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Abstract

Relating entities and events in text is a key
component of natural language understanding.
Cross-document coreference resolution, in par-
ticular, is important for the growing interest in
multi-document analysis tasks. In this work
we propose a new model that extends the effi-
cient sequential prediction paradigm for coref-
erence resolution to cross-document settings
and achieves competitive results for both en-
tity and event coreference while providing
strong evidence of the efficacy of both se-
quential models and higher-order inference in
cross-document settings. Our model incremen-
tally composes mentions into cluster represen-
tations and predicts links between a mention
and the already constructed clusters, approxi-
mating a higher-order model. In addition, we
conduct extensive ablation studies that provide
new insights into the importance of various in-
puts and representation types in coreference.

1 Introduction

Relating entities and events in text is a key com-
ponent of natural language understanding. For ex-
ample, whether two news articles describing hurri-
canes are referring to the same hurricane event. A
crucial component of answering such questions is
reasoning about groups entities and events across
multiple documents.

The goal of coreference resolution is to com-
pute these clusterings of entities or events from
extracted spans of text. While within-document
coreference has been studied extensively (e.g., Lee
et al. (2017, 2018)), there has been relatively less
work on the cross-document task. However, grow-
ing interest in multi-document applications, such as
summarization (e.g., Liu and Lapata (2019); Fabbri
et al. (2019)) and reading comprehension (e.g., Yan
et al. (2019); Welbl et al. (2018)), highlights the
importance of developing efficient and accurate
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cross-document coreference models to minimize
error-propagation in complex reasoning tasks.

In this work we focus on cross-document coref-
erence (CDCR), which implicitly requires within-
document coreference (WDCR), and propose a
new model that improves both coreference per-
formance and computational complexity. Recent
advances in within-document entity coreference
resolution have shown that sequential prediction
(i.e., making coreference predictions from left to
right in a text1) achieves strong performance (Lee
et al., 2017) with lower computational costs. This
paradigm is also well suited to real-world streaming
settings, where new documents are received every
day, since it can easily find corefering events and
entities with already processed documents, while
most non-sequential models would require a full re-
run. In this work, we show how this technique can
first be extended to cross-document entity coref-
erence and then adapted to cross-document event
coreference.

Our method is also able to take advantage of the
history of previously made coreference decisions,
approximating a higher-order model (i.e., operating
on mentions as well as structures with mentions).
Specifically, for every mention, a coreference deci-
sion is made not over a set of individual mentions
but rather over the current state of coreference clus-
ters. In this way, the model is able to use knowl-
edge about the mentions currently in a cluster when
making its decisions. While higher-order models
have achieved state-of-the-art performance on en-
tity coreference (Lee et al., 2018), they have been
used infrequently for event coreference. For exam-
ple, Yang et al. (2015) use one Chinese restaurant
process for WDCR and then a second for CDCR
over the within-document clusters. In contrast, our
models make within- and cross-document corefer-

1Note that this is different from mention-pair models,
which generally refer to computing scores between all pairs
of mentions, regardless of ordering.
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ence decisions in a single pass, taking into account
all prior coreference decisions at each step.

Our contributions are: (1) we present the first
study of sequential modeling for cross-document
entity and event coreference and achieve compet-
itive performance with a large reduction in com-
putation time, (2) we conduct extensive ablation
studies both on input information and model fea-
tures, providing new insights for future models.

2 Related Work

Prior work on coreference resolution is gener-
ally split into either entity or event coreference.
Entity coreference is relatively well studied (Ng,
2010), with the largest focus on within-document
coreference (e.g., Raghunathan et al. (2010); Fer-
nandes et al. (2012); Durrett and Klein (2013);
Björkelund and Kuhn (2014); Martschat and Strube
(2015); Wiseman et al. (2016); Clark and Manning
(2016); Lee et al. (2018); Kantor and Globerson
(2019)). Recently, Joshi et al. (2019) showed that
pre-trained language models, in particular BERT-
large (Devlin et al., 2019), achieve state-of-the-
art performance on entity coreference. In con-
trast to prior work on entity coreference, which
is primarily sequential (i.e., left to right) and only
within-document, our work extends the sequential
paradigm to cross-document coreference and also
adds incremental candidate composition.

