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Abstract

Span extraction, aiming to extract text spans
(such as words or phrases) from plain texts,
is a fundamental process in Information Ex-
traction. Recent works introduce the label
knowledge to enhance the text representation
by formalizing the span extraction task into
a question answering problem (QA Formal-
ization), which achieves state-of-the-art per-
formance. However, QA Formalization does
not fully exploit the label knowledge and suf-
fers from low efficiency in training/inference.
To address those problems, we introduce a
new paradigm to integrate label knowledge
and further propose a novel model to explicitly
and efficiently integrate label knowledge into
text representations. Specifically, it encodes
texts and label annotations independently and
then integrates label knowledge into text rep-
resentation with an elaborate-designed seman-
tics fusion module. We conduct extensive
experiments on three typical span extraction
tasks: flat NER, nested NER, and event detec-
tion. The empirical results show that 1) our
method achieves state-of-the-art performance
on four benchmarks, and 2) reduces training
time and inference time by 76% and 77% on
average, respectively, compared with the QA
Formalization paradigm. Our code and data
are available at https://github.com/
Akeepers/LEAR.

1 Introduction

Information Extraction (IE), a fundamental task in
natural language processing, aims to extract struc-
tured knowledge from unstructured texts. It usually
contains the process that extracts text spans (such
as words or phrases) from plain text, e.g., NER.
Span extraction is usually formulated into the se-

∗This work was done in ICT, CAS.
†Corresponding Author

Figure 1: Illustration of different paradigms1 for span
extraction. X represents the sequence; Y represents
the category-related extra input (e.g., question in QA
paradigm); y represents corresponding category; f1 is
the encoder to learning text representation; f2 is the
task layer to decode results; f ′1 is the extra encoder to
learn the representation of Y ; f ′ is the extra module for
the fusion of text semantics and label knowledge.

quence labeling problem that assigns a categorical
label to each token in a text.

Many efforts have been devoted to span ex-
traction. Early approaches are mainly based on
handcrafted features such as domain dictionar-
ies (Sekine and Nobata, 2004; Etzioni et al., 2005)
and lexical features (Ahn, 2006). As neural net-
works show the effectiveness of learning text fea-
tures automatically, many neural-based methods
have been proposed (Huang et al., 2015; Strubell
et al., 2017; Liu et al., 2018a; Cui et al., 2020).
Recently, self-attention-based pre-trained language
models such as BERT (Devlin et al., 2019) are
widely used to boost the span extraction task (De-
vlin et al., 2019; Yang et al., 2019a). However,
most existing methods treat labels as independent
and meaningless one-hot vectors, neglecting prior
information of labels (referred to as label knowl-

1The traditional paradigm represents the methods that ig-
nore the label knowledge.

https://github.com/Akeepers/LEAR
https://github.com/Akeepers/LEAR
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edge).

Figure 2: The Visualization of attention mechanism
for the token "judge" (QA Formalization).2 The darker
color indicates the higher attention score.

To alleviate the limitation, several studies (Wang
et al., 2018; Lin et al., 2019a; Chen et al., 2020)
start to integrate label knowledge into span extrac-
tion. Among them, QA Formalization is especially
attractive due to its effectiveness (Levy et al., 2017;
Li et al., 2019, 2020b; Liu et al., 2020; Du and
Cardie, 2020; Li et al., 2020a). Simply put, QA
Formalization treats span extraction as a question
answering problem. Taking NER as an example, to
extract “PERSON” entities, it is formalized as an-
swering the question “which person is mentioned
in the text, in which a person represents a human
or individual?" based on the given text. Benefiting
from the label knowledge of the category-related
questions, QA Formalization usually yields state-
of-the-art performance in span extraction even in
low-resource scenarios.

QA Formalization, however, exhibits two key
weaknesses: 1) Inefficiency: Formalizing the span
extraction as QA causes a drastic reduction of
training/inference efficiency. Specifically, the typi-
cal QA Formalization method concatenates ques-
tion and text as the input (e.g., [CLS] question
[SEP] text [SEP]) and jointly encodes question and
text with a transformer-based encoder. The joint-
encoding has to transform every text into |C| pairs
of the form 〈question, text〉, where |C| is the size of
the label category set. This transformation, which
increases both the size of the sample set and the
length of text sequences, finally increases the time
cost of training and inference. 2) Underutiliza-
tion: The label knowledge is integrated implicitly
into text representation based on the self-attention
mechanism (Vaswani et al., 2017). As Figure 2
shows, the “attention” of self-attention mechanism
will be distracted by text, not entirely focus on the
question part. Thus, the label knowledge is not
fully exploited to enhance the text representations.

