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Abstract
Automatically extracted interpersonal relation-
ships of conversation interlocutors can enrich
personal knowledge bases to enhance person-
alized search, recommenders and chatbots. To
infer speakers’ relationships from dialogues
we propose PRIDE, a neural multi-label clas-
sifier, based on BERT and Transformer for cre-
ating a conversation representation. PRIDE
utilizes the dialogue structure and augments
it with external knowledge about speaker fea-
tures and conversation style. Unlike prior
works, we address multi-label prediction of
fine-grained relationships. We release large-
scale datasets, based on screenplays of movies
and TV shows, with directed relationships of
conversation participants. Extensive experi-
ments on both datasets show superior perfor-
mance of PRIDE compared to the state-of-the-
art baselines.

1 Introduction

Motivation and Problem. Personal knowledge
about individual users is a valuable asset for per-
sonalizing downstream applications, such as intel-
ligent assistants, recommender systems and search
engines. However, such personalized services are
commonly achieved with end-to-end learning ap-
proaches, where user information is bound to be
in latent representation and inaccessible to users.
Explicit Personal Knowledge Bases (PKBs) (Balog
and Kenter, 2019), which are built independently of
any downstream application, serve as background
knowledge for personalization. PKBs are crucial
for empowering users with control over what can be
learned from their data collected by big tech com-
panies. Such PKBs will also provide transparency
and explainability to end users about inferred per-
sonal knowledge and any personalized decisions
made by the systems.

With the ubiquity of social media and online
forums, user-generated content is available in abun-
dance. Mining personal knowledge from user-

User A   2 h

tough day.. can't wait for a relaxed weekend
        2 comments

User B   1 h

but.. dad said we'll go somewhere exciting!

User A   1 h

of course, sweetheart, it's your birthday 
after all ;) but make sure to finish your 
homework first!

User B   3 h

Yallll @justinbieber just announced World Tour 
2022!! Super excited! #Belieber

                     15 comments

User B   10 h

Decided to post this recording :D #music 
#singersongwriter #13yearoldgirl #guitar #sing 
#singing #talent #musicians #RT #retweet #like

    27 comments

Figure 1: Example of conversation in social media.

generated content to populate PKBs, or user profil-
ing, is a long-standing topic in NLP (e.g., Flekova
et al., 2016; Basile et al., 2017; Tigunova et al.,
2019). While users’ demographic attributes and
interests can be learned from their profile descrip-
tions and posts, interpersonal relationships with
other users are rarely mentioned explicitly and may
only be inferred from their interactions and con-
versations. In this work, we develop an automatic
method for predicting fine-grained relationships
between two speakers, given their logged conversa-
tion history.

Consider the example in Figure 1. From the ex-
cerpt of interactions between A and B, the reader
can figure out that B is the child of A by observing
(i) the address term ‘sweetheart’, (ii) the command-
ing but soft tone of user A, (iii) the reference to
the other family member ‘dad’, and (iv) the context
created by the word ‘homework’. Yet, neither of
the speakers directly mentions their relationship,
making this task difficult for automatic methods
relying on explicit patterns.
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The relationship information extracted from such
conversations, e.g., 〈B, child_of, A〉, can be entered
into the PKBs of users A and B. By combining such
relationship information with User B’s age and per-
sonal interests (e.g., playing guitar, Justin Bieber)
inferable from User B’s social media (exemplified
in Figure 1), a system will be able to provide user
A with relevant personalized recommendations for
a query “birthday present ideas for my daughter”.

Prior Work and its Limitations. There has been
considerable research on extracting relationships
between characters in literary texts such as novels
(Chaturvedi et al., 2016, 2017). These methods
are inappropriate for conversational data, though,
which is colloquial and less structured than literary
texts. Moreover, predicting relationships is often
modeled as a binary task of sentiment classifica-
tion (i.e., person A is positive or negative about
person B). Prior works on conversational data are
restricted to small-scale data (Yu et al., 2020), or
merely handle coarse labels of relationship aspects
(Rashid and Blanco, 2018; Qamar et al., 2021).
Most approaches use general models for text classi-
fication (Chen et al., 2020; Jia et al., 2021), which
disregard the particularities of conversational set-
tings.

Approach and Contributions. We present
PRIDE, a neural multi-label classifier for
Predicting Relationships In DialoguE. PRIDE
makes inference among 12 fine-grained directed
relationships (like child or boss, see Table 2) from
conversational data by hierarchically creating
utterance representations and combining them with
signals on the users’ personal attributes (e.g., age
and occupation) and the conversation style (e.g.,
intense or superficial). PRIDE uses BERT (Devlin
et al., 2019) to create contextual word embeddings
for each utterance, and Transformer encoders
(Vaswani et al., 2017) to build conversation
representations that preserve information about the
sequence and speakers of utterances.

The contributions of this paper are: (i) a method
for inferring speakers’ relationships, which out-
performs strong baselines; (ii) the largest conver-
sational dataset1 of 1.1K speaker pairs annotated
with multi-label, directed relationships and (iii) an
exhaustive analysis of the model’s performance.

1https://pkb.mpi-inf.mpg.de/pride/

2 Related work

Relationship Prediction. There is only limited
research on relationship prediction in dialogues,
as most studies focus on literary texts. The re-
lationships in novels are often predicted on the
coarse granularity (positive or negative sentiment)
(Chaturvedi et al., 2016), modelled as emotion-
related classes (anger, fear) (Kim and Klinger,
2019), or described in a topic-modelling manner
(Iyyer et al., 2016; Chaturvedi et al., 2017). While
fictional texts often contain dialogues, they are in-
terleaved with narratives, where the language is less
colloquial and more descriptive, which aids explicit
extraction of fictional characters’ relationships.