There has been less work on event coreference
since the task is generally considered harder. This
is largely due to the more complex nature of event
mentions (i.e., a trigger and arguments) and their
syntactic diversity (e.g., both verb phrases and
noun-phrases). Prior work on event coreference
typically involves pairwise scoring between men-
tions followed by a standard clustering algorithm
to predict coreference links (Pandian et al., 2018;
Choubey and Huang, 2017; Cremisini and Fin-
layson, 2020; Meged et al., 2020; Yu et al., 2020b;
Cattan et al., 2020), classification over a fixed num-
ber of clusters (Kenyon-Dean et al., 2018) and
template-based methods (Cybulska and Vossen,
2015b,a). While pairwise scoring (e.g., graph-
based models, see §3.7) with clustering is effective,
it requires tuned thresholds (for the clustering al-
gorithm) and cannot use already predicted scores
to inform later ones, since all scores are predicted
independently. To the best of our knowledge, our
work is the first to apply sequential models to cross-
document event coreference.

Although a few previous works attempt to use
information about existing clusters through incre-
mental construction (Yang et al., 2015; Lee et al.,
2012) or argument sharing (Barhom et al., 2019;
Choubey and Huang, 2017), these either continue
to rely on pairwise decisions or use shallow, non-
contextualized features that have limited efficacy.
For example, Xu and Choi (2020) explore a variant
of cluster merging for WD entity conreference only
that still relies on scores between individual men-
tions. Additional recent work on WD coreference
investigates incremental construction of clusters for
prediction (Xia et al., 2020; Toshniwal et al., 2020)
and cluster ranking (Yu et al., 2020a) In contrast,
our method makes coreference decisions between a
mention and all existing coreference clusters across
multiple documents using contextualized features
and so takes advantage of interdependencies be-
tween mentions, even across documents, while
making all decisions in one pass.

3 Methods

3.1 Overview and Task Definition

We propose a new sequential model for cross-
document coreference resolution (see Figure 1) that
predicts links between mentions and incrementally
constructed coreference clusters computed across
multiple documents. In the following sections, we
will first describe our model for entity coreference
(§3.2-3.5), then discuss adaptations to event coref-
erence (§3.6), and finally conduct a time compari-
son with prior models (§3.7).

The goal of entity coreference is to determine
whether two entity mentions refer to the same
real-world entity, with an analogous definition
for event coreference. Formally, define an entity
mention x = 〈e, V 〉 where e is an entity and V
is a set of events in which e participates. We
adopt the definition of an event as “a specific
occurrence of something that happens” (Cybul-
ska and Vossen, 2014). More specifically V =
[〈t1, r1〉, . . . , 〈tn, rn〉] where ti is an event trigger
and ri ∈ R is the role e takes in in the event with
trigger ti, from a fixed set of argument roles.

3.2 Entity Mention Representation

To construct a representation for entity mention x,
we first embed the entity e, along with its context,
as he using the embeddings from BERT (Devlin
et al., 2019) of the start and end sub-word tokens
of the entity span. We similarly embed each event
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Figure 1: Our model using sequential prediction with incremental clustering for cross-document entity coreference.

vi ∈ V as hvi Then we compute an aggregated
event representation hv using a BiLSTM (Hochre-
iter and Schmidhuber, 1997) over all of the hvi ,
followed by mean-pooling. Finally, we combine
the entity representation and event representations
using an affine transformation to obtain the full
mention representation hx.

3.3 Incremental Candidate Composition

Let Le = {P1, . . . , Pn} be a set of coreference
clusters over the antecedents of mention xi. We
compute a candidate cluster representation hP for
each set P of coreferring entity antecedents in
Le. In a similar manner to composition functions
in neural dependency parsing, which incremen-
tally combine head-word and modifier information
to construct a subtree representation (Dyer et al.,
2015, 2016; de Lhoneux et al., 2019), we incre-
mentally combine document- and mention-level
information to form a complete candidate cluster
representation hP . That is, for each xj ∈ P , we
combine hxj and hCLSj , the CLS token embed-
ding from the document containing xj , using a
non-linear transformation

hcj = tanh(Wxhxj + WCLShCLSj + bc), (1)

where Wx,WCLS ∈ Rdm×dm and bc ∈ Rdm are
learned parameters. Then we average the represen-
tations hcj for all xj ∈ P . To allow the model to
predict singleton mentions, we add an additional
candidate S, with representation hs = hCLS, to the
set of candidates for xi, where coreference with S
indicates xi is a singleton. As we update Le, we
incrementally update hP for all P ∈ Le. Note that
Le can be either the gold coreference clusters over
seen mentions (during training) or the current set
of predicted clusters (during inference).

3.4 Coreference Link Prediction
We predict coreference links between a query entity
mention x and a set of candidates by passing a set
of similarity features through a softmax layer. Let
Cx = {hP1 , . . . , hPm} be the set of m candidate
representations (including hs) for x.

We first compute the similarity between each
candidate Pj and the query using both cosine sim-
ilarity fcos and multi-perspective cosine (MP co-
sine) similarity fmpcos (Wang et al., 2017). For
multi-perspective cosine similarity, we first project
the candidate and query into k shared spaces using
k separate linear projections. Then, for each of
the k new spaces, we compute the cosine similarity
between the projected representations in that space.