To address aforementioned two problems, we
propose a novel paradigm (seen in Figure 1) to inte-
grate label knowledge. First, since joint-encoding
causes low efficiency, we decompose question-text

2The attention score comes from the well-trained model
based on the pervious work (Li et al., 2020b).

encoding process into two separate encoding mod-
ules: the text encoding module f1 and the question
encoding module f ′1. In this way, the size of the
sample set is no longer expanded by |C| times. Sec-
ond, to fully utilize the label knowledge, a fusion
module f ′ is designed to explicitly integrate the
label and the text representations.

To instantiates the above paradigm, we further
propose a model termed as LEAR to learn Label-
knowledge EnhAnced Representation. A powerful
encoder f ′1 is essential for understanding the la-
bel annotations3. However, training the encoder
f ′1 from scratch is challenging since the number
of label annotations is too small. Thus we share
the weights of f1 and f ′1 (called shared encoder),
which can learn the label knowledge by large pre-
trained model and does not introduce extra param-
eters. Next, the learned label knowledge is inte-
grated into text representations by the semantics-
guided attention module. We conduct experiments
in five benchmarks on three typical span extrac-
tion tasks: flat NER, nested NER, and event de-
tection (ED). Compared with QA Formalization
baselines, our model LEAR outperforms them to
achieve a new state-of-the-art. Furthermore, LEAR
reduces training time and inference time by 76%
and 77% on average, respectively.

To sum up, our contributions are as follows:

• We propose a new paradigm to exploit label
knowledge to boost span extraction, which
encodes texts and label annotations indepen-
dently and integrates label knowledge into text
representation explicitly.

• We propose a novel model, LEAR, to instanti-
ate the above paradigm. It designs the shared
encoder and semantics-guided attention to
tackle the technical challenges.

• The experiments show that our method
achieves SOTA performance on four bench-
marks, and it is much faster than the previous
SOTA approach. Further analysis confirms
the effectiveness and efficiency of our model.

2 Preliminaries

2.1 Task Formalization
We formulate the following span extraction task:
given an input text X = (x1, x2, · · · , xn) consist-
ing of n tokens, find out all candidate spans in X

3Previous SOTA QA Formalization method (Li et al.,
2020b) adopts the annotations of label as questions.
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Figure 3: Illustration of our LEAR.

and assign a label c ∈ C to each of them, where
C is a predefined set of categories (or tag types,
interchangeably).

This formulation provides a uniform framework
for modeling many important problems. For exam-
ple, when C is the set of event types such as die,
attack, marry, and so on, span extraction is exactly
the event detection task. In addition, if C consists
of entity types such as persons, organizations, lo-
cations, span extraction turns into the well-known
named entity recognition task.

2.2 Data Construction

Task Category Label Annotation

ED Die a die Event occurs whenever the
life of a person entity ends.

NER Person
a person entity is limited to human
including a single individual or a
group.

Table 1: Label categories and their corresponding an-
notations.

QA formalization is powerful in span extrac-
tion since it incorporates label knowledge. One
of its prerequisites is the existence of reasonable
questions. Usually, questions are generated by
a manually-designed pre-processing step, which
is costly and lacks versatility and accessibility.
For instance, Du and Cardie (2020) and Li et al.
(2020b) use a purpose-designed template to gen-
erate questions, while Liu et al. (2020) exploits a
well-designed large pretraining model.

Previous work4 (Li et al., 2020b) on flat and
nested NER uses the annotations of each cate-
gory (referred to as label annotations) as the ques-
tions. We follow this setting in our work for a fair
comparison. Similarly, we utilize the annotations
of event types in ACE 2005 event detection task5.
Table 1 presents an example of those annotations.

3 Approach

In this section, we first give an overall description
of our LEAR architecture. LEAR consists of three
crucial modules: semantics encoding module, se-
mantics fusion module, and span decoding module.
Our architecture (Figure 3) takes text X and label
annotation Y of category set C as input. The two
inputs are respectively processed by two encoder
networks whose backbone is BERT (Devlin et al.,
2019). The two encoders share weights (referred
to as shared encoder) while processing the two
inputs. Then the text embedding and label embed-
ding produced by the shared encoder are fused
by the semantic fusion module to derive the label-
knowledge-enhanced embeddings for the text. Fi-
nally, the label-knowledge-enhanced embeddings
are used to predict whether or not each token is a
start or end index for some category.

4Questions are available in their open source project.
5All label annotations are available at: https:

//www.ldc.upenn.edu/sites/www.ldc.upenn.
edu/files/english-events-guidelines-v5.
4.3.pdf.