On the other hand, screenplays or scripts of the-
atre plays, movies or TV series are more similar
to real-life conversations. Nalisnick and Baird
(2013) explored Shakespeare plays to analyze the
polarity and intensity of emotions of characters
towards each other. The same data is used in
Azab et al. (2019), where fine-grained relationship
classes adopted from Massey et al. (2015) are pre-
dicted by applying a logistic regression classifier on
a pair of learned character embeddings. However,
such approach predicts relationships solely based
on characters’ latent attributes without considering
any conversational context.

Rashid and Blanco (2018) investigated the pre-
diction of interpersonal dimensions (Wish et al.,
1976) of utterances in the Friends series, where
SVM classifiers on bag-of-words were trained per
dimension to determine whether an utterance is, for
instance, equal or hierarchical. Similarly, Qamar
et al. (2021) leveraged vector representations of
emotion words, to classify a dialogue taken from
a movie script corpus into four attachment styles
(e.g., friend, family) and four association types (e.g.,
secure, fearful), which are then combined into 16
relationship classes. Both approaches do not pro-
vide explicit and detailed information about the
speakers’ relationships, such as who is the parent
of whom, and instead focus on relationship char-
acteristics. To improve our approach’s ability to
predict specific relationships, we leverage interper-
sonal dimensions as an additional signal following
Rashid and Blanco (2018).

Speakers’ relationships are part of 36 predicates
investigated by Yu et al. (2020), which focused on
the general relation extraction task between two
arguments appearing in a dialogue (e.g., spouse,
place_of_residence), taken from the Friends series;

https://pkb.mpi-inf.mpg.de/pride/ 


4638

14 of the predicates refer to the relationships be-
tween people. The authors used BERT to predict
relations contained in a dialogue snippet, taking as
input the conversation text concatenated with two
relation arguments. Similarly, Chen et al. (2020)
collected conversations from Chinese TV series
scripts and used three annotators to label them with
24 relationships and 7 emotions. The relationships
labels were hierarchically split by field (family,
school, company, other) and seniority (elder, peer,
junior); only one relationship label was allowed
per dialogue excerpt. On the resulting dataset the
authors run predictive models (CNN and BERT)
using a single subsequent pair of utterances as in-
put, which is not the most optimal strategy given
the short length of such input and the absence of
surrounding context. In contrast with both above-
mentioned works, our model can handle the full
history of conversations, enabling to distinguish
multiple labels per speaker pair.

Jia et al. (2021) annotated relationships of the
characters in the movie scripts with 13 relationship
labels, belonging to four main categories (family,
intimacy, official, others), resulting in the DDRel
dataset. Their best performing model is based on
BERT, fine-tuned for classifying a dialogue session
between a pair of speakers; we used their model
as one of our baselines. Unlike in Jia et al. (2021),
we consider directed relationships (e.g., parent and
child as separate labels) and each pair can have
multiple relationship labels. Moreover, our anno-
tated data, which is almost twice the size of DDRel,
is arguably more reliable, using the agreement of 4
out of 6 annotators per speaker pair, as opposed to
DDRel, which was labeled by a single annotator.

Multi-speaker Dialogue Representations. Many
NLP tasks based on conversational speech (chatbot
answer generation, utterance intent classification,
emotion prediction, etc.) require creating a rep-
resentation of a given multi-speaker conversation
as input. Our approach draws inspiration from
these methods and adds extensions to better model
conversations and incorporate signals relevant for
relationship prediction.

One popular way to represent a conversation is
to model words and utterances in a hierarchical
manner. Hierarchical approach is widely applied
to microblog sentiment and emotion classification.
Feng et al. (2019) use LSTMs to consequently cre-
ate the representations of words and tweets, while
in Lei et al. (2019) and Ma et al. (2020), BERT

BERTword 
aggregation

speaker 
embeddings

age data relationship 
dimensionsTransformer

additional representations

classification layer

utterance
aggregation

+ + +

position 
embeddings

+ + +

conversation representation

Figure 2: PRIDE model

is used for words and LSTM+CRF for utterances.
Such an approach is still not optimal as LSTMs
cannot effectively capture the dependencies in the
long input sequences and suffer from vanishing
gradient. An alternative to that is offered by Li
et al. (2020), where Transformer (Vaswani et al.,
2017) is used to process utterance representation
with additional speaker and positional embeddings.

There are also non-hierarchical approaches to
representing conversations. Welch et al. (2019)
used a BiLSTM to process conversation spans rep-
resented by GloVe embeddings. The model is run
on the conversations from a single individual to
predict the attributes of his interlocutors, including
personal relationships. However, the list of pre-
dicted relationships is limited as well as the size
of the input samples. Prior work in response re-
trieval for chatbots (e.g., Lu et al., 2020; Gu et al.,
2020) used BERT to encode dialogue context and
response, additionally enhancing the input with
speaker embeddings.

3 Methodology

The neural model architecture, inspired by Li et al.
(2020), is shown in Figure 2. PRIDE hierarchically
creates word and utterance representations, which
are then combined with representations of personal
attributes and interpersonal dimensions (Table 1)
to create a representation of the full conversation
history. Given this representation of the conversa-
tion, a multi-label classification layer predicts one
or more of the twelve relationship labels (Table
2). The model is trained with supervision on the
relationship labels. In the following subsections we
describe the model’s components in more detail.
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3.1 Contextual word representations

The input for a pair of speakers (spA, spB) is
N utterances u1, ...uN , where i-th utterance con-
sists of words w1

i , ...w
ni
i . In the first step, the

word representations rji are created with a function
fword(w1

1, .., w
n1
1 , ..., wnN

N ) = rji , which takes as
input the concatenation of all utterances and pro-
duces the representations for each word. We chose
BERT (Devlin et al., 2019) to create word repre-
sentations, because this model efficiently captures
contextual information.

