same optimum, but the linear schedule
arrives faster; the log schedule achieves the same
optimum as UDA without TSA.

G.2.2 UDA Coefficient, ζ
We show the effects of other UDA hyperparameter
tuning in Figure 12. The UDA coefficient, ζ , shown
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(a) Effect of increasing the weight of the unsupervised head
in UDA relative to the supervised head.
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(b) Effect of UDA’s softmax temperature parameter on Micro
F1-score.
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(c) Effect of UDA’s confidence threshold, r on Micro F1-
score.
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(d) Effect of SCL’s class-scaling parameter, β, on Micro
F1-Score (Hyun et al., 2020).

Figure 12: Different hyperparameter configurations
and their effect on the Micro F1 for VD2. Overall, pa-
rameters either do not affect the performance (like r) or
hurt performance. For example, when ζ is 0, then UDA
is a supervised task; when β is 1, SCL is just CL.

in Figure 12a, simply weights the consistency loss
contribution to the overall loss:

LUDA = LCE + αLcon

Lcon = Ek[D(pθ(xi)|pθ(x̂i,k))]

where LCE is cross-entropy loss and k is the num-
ber of data augmentations. A lower ζ , which results
in a higher-performing model, corresponds to less
contribution by consistency loss.

G.2.3 Softmax Temperature, τ
The next two parameters, softmax temperature, τ
and confidence threshold, r are designed to in-
crease the weight of the unlabeled dataset. The
softmax temperature sharpens the predictions on
original unlabeled datapoint (or in one implemen-
tation, the augmented datapoint27) through the fol-
lowing operation:

27https://github.com/SanghunYun/UDA_
pytorch/blob/master/main.py#L113

p
(sharp)
θ (y|x) =

exp(zy/τ)∑
y′ exp(zy′/τ)

where zy is the logit output of the neural network.
So, a lower temperature increases the values in each
exponent, and sharpens the probability distribution
over the classes, resulting in a higher consistency
loss. According to Figure 12b, the performance
increases as τ increases, peaking at .8.

G.2.4 Confidence Threshold, r
The confidence threshold, r, masks out predictions
on unlabeled data that the model is not confident
about.

LUDA = LCE + I(max
y′

pθ(y
′|x) > r)Lcon

(It is important to note that TSA does exactly
the same thing but in reverse, but TSA is on the
supervised data while the confidence threshold is
on the unlabeled data.) There is essentially no
pattern observed between changing r and the model
performance, according to Figure 12c.

G.2.5 Suppressed Consistency Loss (SCL)
We try a simple alteration to semi-supervised learn-
ing with consistency loss (UDA) called suppressed
consistency loss, (SCL). SCL was suggested by
Hyun et al. (2020) to reduce the impact of consis-
tency training on lower-represented classes, where,
authors claim, the manifold of the latent space is
underlearned and semi-supervised learning can be
harmful..

LSCL(Xi) = g(Nc) ∗ Lcon(Xi)

where c = argmax(fθ(Xi)) and g(z) is a function
inversely proportional to z: g(z) = β1−

z
Nmax (with

β ∈ (0, 1]). Nc is the number of training samples
in the class predicted by the model and Nmax is
the number of samples of the class with the most
frequency.

The higher β is the more class imbalance is used
to downweight consistency loss. As can be seen,
performance roughly increases as β approaches 0,
indicating that suppressed consistency loss is not
helpful.

https://github.com/SanghunYun/UDA_pytorch/blob/master/main.py#L113
https://github.com/SanghunYun/UDA_pytorch/blob/master/main.py#L113