Next, we combine these features with the prod-
uct and the difference of the candidate and query
to obtain the final feature representation:

h
(j)
f = [hx · hPj ; |hx − hPj |; fcos; fmpcos]. (2)

Then, for all candidates Pj we compute the prob-
ability p(x, Pj) that the query x corefers with as

p(x corefers with Pj) = softmax(Wohf + bo).

We predict a link between x and the candidate with
maximum coreference probability. If that candidate
is S, then x is predicted as a singleton.

3.5 Sequential Cross-Document Prediction
To predict cross-document coreference links, we

propose an algorithm that iterates through a list
of documents and predicts coreference links be-
tween entity mentions in the current document and
candidate clusters computed across all preceeding
documents (Figure 2).

We first impose an arbitrary ordering on a list
of documents D. Then, for each i ∈ {1, . . . , |D|}
and each entity mention xn in document D[i] we
compute candidates clusters Cxn (§3.3) from the
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Algorithm 1 Training

Require: D: an ordered list of documents
M e,Mv: gold entity and event mentions
T : set of document topic clusters
Ge, Gv: gold entity and event clustering

1: Le ← [] (predicted entity clustering)
2: for i ∈ {1, . . . , |D|} do
3: Mi ← []
4: for j < i do
5: if D[i] and D[j] have the same topic in T

then
6: Mi ←Mi + {hx : x ∈ D[j] ∩M e}
7: end if
8: end for
9: Cx ← ComputeCandidates(Mi, Ge, Mv)

10: for all x s.t. x ∈ D[i] ∩M e do
11: {h(k)f }

|Cx|
k=1 ← ComputeFeatures(Cx)

12: `← PredictCoreferenceLink
(
{h(k)f }

|Cx|
k=1

)
13: Mi ←Mi + x
14: Le ← UpdatePredictedClusters(`, x, Le)
15: Cx ← ComputeCandidates(Mi, Ge, Mv)
16: end for
17: end for
18: return Le

Figure 2: Algorithm for coreference resolution with se-
quential prediction and incremental clustering (§3.3).

coreference clusters across all documents D[j]
where j < i. Note that this includes both within-
document and cross-document clusters.

After computing the candidate clusters for entity
mention xn, we compute similarity features and
use these to predict a coreference link `n between
xn and one candidate Pj ∈ Cxn (§3.4). Finally, we
update the predicted clustering to account for the
new link `n and compute new candidates for xn+1.

Since the number of possible candidates for each
xn grows as the number of preceding documents
(i) increases, we reduce the computational cost by
only considering previous documents D[j] that are
similar to D[i]. We define similar as having the
same topic from a fixed set of topics T .

During training, we use gold entity clusters to
compute the candidates (as in Figure 2) and gold
document topic clusters T . In contrast, during infer-
ence we using the currently predicted coreference
clusters to compute candidates. That is, we use Le

in place of Ge in lines 9 and 15 in Figure 2. Further-
more, we use predicted topic clusters T̂ , computed
using K-means (§4.5), in place of T .

Our model is trained to minimize cross-entropy
loss computed in batches. Here, all M entity men-

tions in a single document form one batch and the
loss is computed after M sequential predictions.

3.6 Adaptations for Event Coreference

We also adapt the same architecture and algorithm
to cross-document event coreference resolution.
Define an event x = 〈t, A〉 where t is the event
trigger and A = [〈e1, r1〉, . . . , 〈em, rm〉] is the set
of its event arguments (i.e., entity-role pairs). If no
entity takes some role ri, then ei = ∅.

We compute the event representation hx analo-
gously to the entity representations (§3.2). That is,
we combine the event trigger representation with
an aggregated entity representation, computed over
event arguments A. We then compute candidate-
clusters and predict coreference links in the same
manner as for entities (§3.3, §3.4) with an addi-
tional feature, indicating whether event arguments
corefer, in Equation 2.

Under the definition of event coreference, two
events corefer when both their triggers and all of
their arguments corefer. In practice, we relax the
second requirement to most of their arguments,
since argument role labeling may be noisy. We
compute a binary feature for grl for each argument
role rl to indicate the coreference of el (the entity
with role rl in x) and e

(Pj)
l (the entity with role

rl in candidate cluster Pj). We compute a feature
only for roles rl ∈ R in which both the candidate
and the query have some entity present (e(i)l 6= ∅
and e

(Pj)
l 6= ∅). Then, for each rl ∈ R, if the

two entities corefer then grl = 1 and if they do
not corefer then grl = 0. Finally, we map each
grl to a learned embedding frl ∈ Rdf and com-
pute an aggregated argument feature representation
fr = 1

|R6=0|
∑

rl∈R6=0
frl where R6=0 is the set of

roles filled in both x and Pj . This feature is then
concatenated into Equation 2 before prediction.