Considering that the maximal input length of
BERT is 512 tokens, we split the input sequence
of utterances into chunks and run BERT several
times. Each chunk in the split has the maximal pos-
sible length that fits into one run without breaking
individual utterances. We find this splitting strat-
egy more effective than running BERT on single
utterances (Chen et al., 2020) or short sequences
which do not fully utilize the max 512 limit (Jia
et al., 2021). In our method more conversational
context is provided to create word representations.
Also, simply truncating input to 512 tokens (Lu
et al., 2020) might cause a loss of important cues.

As information about the current speaker we
use BERT’s segment embeddings, so that the A-
segment corresponds to tokens from spA and the B-
segment to spB . Furthermore, we encode the infor-
mation about the utterance boundaries by prepend-
ing special tokens before each utterance: [s1] for
the utterances of speaker A and [s2] for speaker B.

3.2 Utterance representations

Next, word representations rji are aggregated
within each utterance to create utterance rep-
resentations ri with the aggregation function
aword(r1i , ...r

ni
i ) = ri. The aggregation is per-

formed on the utterances from all runs of BERT
and outputs r1, ...rN as the representations of ut-
terances. In our hyperparameter search we tried
instantiating aword with max, average and self-
attention weighted average functions, or taking
the representation of BERT’s [CLS] token as a se-
quence summary.

Some of r̂i are being produced by separate runs
of BERT due to its input length limitation. There-
fore we create enriched utterance representations
in the unified context from all BERT runs with
the function futt(r̂1, ..., r̂n) = r̃i. We instantiate
futt with a Transformer encoder (Vaswani et al.,
2017), which allows us to input long sequences

of utterances. Before computing enriched repre-
sentations, we sum the utterance representations ri
with sinusoidal positional encoding pi and speaker
embeddings spi, yielding r̂i = ri + pi + spi. The
speaker embeddings are randomly initialized and
learned during model training. Positional encoding
is performed following Vaswani et al. (2017).

3.3 Classification layer
Finally, the utterance representations r̃i are aggre-
gated with the function autt(r̃1, ...r̃n) = C. autt is
instantiated with the same aggregation functions as
aword. For the case with [CLS] representation we
prepend a trainable embedding to the sequence.

We incorporate additional information relevant
to the relationship prediction by concatenating em-
beddings of personal attributes and interpersonal
dimensions with the conversation representation
C: C̃ = C|rage|rdiml , which are described in the
following subsections. A fully connected layer
takes the resulting concatenated representation C̃
as input and produces probability scores for each
of L relationship labels. Since some relationships
are not symmetric (e.g., parent/child) the labels
represent directed relationships from spA to spB .

3.4 Incorporating personal attributes
Additional personal information about the speakers
from a PKB, such as their age or occupation, could
improve relationship prediction. In this work, we
investigate the benefits of incorporating age infor-
mation into the model, since some relationships
in our dataset can commonly be characterized by
age differences between the speakers. For instance,
children are usually much younger than their par-
ents (and a parent can never be younger). Similarly,
employees are generally younger than their bosses
(but the magnitude of their age difference is less
than in parent/child pairs).

To do so, we introduce a representation for the
age difference of speakers, rage. We first calculate
d = ageA− ageB , which belongs to one of the age
difference bins (see Appendix C.1). For each differ-
ence bin, we learn an m-dimensional embedding,
where m is a tuned hyperparameter (see Appendix
C.3). We take the corresponding embedding for d
as rage.

3.5 Incorporating interpersonal dimensions
Rather than fine-grained relationship labels such
as colleague or child, interpersonal relationships
can also be characterized by various aspects in
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interactions
cooperative vs. noncooperative active vs. passive
concurrent vs. non concurrent near vs. distant

relationships

cooperative vs. noncooperative active vs. passive
pleasure vs. work oriented equal vs. hierarchical
intimate vs.unintimate intense vs. superficial
temporary vs. long term

Table 1: Interpersonal dimensions used in PRIDE.

their interactions (e.g., spatially near vs distant)
and communication styles (e.g., intimate vs unin-
timate). One way to organize such aspects was
proposed by Rashid and Blanco (2018), who de-
fine several interpersonal dimensions describing
speakers’ interactions (which take place when the
speakers refer to each other in their utterances) and
relationships (which are defined as a sequence of
interactions), shown in Table 1. Most of the rela-
tionship labels considered in our experiments can
be characterized by a set of these dimensions; for
instance, a boss/employee relationship is hierarchi-
cal, while colleague is an equal one. Similarly,
spouse is an intimate relationship, in contrast with
colleague.

Given a hint of the applicable dimensions, a
model can better predict the underlying relation-
ship. For instance, in Figure 1 the pleasure-
oriented (“dad said we’ll go somewhere exciting!”),
intimate (“of course, sweetheart”) and hierarchical
(“make sure to finish your homework first!”) rela-
tionship is most likely a parent/child relationship.
In our model we use all 11 proposed dimensions to
provide a comprehensive summary of the relation-
ship’s fine-grained characteristics.

Using the data provided by Rashid and Blanco
(2018) we train a separate BERT classifier on the
utterance level for each dimension diml, where
l is the index of the dimension, ranging over the
number of interpersonal dimensions that we use.
We obtain a K-dimensional CLS representation
from the trained classifier for each utterance, thus
producing a K-dimensional representations rdiml

i

for the i-th input utterance. To incorporate these
representations into our model, we obtain a single
representation rdiml at the conversation level by
performing max pooling over all utterance repre-
sentations for a given speaker pair.

4 Dataset

We present FiRe—a Film Relationship dataset,
consisting of labeled relationships of fictional char-
acters in popular movies, obtained via crowdsourc-
ing. FiRe is based on movie scripts, which are a

good approximation for real-life conversations. To
the best of our knowledge, this is the first and the
largest conversational dataset with directed, multi-
label relationship labels.

Data preparation. We use the Jinni Movie
Dataset collected in Gorinski and Lapata (2018),
which provides speaker labels for each utterance as
well as the film genre metadata. We selected the
movies which:
• can be automatically associated with their

Wikipedia page for annotation purposes, and
• have real-life genres, such as drama or family

(see Appendix A.1), to better approximate real-
life conversations.

The selection of realistic movie scripts distin-
guishes FiRe from DDRel (Jia et al., 2021). The
model trained on FiRe is potentially more adaptive
to real-life dialogues.

For each pair of characters we kept only the film
scenes where they are the only participants. Ad-
ditionally, we include all uninterrupted dialogue
spans of the considered pair in the 3-character
scenes (details are in Appendix A.2). We kept
only the pairs which have at least 30 utterances
throughout the whole movie.

4.1 Crowdsourcing annotation
Inspired by Massey et al. (2015), we manually
created a list of 21 fine-grained relationships, di-
vided into 3 categories: Family, Social and Profes-
sional (Table 2). We annotated character pairs in
our dataset using Mechanical Turk (MTurk), fol-
lowing the task design described in Massey et al.
(2015). For each character pair a worker was sup-
posed to indicate all applicable relationships, given
the links to the movie descriptions (Wikipedia and
GradeSaver2, if available). Further details of the
MTurk annotation task are included in Appendix
B.1. Based on several pilot runs we opted to assign
the labels agreed by 4 out of 6 annotators.

Label aggregation. We selected the best label ag-
gregation method based on the evaluation of sev-
eral state-of-the-art models, ranging from basic Ma-
jority Voting to more complex resource-intensive
methods. To create the ground truth for comparison,
we manually annotated 15% of the pairs, retaining
the labels on which 2 out of 3 annotators agreed.
The full details of the evaluation are included in
Appendix B.2. Ultimately, we calculate workers’
scores based on the Honeypot method (Lee et al.,

2https://www.gradesaver.com/

https://www.gradesaver.com/
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Family Social Professional
parent* friend* colleague/co-worker* boss/employer/master*
child* enemy* doctor/patient (medical)* employee/servant*

sibling* (ex-)love interest (lover)* client/seller (commercial)* religious relationship
(ex-)spouse* fan classmate

engaged idol teacher
distant family member members of the same club student

Table 2: List of relationship labels split into categories. Labels marked with * are included in the final dataset.

FiRe Series

avg max avg max
words per utterance 13 602 13 340
utterances per pair 99 597 417 15,216
words per pair 1,087 3,977 6,562 188,676

Table 3: Statistics for FiRe and Series datasets.

2010) and use Majority Voting weighted by these
scores.

Dataset analysis. We calculated Fleiss’ kappa for
the multi-label case (see Appendix B.3 for details).
We obtained a kappa of 0.45, which corresponds to
moderate agreement. We obtained 783 annotated
character pairs from 254 films, of which 5% are
labeled with more than relationships. The origi-
nal set of labels was filtered to include only those
which have at least 20 representative samples, re-
sulting in 12 labels. Summary statistics of the final
dataset are given in Table 3 and the relationship
label distribution in Table 7.

4.2 Series dataset

We created an additional dataset of labeled TV
series scripts, which are slightly different from
film screenplays because they contain a longer
history of interactions. We crawled https:

//transcripts.foreverdreaming.org/ for the
scripts of popular series. As there is no information
about scene boundaries in the gathered scripts, for
a given speaker pair we kept only the uninterrupted
sequences of at least 7 utterance turns.

To include in the dataset, we selected the se-
ries which would be realistic and diverse in top-
ics (see the full list in Appendix A.1). Following
the same crowdsourcing annotation procedure as
for FiRe, we collected 365 labeled pairs with 0.33
Fleiss’ kappa agreement; the dataset’s statistics are
included in Table 3. Compared to FiRe, character
pairs in this dataset have larger number of utter-
ances, around four times as much in average.

5 Experimental setup

Data splitting and preprocessing. We performed
five-fold cross-validation, where the folds are ar-
ranged so that the sets of movies, where the input
character pairs come from, are disjoint. We addi-
tionally balanced label distributions as described
in Appendix C.1. We trained the models on three
folds and chose hyperparameter settings according
to the performance on 1-fold validation set. We
report the results on the remaining 1-fold test set.

From the input scripts we removed personal
names3 and movie-specific words (which we de-
fined as words found in only one movie script), to
reduce overfitting to movie domain or genre.

Model setup and evaluation metrics. We
fine-tuned a pretrained BERT model (bert-base-
uncased) to create word embeddings. For incor-
porating the information on the age difference of
speakers, we gathered the data about speakers’ ages
by crawling imdb.com for the ages of the corre-
sponding actors on the year the film/series was
made. For each speaker pair we calculate the age
difference between the speakers and assign it to one
of the age difference bins, defined in Appendix C.1.
To produce interpersonal dimension embeddings,
we train BERT on the labeled data from Rashid
and Blanco (2018) on each dimension separately,
resulting in 768-dimensional representations.

We trained the model with Binary Cross Entropy
loss. During training we oversampled the under-
represented labels. We performed grid search to
tune hyperparameters, detailed in Appendix C.3.
We perform multi-label classification by predict-
ing all labels with scores over a certain threshold,
which we treat as a hyperparameter. We compute
macro-averaged multilabel precision, recall and F1
scores as evaluation metrics. During grid search
we optimized the F1 score of the performance on
the development set.

3https://catalog.data.gov/dataset/baby-
names-from-social-security-card-
applications-national-data

https://transcripts.foreverdreaming.org/
https://transcripts.foreverdreaming.org/
imdb.com
https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-national-data
https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-national-data
https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-national-data
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cross-val on FiRe train:FiRe, test:Series

model F1 P R F1 P R
RNN 0.11 0.11 0.15 0.10 0.17 0.14
BERTddrel 0.20 0.20 0.25 0.14 0.22 0.15
HAM 0.23 0.25 0.22 0.16 0.21 0.16
BERTconv 0.27 0.25 0.33 0.25 0.35 0.21

PRIDE 0.38 0.42 0.37 0.30 0.43 0.29

Table 4: Results on FiRe and Series datasets. The best
scores (bold) significantly differ from the remaining
ones measured by a McNemar’s test (p < 0.05).