The cross-document iteration algorithm for event
coreference is analogous to Figure 2 with the mod-
ification that ComputeFeatures (line 11) now also
takes the gold entity coreference clusters Ge.

3.7 Time Comparison with Prior Methods

Algorithms for coreference resolution fall into two
paradigms: sequential models (i.e., left to right
prediction) and graph-based models (i.e., finding
optimal connected components from a graph of
pairwise similarity scores). This dichotomy is
analogous to that in dependency parsing between
transition-based parsers (i.e., greedy left-to-right
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models) and graph-based parsers. While the differ-
ences between the paradigms have been studied for
dependency parsing (McDonald and Nivre, 2007,
2011), comparisons for coreference have been lim-
ited to WD entity coreference only (Martschat and
Strube, 2015). In part, this is due to the usages of
the two paradigms; sequential models are primarily
used for WDCR while graph-based models are used
for CDCR. However, as in dependency parsing, the
sequential models can be made much more compu-
tationally efficient than the graph-based models as
we show with our model.

Let D be a set of documents with m mentions
that form c coreference clusters. In a graph-based
model, scores are computed between all pairs of
mentions in all documents and in a general sequen-
tial model scores are computed between a specific
mention and all antecedents. Our model is a higher-
order sequential model; it combines the general
sequential paradigm with higher-order inference
through incremental candidate clustering. There-
fore, while both general sequential and graph-based
models always require computing ∼m2 scores, our
model only needs to compute cm scores. Since in
practice c� m, our model is more efficient.

We also note that graph-based models require
an additional step to compute clusters using pair-
wise scores. In practice, agglomerative clustering
is often used but for an arbitrary distance matrix
this is O(m3). In contrast, a higher-order sequen-
tial model computes clusters simultaneously with
scores, alleviating the need for an additional step,
and therefore is substantially more efficient.

These improvements in efficiency are even
more important in real-world streaming scenarios.
Namely, given a known set of clusters C for the
document set D, compute coreference with the
mentions in a new document. In both a general
sequential model and a graph-based model, scores
need to be computed between the new mentions,
and all mentions in D. However, our model only
needs to compare the new mentions to the existing
clusters C. Hence, our model can better handle the
temporal-component of many usage settings and is
better suited to life-long learning.

4 Experimental Setup

4.1 Data

We conduct experiments using the ECB+
dataset (Cybulska and Vossen, 2014), the largest
available dataset for both within-document and

Train Dev Test
# Topics 25 8 10
# Subtopics 50 16 20
# Documents 574 196 206
# Event Mentions 3808 1245 1780
# Entity Mentions 4758 1476 2055
# Event Clusters 1527 409 805
# Entity Clusters 1286 330 608

Table 1: Data Statistics for ECB+ corpus. Topics:
train {1, 3, 4, 6-11, 13, 14, 16, 19-20, 22, 24-33}, devel-
opment {2, 5, 12, 18, 21, 23, 34, 35}. and test 36-45

cross-document event and entity coreference.
The ECB+ dataset is an extension of the Event
Coreference Bank dataset (ECB) (Bejan and
Harabagiu, 2010), which consists of news articles
clustered into topics by seminal events (e.g., “6.1
earthquake Indonesia 2009”). The extension of
ECB adds an additional seminal event to each
topic (e.g., “6.1 earthquake Indonesia 2013”).
Documents on each of the two seminal events then
form subtopic clusters within each topic in ECB+.

Following the recommendations of Cybulska
and Vossen (2015b), we use only the subset of
annotations that have been validated for correct-
ness in our experiments (see Table 1). As a re-
sult, our results are comparable to recent studies
(e.g., Barhom et al. (2019); Kenyon-Dean et al.
(2018); Meged et al. (2020)) but not earlier meth-
ods (see Upadhyay et al. (2016) for a more com-
plete overview of evaluation settings). We use the
standard partitions of the dataset into train, devel-
opment and test split by topic and use subtopics
(gold or predicted) for document clustering.

4.2 Identifying Event Structures

The ECB+ dataset does not include relations be-
tween events and entities. Although prior work
used the Swirl (Surdeanu et al., 2007) semantic role
labeling (SRL) parser to extract predicate-argument
structures, this does not take advantage of recent ad-
vances in SRL. In fact, prior works on coreference
using ECB+ have added a number of additional
rules on top of the parser output to improve its
coverage and linking. For example, Barhom et al.
(2019) used a dependency parser to identify addi-
tional mentions. Therefore, in this work we use the
current state-of-the-art SRL parser on the standard
CoNLL-2005 shared task (He et al., 2018), which
has improved performance by ∼10 F1 points both
in- and out-of-domain.

Following prior work, we restrict the event struc-



4664

ture to the following four argument roles: ARG0,
ARG1, TIME, and LOC. However, we additionally
add a type constraint during pre-processing that
requires entities of type TIME and LOC only fill
matching roles (TIME and LOC respectively).

4.3 Domain Adaptive Pre-training
Since BERT was trained on the BooksCorpus and
Wikipedia (Devlin et al., 2019) and the ECB+
dataset contains news articles, there is a domain
mismatch. In addition, the use of a domain corpus
for pre-training helps address the data scarcity is-
sue for events and entities, indicated by Ma et al.
(2020). Therefore, before training our coreference
models, we first fine-tune BERT using the English
Gigaword Corpus2 with both BERT losses, as this
has been shown to be effective for domain trans-
fer (Gururangan et al., 2020). Following Ma et al.
(2020), we randomly sample 50k documents (626k
sentences) and pre-train for 10k steps, using the
hyperparameter settings from Devlin et al. (2019).

4.4 Baselines and Models
We experiment with the following baseline vari-
ations of our model: BERT-SeqWD – computes
coreference scores using only the entity (or event)
representations, without any cross-document link-
ing, and BERT-SeqXdoc – computes coreference
scores across documents but without candidate
composition. This means the baseline BERT-
SeqXdoc computes scores between the query men-
tion and all antecedent mentions across all prior
documents, rather than between the query and the
clusters computed with candidate composition. For
both event and entity coreference we experiment
with our model, SeqXdoc+IC with (+Adapt) and
without adaptive pre-training.

For entity coreference we compare against the
following models:

• Barhom et al. (2019) (Bh2019) – graph-based
model that alternates between event and entity
coreference, updating the argument features
for events (and event features for entities) after
each iteration,

• Cattan et al. (2020) – general sequential
WDCR model from Lee et al. (2017) paired
with agglomerative clustering

• Caciularu et al. (2021) – graph-based Bh2019
model using representations from a Long-

2https://catalog.ldc.upenn.edu/LDC2011T07

former (Beltagy et al., 2020) with cross-
document attention during pre-training

• Lemma – a strong baseline that links mentions
with the same head-word lemma in the same
document topic cluster (Barhom et al., 2019).

For event coreference we additionally compare to:

• Meged et al. (2020) – graph-based Bh2019
model with an additional paraphrase-based
feature,

• Cremisini and Finlayson (2020) – graph-based
prediction of coreference scores over four
types of similarity features,

• three graph-based representation learning
models with agglomerative clustering –
Kenyon-Dean et al. (2018), Yu et al. (2020b)
and Zeng et al. (2020).

4.5 Implementation Details

Our models are tuned for a maximum of 80 epochs
with early-stopping on the development set (using
CoNLL F1) with a patience of 20 epochs. All mod-
els are optimized using Adam (Kingma and Ba,
2015) with a learning rate of 2e-5 and treat all men-
tions in a document as a batch. We clip gradients
to 30 to prevent exploding gradients. Document
ordering is fixed within a epoch but randomized
between epochs.

We encode each document using BERT-base and
a maximum document length of 600 tokens for
BERT. A threshold of 600 is the default for our
system that also accommodates longer documents
and there are no documents over 512 tokens in
ECB+. In our system, long documents will not
be truncated but rather will be split into multiple
document pieces, that will be merged in our algo-
rithm. Following adaptive pre-training, we do not
fine-tune BERT.

To encode arguments/events we use an LSTM
with hidden size 128, for the argument coreference
features we use two learned embeddings of dimen-
sion df = 50, and for the multi-perspective cosine
similarity we use k = 1 projection layers with
dimension 50 for entity coreference and k = 3 pro-
jection layers with the same dimension for event
coreference. We do not tune our hyperparameters.

We follow Barhom et al. (2019) and use K-
means to compute document clusters for inference
from their implementation with K = 20. Specif-
ically, as features, we use the TF-IDF scores of
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unigrams, bigrams, and trigrams in the unfiltered
dataset, excluding stop words. We select K = 20
as this is the number of gold document clusters
in the test data but this can be modified without
affecting our algorithm.

5 Results and Analyses

5.1 Coreference Resolution

We evaluate using the standard metrics for coref-
erence resolution: MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAF-e (Luo,
2005), and CoNLL F1 (their average).