Baselines. We compare the performance of PRIDE
with the following baselines:
• RNN is a BiLSTM architecture from Welch

et al. (2019), trained on short context windows.
Before each utterance a special token (’<ME>’
or ’<OTHER>’) is prepended to represent the
speaker.
• HAM is a model for inferring personal at-

tributes (Tigunova et al., 2019). HAM hier-
archically creates the conversation representa-
tion from word and utterance representations,
without incorporating any speaker information.
• BERTconv for sequence classification (Lu et al.,

2020) runs on the concatenation of utterances
divided by a [SEP] symbol and segment em-
beddings corresponding to the speaker of each
utterance. The sequences of utterances greater
than the allowed input length are cropped.
• BERTddrel (Jia et al., 2021) produces the rela-

tionship label ranking for each dialogue snippet
in a movie; the final scores for pair-level labels
through the whole conversation history is the
sum of MRRs of the labels from scenes’ pre-
dictions.

The data and source code for all models
are provided at https://pkb.mpi-inf.mpg.de/
pride/.

6 Results and discussion

6.1 Quantitative results

The main quantitative results are presented in
Table 4. PRIDE outperforms all baselines by a
large margin, including other BERT-based mod-
els. Unlike BERTddrel, which aggregates predic-
tions on conversation snippets outside of the model,
PRIDE internally learns the conversation represen-
tation. Furthermore, PRIDE has an advantage that
it makes use of the full history of conversations.

model F1 P R
RNN 0.04 0.02 0.10
BERTddrel 0.15 0.15 0.20
HAM 0.24 0.30 0.23
BERTconv 0.23 0.32 0.23
PRIDE 0.33 0.41 0.35

human 0.84 0.89 0.79

Table 5: Results on a human-annotated FiRe subset.

We also analyze PRIDE’s transfer learning per-
formance on the Series dataset as our test data.
From the results shown in Table 4, we observe
the same behaviour of the models, with PRIDE
outperforming the baselines. F1 scores are gener-
ally lower than the evaluation on the FiRe dataset,
due to the different nature of data (longer input
sequences). PRIDE’s precision is similar on both
datasets, but the larger amount of input with Series
seems to reduce recall.

6.2 Comparison with human performance

It is often complicated even for humans to rec-
ognize the relationship between the speakers in
a given conversation. Thus, human performance
can be regarded as an upper bound on the model’s
performance.

To obtain this upper bound estimation, we asked
three human annotators to read the complete con-
versation history of two movie characters (the same
as the input given to the model) and identify the
applicable relationships. (This differs from our
main dataset because annotations are based on con-
versations rather than on character descriptions.)
We sampled 5 pairs for each relationship label, re-
sulting in 60 pairs. As human-predicted labels we
assigned the relationships selected by at least 2
out of 3 annotators. The results on this dataset are
shown in Table 5. While PRIDE substantially out-
performs the baselines, it achieves about half of
human precision, illustrating the difficulty of this
task.

6.3 Ablation study

To investigate the impact of different components
of PRIDE on its performance, we run an ablation
study, removing one PRIDE component at a time.
The ablation on Transformer is done by substitut-
ing it with aggregation operations on word and
utterance levels consecutively. Results are shown
in Table 6. It can be observed that positional en-
coding gives the least impact. On the other hand,

https://pkb.mpi-inf.mpg.de/pride/
https://pkb.mpi-inf.mpg.de/pride/
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model F1 P R
PRIDE 0.38 0.42 0.37

PRIDE − dimensions 0.36 0.36 0.40
PRIDE − age 0.37 0.38 0.37
PRIDE − speaker 0.35 0.37 0.36
PRIDE − positional 0.37 0.36 0.41
PRIDE − Transformer* 0.35 0.46 0.33

Table 6: Ablating elements of PRIDE. The models
marked with * significantly differ with full PRIDE,
measured by a McNemar’s test (p < 0.05).

Figure 3: F1 when varying input length. The dotted red
line shows the performance on the full input.

the quality considerably drops by removing Trans-
former, which is caused by a very low recall. Re-
moving other elements cause a drop in precision,
suggesting that incorporating age differences and
interpersonal dimensions improves performance.

6.4 Varying input length

To investigate how many utterances are needed
to make accurate predictions, we ran the trained
PRIDE model on a subset of data with inputs of
varying lengths. To do so, we selected a subset
of user pairs with at least 150 utterances, and per-
formed inference while increasing the amount of
input utterances in a sequence from 10 to 150. This
was repeated over 100 runs. The averaged results
are shown in Figure 3. We observe that approxi-
mately 40 utterances are needed to maximize per-
formance.

6.5 Per class analysis

In Table 7 we show the label distribution and per
class F1 scores for PRIDE and two ablated versions.
We observe that using speaker embeddings benefit
predictions on asymmetric classes, such as child
and parent, as their F1 scores drop significantly
when speaker embeddings are not used. Removing
interpersonal dimensions damages performance on

class count PRIDE (− speaker) (− dimensions)
friend 208 0.50 0.50 0.50
lover 187 0.60 0.58 0.60
spouse 69 0.40 0.40 0.35
colleague 67 0.25 0.25 0.25
child 48 0.60 0.51 0.56
parent 41 0.62 0.55 0.60
sibling 37 0.42 0.33 0.40
employee 34 0.29 0.23 0.26
boss 29 0.04 0.08 0.04
enemy 27 0.14 0.13 0.14
medical 19 0.46 0.47 0.44
commercial 19 0.12 0.12 0.06

Table 7: Class F1 scores of PRIDE and PRIDE without
speaker embeddings and interpersonal dimensions.

Figure 4: Confusion matrix

spouse and child in particular, illustrating how this
signal can help differentiate relationships that use
similar vocabulary.

6.6 Misclassification analysis

The confusion matrix for PRIDE’s predictions is
shown in Figure 4 with correct predictions omitted.
We observe that there are many misclassifications
into friend and lover, which are the most common
labels (see columns). This can be attributed to
the model’s tendency to predict majority classes
because of a considerable class imbalance.

Considering specific pairs, we see that the model
often confuses spouse for lover (red line). They
may talk to each other in a similar tone and use the
same address terms. Conceptually, however, these
classes are different, with spouses having tighter
family bonds, discussing children and household
issues, and lovers talking more casually. Similarly,
child and spouse are often confused as well (purple
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line). Both may use terms related to family and
discuss similar topics. The differences between
lover and friend are indeed subtle (yellow square),
and these pairs were also sometimes confused by
human annotators.

Finally, we investigated the impact of confusion
within asymmetric classes (for example, confusing
parent to child). We found that if we accept the
model’s predictions of either label as correct, the
average number of false positives for such classes
drops by 34%, resulting in an increase of the aver-
age F1 score from 0.38 to 0.43. This illustrates the
challenge posed by considering relationship direc-
tions and the importance of including asymmetric
labels.

7 Conclusion

We presented PRIDE, a model for predicting fine-
grained relationships from conversations. Our re-
sults illustrate the utility of our approach, show-
ing that PRIDE outperforms state-of-the-art base-
lines and can effectively transfer learn on different
types of dialogue data. In ablation experiments
we demonstrated that the design decisions behind
the model improve the quality of relationship pre-
diction in conversations. To support future work
on this topic, we created and released the largest
labeled collection of relationships in conversations,
which additionally improves over existing datasets
by including asymmetric relationships.
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Appendices

A Dataset Preparation

A.1 Data source

FiRe dataset. We utilized the Jinni Movie Dataset
(Gorinski and Lapata, 2018) containing prepro-
cessed scripts, with information about scene bound-
aries and utterances’ speakers, presented in XML
format. Moreover, the dataset includes films’ meta-
data crawled from Jinni website4, such as genre
and plot keywords.

We filtered the dataset to include only the films
containing sufficient descriptions (e.g., having the
plot summary section) in their Wikipedia pages.
Secondly, we selected the film genres that can guar-
antee the dialogues to be more similar to the real-
life ones. We used Jinni attributes style, genre and
attitude, shown in Table A1, to restrict our movie
list.

However, such strong restrictions made us reject
many popular films belonging to the excluded gen-
res, such as ’Thriller’. To alleviate this situation
we additionally included 100 most popular movies
(by IMDb5 popularity), whose plots we manually
checked for being realistic (see Table A2).

Series dataset. We selected the series, which are
(i) realistic and (ii) diverse in topics, yielding the
following 14 TV shows: Gilmore Girls, FRIENDS,
The O.C., One Tree Hill, Veronica Mars, The Office,
How I Met Your Mother, Secret Life of an Amer-
ican Teenager, Queer As Folk, Greek, Dawson’s
Creek, The Big Bang Theory, Republic of Doyle
and Frasier.

A.2 Three-character scene processing

From the scenes containing utterances by exactly
three characters, we extracted unintrrupted se-
quences of utterances of two characters with at
least three utterance turns. Assume that we have
speakers A, B and C in the scene and we are inter-
ested to extract interchanges for pairs (A,B) and
(A,C). If the sequence of utterances in the scene
looks like ABAACABA, then it can be broken into
homogeneous sequences: {ABAA, AACA, ABA}.
Thus, the number of utterance turns for each pair
in the given scene will be seven for (A,B) and four
for (A,C).

4http://jinni.com/
5http://imdb.com

B Crowdsourcing Annotation

Manually annotating datasets in character relation-
ship prediction task is a regular practice in related
work (Kim and Klinger, 2019; Chaturvedi et al.,
2016; Azab et al., 2019). We conducted our study
on Mechanical Turk (MTurk), following literary
character annotation by Massey et al. (2015). Our
work is still significantly different from Massey
et al. (2015), because we allow for multiple rela-
tionship labels for each sample, discard changing
relationships and aggregate results from many an-
notators.

B.1 MTurk task details
The screenshot of the mturk task is shown in the
Figure B.1. In one task, the worker had to indi-
cate the relationships for a given pair of characters,
supplied with a link to the movie’s Wikipedia page
and the movie description on Gradesaver 6 (if avail-
able). The annotators were supposed to indicate all
the relationships applicable to the pair of charac-
ters, pertaining to the given rules. In the remainer
of the subsection we list the exact instructions for
the workers.

Task rules Read plot summary and/or character
descriptions from given link(s). Pay attention that
the relationships are directed, mark the relation
only from A to B.

Inspect relationships in all 3 categories and select
all that apply, at least one relationship in this HIT
should be selected. Select not more than one (can
be zero) relationships from each category (some
categories can be empty). There are the following
exceptions to this rule:

• General: if the relationship changes during the
film you can select several labels from the same
category only for the following labels:

– Family: spouse - engaged
– Social: friend - enemy - lover
– Professional: classmate - teacher - student -

colleague - boss - employee

• Individual: see the exceptions for the individual
labels marked with ‘!’ sign or in the ‘individual
exceptions’ column of label descriptions.