For entity coreference, our model outperforms
most prior methods (see Table 2) and for event
coreference our model demonstrates strong perfor-
mance (see Table 3). Although Caciularu et al.
(2021) achieve the highest performance, we ob-
serve first that much of their gains come from the
use of a Longformer (80.4 CoNLL F1 for enti-
ties, 84.6 for events) – a language-model specifi-
cally designed for long contexts. Additionally, they
fine-tune with coreference specific data and special
tokens, neither of which our models use. As ob-
served by Xu and Choi (2020), improvements in
the underlying language model can result in large-
gains in coreference performance without requiring
algorithmic improvements. However, our model
focuses on improving the coreference prediction
algorithm, while using a standard BERT language
model.

We observe that our algorithm provides large
gains for both event and entity coreference. In par-
ticular, while naive applications of the sequential
paradigm in the cross-document setting (BERT-
SeqWD and BERT-SeqXdoc) perform poorly, the
addition of incremental candidate clustering even
without adaptive pre-training yields competitive re-
sults (+8.9 and +2.8 CoNLL F1 for entities and
events respectively). Adaptive pre-training, which
handles domain-mismatch in a similar way to task-
specific fine-tuning (e.g., as in Caciularu et al.
(2021)), provides further gains (4.1 and 2.2 CoNLL
F1 for entities and events respectively). Our results
highlight the importance of higher-order inference
(e.g., composition) when extending sequential pre-
diction to cross-document settings.

We note that prior work (Barhom et al., 2019)
used predicted entity coreference clusters. In a
comparable setting, using the output from our best
entity coreference model to compute argument
coreference features (§3.4), we do not observe any

drop in performance (i.e., the performance is iden-
tical). In addition, we use predicted document clus-
ters for our experiments on both entity and event
coreference. Due to the high-quality document
clustering3, we only observe a drop of ∼1 CoNLL
F1 point when using these predicted clusters, com-
pared to the gold document clusters. However, we
note that such a small decrease relies on the quality
of the clustering, as shown by the larger gap (3
F1 points) observed by Cremisini and Finlayson
(2020) with less accurate clusters.

Finally, we observe that the sequential paradigm
with incremental candidate composition has sev-
eral additional advantages. First, without candidate
composition, sequential coreference resolution is
typically a multi-label task. However, with compo-
sition, each mention now has exactly one correct
coreferring antecendent during training (possibly a
cluster rather than an individual mention) and this
simplifies the learning task. While heuristics (e.g.,
choosing the closest antecedent as the gold antecen-
dent, discussed in Martschat and Strube (2015)),
also convert the task from multi- to single-label,
they are problematic because they limit the amount
of information that can be used during training. Ad-
ditionally, candidate composition allows sequential
models to make use of information not only about
antecedents (in contrast to the graph-based mod-
els) but also about prior coreference decisions (in
contrast to non-compositional sequential models).

Our results are consistent with prior work on the
efficacy of sequential models (cf. mention-ranking
models for WD entity coreference) (Martschat and
Strube, 2015) and the importance of higher-order
inference mechanisms (e.g., incremental candidate
clustering) in cross-document tasks (Zhou et al.,
2020). In addition, our results demonstrate the im-
portance of algorithmic improvements, in addition
to improvements in the underlying language model,
for strong coreference performance.

5.2 Feature Ablation

Since mention representations in coreference vary
widely, we conduct extensive feature ablations to
provide insights for future work (see Table 4).

First we examine the vector representations used
to encode mentions. While prior work used ELMo
and pre-trained GloVE (Pennington et al., 2014)
word and character embeddings, recent models use

3Homogeneity: 0.977, Completeness: .980, V-measure:
.978, Adjusted Random-Index: .945
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MUC B3 CEAF-e
P R F1 P R F1 P R F1 C-F1

Lemma 71.3 83 76.7 53.4 84.9 65.6 70.1 52.5 60.0 67.4
Barhom et al. (2019) 78.6 80.9 79.7 65.5 76.4 70.5 65.4 61.3 63.3 71.2
Cattan et al. (2020) 85.7 81.7 83.6 70.7 74.8 72.7 59.3 67.4 63.1 73.1
Caciularu et al. (2021) 88.1 91.8 89.9 82.5 81.7 82.1 81.2 72.9 76.8 82.9
BERT-SeqWD + Adapt 78.0 39.2 52.2 89.6 34.5 49.8 34.9 76.1 47.9 50.0
BERT-SeqXdoc + Adapt 80.2 69.8 74.6 76.6 54.2 63.5 49.6 64.8 56.2 64.8
SeqXdoc+IC 83.6 81.5 82.5 76.0 66.7 71.1 65.7 69.3 67.4 73.7
+ Adapt 83.9 84.7 84.3 74.5 70.5 72.4 70.0 68.1 69.2 75.3

Table 2: Entity coreference on the ECB+ test set, combined within- and cross-document scores using predicted
document clusters. C-F1 is CoNLL F1. Bold indicates best overall, underline indicates our best model.

MUC B3 CEAF-e
P R F1 P R F1 P R F1 C- F1

Lemma 76.5 79.9 78.1 71.7 85.0 77.8 75.5 71.7 73.6 76.5
Kenyon-Dean et al. (2018) 67.0 71.0 69.0 71.0 67.0 69.0 71.0 67.0 69.0 71.0
Barhom et al. (2019) 77.6 84.5 80.9 76.1 85.1 80.3 81.0 73.8 77.3 79.5
Cremisini and Finlayson (2020) 89.4 84.9 87.1 74.3 69.2 71.6 49.6 60.7 54.6 71.1
Meged et al. (2020) 78.7 84.7 81.6 75.9 85.9 80.5 81.1 74.8 77.8 80.0
Cattan et al. (2020) 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 81.0
Yu et al. (2020b) 88.1 85.1 86.6 86.1 84.7 85.4 79.6 83.1 81.3 84.4
Zeng et al. (2020) 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 84.3
Caciularu et al. (2021) 87.1 89.2 88.1 84.9 87.9 86.4 83.3 81.2 82.2 85.6
BERT-SeqWD + Adapt 68.9 28.9 40.7 91.1 48.5 63.3 49.3 83.9 62.1 55.4
BERT-SeqXdoc + Adapt 82.2 66.8 73.7 84.2 66.8 74.5 65.9 80.8 72.6 73.6
SeqXdoc+IC 81.6 85.9 83.7 69.5 80.6 74.4 75.3 67.1 71.0 76.4
+ Adapt 81.7 82.8 82.2 80.8 81.5 81.1 79.8 78.4 79.1 80.8

Table 3: Event coreference on the ECB+ test set, combined within- and cross-document scores using predicted
document clusters. C-F1: is CoNLL F1. Bold indicates best overall, underline indicates our best model.

Entity Event
F1 ∆ F1 ∆

Our Model 75.3 80.8
− Coref feat (§3.6) - - 79.6 -1.2
− Args (§3.2) 74.8 -0.9 78.7 -2.1
− Arg comp (§3.2) 74.6 -0.7 78.3 -2.5
− CLS (Eq. 1) 74.5 -0.8 78.9 -1.9
−MP cosine (§3.4) 74.5 -0.8 79.1 -1.7
+ GloVE 70.1 -5.2 76.7 -4.1
+ RoBERTa 71.2 -4.1 78.1 -2.7

Table 4: Feature ablation results (CoNLL F1) on the
ECB+ test set. For entity coreference arguments (Args)
are events, for event coreference they are entities.

RoBERTa (Cattan et al., 2020; Yu et al., 2020b).
We experiment with replacing BERT-base with
RoBERTa-base and with using GloVE in addition
BERT in our models (see Appendix B for imple-
mentation) and observe large drops in performance.
We hypothesize that the substantial performance
difference between BERT and RoBERTa is due to
the Next Sentence Prediciton (NSP) used to train

BERT but not RoBERTa. The NSP may force
BERT to learn attention multiple sentences, and
therefore to understand the document as a whole,
an ability that is important for coreference resolu-
tion. Therefore, we hypothesize that without task-
specific fine-tuning, adaptive pre-training is most
beneficial for coreference on ECB+.

We also observe that our entity coreference
model is relatively less susceptible to feature
changes than the event coreference model. For ex-
ample, the event coreference model is particularly
reliant on the argument features. Both replacing
the argument composition BiLSTM with a mean-
pooling operation (−Arg comp) and removing all
argument information (−Args) result in large drops
in performance (-2.5 and -2.1 respectively).

Finally, the contribution of the multi-perspective
cosine similarity underscores the importance of
cosine similarity as observed by Cremisini and
Finlayson (2020). These ablations, including on
the importance of document-level information (−
CLS) suggest new directions for token and docu-
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Entity Event
F1 ∆ F1 ∆

Our Model 75.3 80.8
HeSRL - C 75.3 -0.0 80.4 -0.4
HeSRL + BhR + C 74.9 -0.4 79.2 -1.6
Swirl + BhR + C 75.4 +0.1 80.0 -0.8
Swirl + BhR 75.4 +0.1 78.7 -2.1

Table 5: Ablation results (CoNLL F1) on methods for
identifying event structures on ECB+ test set. HeSRL
is He et al. (2018), BhR is additional rules for aligning
the SRL and annotations from (Barhom et al., 2019), C
is entity type constraint (see §4.2).

ment representations in coreference.