For relationships friend, enemy, lover, if the re-
lationship is one-way (A loves B, but B does not
love A), tick additionally the ‘one-way relationship’

6https://www.gradesaver.com/

 http:// jinni.com/
http://imdb.com
https://www.gradesaver.com/
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allowed forbidden

Genres Biography, Comedy, Drama, Family, Parody, Period, Historical,
Mockumentary, Music, Romance, Sport, Surfing

Action, Erotic, Western, Adventure, Animation,
Martial Arts, Expressionism, Thriller, Crime

Attitudes Realistic Fantastic, Semi Fantastic
Styles Realism Surreal, Fairytale

Table A1: Movie genre restrictions based on Jinni metadata.

The Shawshank Redemption
The Godfather
Pulp Fiction
Fight Club
Schindlers List
Goodfellas
One Flew Over the Cuckoos Nest
Forrest Gump
The Matrix
Seven
Casablanca
Its a Wonderful Life
The Usual Suspects
Memento
Rear Window
Raiders of the Lost Ark
The Silence of the Lambs
Psycho
The Departed
Vertigo
The Green Mile
Apocalypse Now
The Shining
American Beauty
Gladiator

Citizen Kane
Double Indemnity
The Pianist
M
Terminator 2: Judgment Day
The Sting
Amadeus
Reservoir Dogs
Requiem for a Dream
All About Eve
The Third Man
Some Like It Hot
Eternal Sunshine of the Spotless Mind
The Apartment
Heat
On the Waterfront
Warrior
Indiana Jones and the Last Crusade
The Elephant Man
Die Hard
Chinatown
Raging Bull
L.A. Confidential
Casino
Cool Hand Luke

Trainspotting
The Deer Hunter
Annie Hall
The Battle of Algiers
Platoon
Strangers on a Train
Sweet Smell of Success
No Country for Old Men
The Night of the Hunter
The Sixth Sense
Good Will Hunting
Fargo
The Big Lebowski
The Thin Man
Barry Lyndon
Jaws
The Bourne Ultimatum
Black Swan
Life of Pi
Charade
Harold and Maude
The Kings Speech
The Help
The Graduate
His Girl Friday

The Hustler
Gandhi
Duck Soup
The Perks of Being a Wallflower
Slumdog Millionaire
Being There
Dog Day Afternoon
The Lost Weekend
The Searchers
The African Queen
Almost Famous
Magnolia
The Wrestler
Midnight Cowboy
Mulholland Drive
The Breakfast Club
Dead Poets Society
JFK
The Truman Show
The Exorcist
Dances with Wolves
Bonnie and Clyde
Hannah and Her Sisters
True Romance
Office Space

Table A2: Top 100 films based on IMDb popularity.

Figure B1: MTurk interface for annotating relationships.

checkbox, which will also allow you to select one
other label from social. Example: A and B are pals
but A has a secret love for B, then the correct selec-
tion will be [friend, lover, one-way relationship].

Important notes
• Friend does not mean just positive sentiment, it

means a stronger bond, like ‘buddy’ or ‘pal’. En-
emy is not a negative sentiment, but a stronger
adverse relationship, like ‘policeman vs. crimi-
nal’.

• If the business hierarchy level between A and
B is not clear (whether it is higher/lower/same
position), select colleague/co-workers.

• If you selected spouse, do not mark lover as it
follows automatically.

B.2 Label aggregation

We first conducted several dry runs of the study
with 10 annotators, after which we made revisions
to the labeling rules and the list of relationships.
We used manually annotated subset to fine-tune
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partial accuracy total accuracy precision recall
MV 0.98 0.68 0.88 0.76
GLAD 0.98 0.67 0.88 0.76
DS 0.97 0.59 0.79 0.82
BCC 0.98 0.67 0.83 0.85

Table B1: Comparison of answer aggregation

the number of annotators based on the F1 score.
We found that selecting 6 annotators to label each
pair did not result in significant drop in precision
and ensured greater recall, at the same time saving
annotation resources.

We used an existing benchmark7 of aggregation
approaches, which enabled us to try out at least 7
different aggregation methods. Here we report only
the best performing ones:

• David Skene model (DS, Dawid and Skene,
1979) is based on Expectation Maximizaion
algorithm (EM), which jointly estimates the
expertise of workers and the task label. This
method has shown consistently optimal per-
formance in many studies.

• Generative model of Labels, Abilities, and
Difficulties (GLAD, Whitehill et al., 2009) is
an extension to EM that additionally estimates
the difficulty of each task.

• Bayesian Classifier Combination (BCC, Kim
and Ghahramani, 2012) uses Gibbs sampling
to optimize the posterior joint probability of
labels and workers.

We compare them to the basic Majority Voting
(MV) approach. Note, that most of the models are
based on the assumption of single-label answers,
so we had to reformulate the problem as multiple
binary-decision problems to fit them.

Taking into account that each pair can have multi-
ple labels associated with it and that the agreement
can be reached only on a subset of those labels, we
propose to evaluate both partial (workers’ answers
partially match the golden set) and total (workers’
answers and golden sets are identical) accuracy.
Additionally, we evaluate precision and recall. The
results are shown in Table B1.

The results for all models are close, with MV
having the greatest total accuracy and BCC yield-
ing the best recall. We opted to use MV aggrega-
tion, as we consider high precision and accuracy

7https://zhydhkcws.github.io/crowd_
truth_inference/index.html

more important for this task. Additionally MV has
the advantage of being easier to interpret. One rea-
son why the iterative approaches work as good as
simple majority voting could be the large number
of workers, most of which do only 1-2 tasks, which
prevents the iterative models from effectively infer-
ring the workers’ expertise.

To further ensure the high quality of our an-
notated data, we additionally tried the Honeypot
method (Lee et al., 2010), where the questions with
the known true answers (honeypots) are mixed into
the task. The workers’ scores are calculated as the
fraction of their correct answers to the honeypots;
the workers who did not get any honeypots were
assigned an average score. After that all worker’s
answers are scaled by the obtained scores and the
label is considered as correct if the sum of its votes
exceeds a threshold, finetuned on the annotated set.