5.3 Effects of SRL
We investigate the impact of using a recent SRL
parser to extract event structures (§4.2), compared
to the Swirl parser used in prior work (see Table 5).

We first observe that the additional extraction
rules used in Barhom et al. (2019) are not necessary
when using the new SRL parser. In fact, these rules
actually result in a decrease in performance for
both entity and event coreference (−1.6 and −0.4
respectively). In addition, when using the Swirl
parser and additional rules (Swirl+Bh-rules), we
observe a large drop for event coreference (−2.1)
compared to entity coreference. This aligns with
the heavier dependence of event coreference mod-
els on arguments (§ 5.2), which will lead to greater
model sensitivity to errors in the entity-event struc-
tures (from the SRL). Furthermore, we also see
that the type constraint improves event coreference
more when using the Swirl SRL (∆ = 1.3) than
when using the new SRL (∆ = 0.4). Note that
because we do not use role information for entity
coreference (i.e., no argument coreference feature),
adding or removing the type constraint does not
affect entity coreference. These results highlight
the importance of minimizing error propagation
from the SRL into the coreference resolution.

6 Conclusion

In this paper, we propose a new model for cross-
document coreference resolution that extends the
efficient sequential prediction paradigm to multiple
documents. The sequential prediction is combined
with incremental candidate composition that allows
the model to use the history of past coreference de-
cisions at every step. Our model achieves compet-
itive results for both entity and event coreference
and our analysis provides strong evidence of the

efficacy of both sequential models and higher-order
inference in cross-document settings. In future, we
intend to adapt this model to coreference across
document streams and investigate alternatives to
greedy prediction (e.g., beam search).
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A Implementation details

The dataset is available here: http:
//www.newsreader-project.eu/
results/data/the-ecb-corpus/.

Our models have approximately 9million param-
eters and are trained with one Tesla V100-SXM2
GPU.

We evaluate our models using three coreference
metrics. MUC counts discrepencies in links be-
tween the gold and predicted clusters (and thus
ignores singletons). B3 computes, for each men-
tion m, the difference between the gold cluster
containing m and the predicted cluster containing
m. Finally, CEAF-e finds the injective alignment
between predicted and gold clusters that gives the
highest similarity under a defined function. For
more details on metrics, refer to Cai and Strube
(2010).

We report validation results for both entity (Ta-
ble 6) and event coreference (Table 7).

B Feature Ablation

We experiment with 300-dimensional pre-trained
GloVE (Pennington et al., 2014) embeddings in
our model. Following (Barhom et al., 2019), we
use both GloVE and BERT in the entity mention
representations (for entity coreference) and event
trigger representations (for event coreference). In
the argument representations we use only GloVE.

Let x = 〈e, V 〉 be an entity in document d and
let sd1 , . . . , sdm be the static GloVE embeddings
for the tokens in d. First we apply a non-linear
transformation to each s̃di = tanh(Wtsdi + bt)
where Wt ∈ R1536×300, where 1536 is 2∗the di-
mension of the BERT embeddings (2 because we
use the start and end tokens of a mention) and 300
is the dimension of GloVE embeddings. Then, we
take the average of s̃di to obtain sCLS ∈ R1536, a
static document representation. Next we extract the
representation for the entity x as in section 3.2, sx.
Finally, we combine these representations with the
BERT representations

zx = tanh(W s
xsx + WB

x hx + bx)

zCLS = tanh(W s
CLSsCLS + WB

CLShx + bCLS)

hc = Wxzx + WCLSzCLS + bc

where hc is the representation (as in § 1)
and W s

x ,W
s
CLS,W

B
x ,WB

CLS ∈ R1536×1536 and
bx, bCLS, bc ∈ R1536 are learned parameters.

http://www.newsreader-project.eu/results/data/the-ecb-corpus/
http://www.newsreader-project.eu/results/data/the-ecb-corpus/
http://www.newsreader-project.eu/results/data/the-ecb-corpus/
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MUC B3 CEAF-e CoNLL F1
BERT-Rep 43.4 40.0 35.9 39.8
BERT-Rep-Xdoc 82.7 67.6 56.1 68.8
SeqXdoc 89.1 76.0 71.1 78.7
+ Adapt 90.2 77.5 71.7 79.8

Table 6: Entity coreference F1 on ECB+ dev set, combined within- and cross-document scores using predicted
document clusters.

MUC B3 CEAF-e CoNLL F1
BERT-Rep 32.2 50.6 47.5 43.4
BERT-Rep-Xdoc 78.4 74.6 65.0 72.7
SeqXdoc 84.8 79.1 74.4 79.4
+ Adapt 85.8 81.1 73.7 80.2

Table 7: Event coreference F1 on ECB+ dev set, combined within- and cross-document scores using predicted
document clusters.