B.3 Details on Fleiss’ kappa calculations
In this subsection we present the calculation of
Fleiss’ kappa coefficient for the multiclass, multil-
abel case.

Let N be the number of annotated pairs, indexed
by i = 1, ..N . K would be the total number of
possible labels, with indexing j = 1, ..K. ki is the
number of labels, which were selected by at least
one annotator for this pair. n is the total number
of annotators and nij is the number of annotators,
who assigned j-th label to the i-th pair. Then kappa
κ is calculated as follows:

the agreement of annotators per pair:

Pi =
1

kin(n− 1)

K∑
j=1

nij(nij − 1) (1)

the number of assignments per label:

pj =
1∑K

i=1 ki

N∑
i=1

nij (2)

the means:

P̃ =
1

N

N∑
i=1

Pi

P̃e =

k∑
j=1

p2j

finally:

κ =
P̃ − P̃e

1− P̃e

(3)

https://zhydhkcws.github.io/crowd_truth_inference/index.html
https://zhydhkcws.github.io/crowd_truth_inference/index.html
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development set test set

model F1 P R F1 P R
RNN 0.14 0.15 0.16 0.11 0.11 0.15
BERTddrel 0.22 0.42 0.21 0.2 0.25 0.2
HAM 0.27 0.3 0.25 0.23 0.25 0.22
BERTconv 0.31 0.29 0.36 0.27 0.25 0.33
PRIDE 0.39 0.42 0.4 0.38 0.42 0.37

Table C1: Development set performance for the test
results on FiRe experiment.

C Experiment

C.1 Data splitting and preprocessing

We perform five-fold cross-validation, arranged so
that the sets of movies, where the input character
pairs come from, are disjoint. With that as a hard
restriction, we tried to maximally balance the label
distributions across the folds. For that we created
multiple random assignments of movies to folds
and chose the one that maximized the balance met-
rics, which we defined as follows:

mean([
dl
Sl

for l in labels]),

dl = max
i
sil −min

i
sil,

where Sl denotes the number of pairs for label l,
and sil for the number of pairs for label l in fold i.

To create age embeddings we calculate the age
difference (diff ) between the speakers and assign it
to one of the predefined diff bins. We set diff bins
to be [(-inf; -13], [-12; -6], [-5; -1], [0; 4], [5; 11],
[12; +inf]].

C.2 Training mechanism

We train PRIDE in two steps. First we train the
model without external representations (age dif-
ference and interpersonal dimensions). We save
the best checkpoint, based on the development set
performance, and plug it in the full model with
external representations (except for the final clas-
sification layer). Then we train full PRIDE again
with all the weights frozen, except for the external
representations and classification layer weights.

C.3 Training and hyperparameters

In our experiments we used a cluster with 46 GPUs
(MEGWARE Gigabyte G291-Z20 server), with 4-
core NVIDIA Quadro RTX 8000 (48 GB GDDR6,
295 W).

development set test set

model F1 P R F1 P R
PRIDE 0.39 0.42 0.4 0.38 0.42 0.37
PRIDE - dimensions 0.38 0.36 0.44 0.36 0.36 0.4
PRIDE - speaker 0.37 0.4 0.37 0.35 0.37 0.36
PRIDE - age 0.37 0.37 0.38 0.37 0.38 0.37
PRIDE - positional 0.39 0.39 0.43 0.37 0.36 0.41
PRIDE - Transformer 0.34 0.5 0.33 0.35 0.46 0.33

Table C2: Development set performance for the test
results on PRIDE ablation experiments.

component parameter number
BERT embeddings 23827184
BERT other 85645056
Transformer 66169344
other 198423

Table C3: The number of parameters in PRIDE’s com-
ponents.

We used grid search with 144 parameter com-
binations (128 to create a checkpoint without ex-
ternal representations and another 16 to tune the
full model). We picked the best combination on the
development set performance based on F1-score
metrics (in case of a tie on the F1 score, we max-
imized the precision score). The development set
performance for the experiments described in the
paper are given in Tables C1 and C2.

The decision threshold was tuned on the predic-
tions of the model on the development set after
training with the best hyperparameter setup. We
also tried tuning decision threshold on a per class
basis, but that did not significantly change the re-
sults.

We tuned the following hyperparameters:

• BERT learning rate (3e-6, 2e-5), best: 3e-6
• Learning rate for the rest of the model (0.01,

0.001, 1e-4, 1e-5), best: 0.01
• Word aggregation strategy (average, max,

attention-weighted average functions, or [CLS]
representation), best: attention-weighted average

• Utterance aggregation strategy (average, max,
attention-weighted average functions, or [CLS]
representation), best: max

• Transformer hidden layer size (768, 1024,
1536, 2048), best: 2048

• Age embedding size m (8, 16, 32, 64), best: 64
• Training epoch (0-100), best on pretraining

without external representations: 38, best on the
full model: 44

• Decision threshold (0.01 - 0.99, step 0.01), best:
0.81
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One epoch of training PRIDE with 420 train-
ing samples runs 17 seconds on average, with 12
minutes to train until the best epoch (all times are
averaged across 5 folds). The inference on one
test fold with the average of 156 samples takes 6.3
seconds. In addition to that, prior to training we
create interpersonal dimension representations, the
inference for one dimension takes 36.2 minutes on
average.

The number of parameters in PRIDE is given in
Table C3. We separately calculated the parameters
in BERT input embeddings, other BERT compo-

nents, Transformer and the remaining components
of PRIDE (such as age and speaker embeddings,
classification layer and fully-connected layers for
attention mechanism).

Additionally we tried several other training
strategies: learning rate scheduling, word and utter-
ance dropout, pretraining BERT and Transformer
on movie script data and fine-tuning only BERT
bias terms. We also experimented with attaching
learned emotion representations to each utterance.
We found that none of these modifications signifi-
cantly changed the performance.