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
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3.1 Semantics Encoding Module
Semantics encoding module aims to encode the
text and the label annotation into real-valued em-
beddings. Since the number of label annotations
is small compared with the whole sample set, it
is challenging to build an encoder from scratch
for the label annotations. Thus we introduce the
shared encoder, which is inspired by siamese net-
works (Bromley et al., 1993). The shared encoder
is efficient in learning the representation of label
annotations and does not introduce extra parame-
ters.

Given input text X and label annotations Y ,
LEAR first extracts their embeddings hX ∈ Rn×d

and hY ∈ R|C|×m×d, where n is the length of X ,
m is the length of label annotation, |C| is the size
of the category set C, and d is the vector dimension
of the encoder. We denote this operation as:

hX = f1(X) (1)

hY = f ′1(Y ) (2)

3.2 Semantic Fusion
The semantic fusion module aims at enhancing the
text representation with label knowledge explicitly.
To this end, we devise a semantics-guided attention
mechanism to achieve this goal.

Specifically, we first feed hX and hY into a fully
connected layer, respectively, to map their repre-
sentations into the same feature space:

h′X = U1 · hX (3)

h′Y = U2 · hY (4)

where U1,U2 ∈ Rd×d be the learnable parameters
of the fully connected layers.

Then, we apply the attention mechanism over
the label annotations for each token in the text. For
any 1 ≤ i ≤ n, let xi be the ith token of X , and
h′xi
∈ Rd be the ith row of h′X . Likewise, for

any 1 ≤ i ≤ m and category c ∈ C, let ycj be
the jth token of the annotation of c, and h′ycj be its
embedding from h′Y . We compute the dot product
of h′xi

and h′ycj , and apply a softmax function to
obtain the attention scores:

axi,ycj
=

exp
(
h′xi
· h′ycj

)
∑

j exp
(
h′xi
· h′ycj

) (5)

Finally, we get the fine-grained features by atten-
tion, which is in turn fused into token embedding

by add operation:

hcxi
= h′xi

+
∑
j

axi,ycj
· h′ycj (6)

ĥcxi
= tanh (V · hcxi

+ b) (7)

where tanh (·) is the hyperbolic tangent function,
and V ∈ Rd×d and b ∈ Rd are learnable pa-
rameters. Intuitively, ĥcxi

encodes the information
related to category c.

Repeating the process for all categories, we
obtain the category-related embedding ĥxi =

(ĥ1xi
, · · · , ĥ|C|xi ) for each token xi.

3.3 Span Decoding
Now we are ready to select spans. Following Li
et al. (2020b), we use the start/end tagging schema
to annotate the target spans to extract. Specifically,
for each token xi, we compute the following vector:

startxi = sigmoid(fo(Ms ◦ ĥxi + bs)) (8)

where Ms ∈ R|C|×d and bs ∈ Rd are learnable
parameters, ◦ is the element-wise multiplication,
and fo(·) is the function that sums up the rows of
the input matrix. Intuitively, for any c ∈ C, startcxi

indicates the probability that xi starts a span of the
category c.

Likewise, we obtain the endxi , which indicates
the probabilities that xi ends a span, in the same
prediction procedure. Then we extract the results
case by case, depending on whether or not spans of
the same category can be nested6.

Flat Span Decoding This is the case without
nested spans in the same category.

The most widely adopted method is the near-
est matching principle (Du and Cardie, 2020; Wei
et al., 2020), which matches a start position of cat-
egory c with the nearest next end position of c.

In contrast, we follow the heuristic matching
principle (Yang et al., 2019b), which determines
spans from the lens of probability. Roughly speak-
ing, among candidate start and end positions of a
category c, we only match those having high prob-
abilities, where the probabilities are derived from
vectors defined in formulas (8) For detailed infor-
mation of heuristic matching, please refer to the
algorithm in Appendix A.1.

The two principles for span decoding are further
compared by experiments in Appendix A.2.

6Nested here represents both nested and overlapped spans,
just like nested NER (Finkel and Manning, 2009).
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Nested Span Decoding Now suppose that spans
in the same category may be nested or overlapped.

Since the heuristic matching principle does not
work anymore, we follow the solution of BERT-
MRC (Li et al., 2020b). It employs a binary clas-
sifier to predict the probability that a pair of can-
didate start/end positions should be matched as a
span. Specifically, for any category c, define the
following binary classifier:

P c
i,j = sigmoid(M · concat(ĥcxi

, ĥcxj
)) (9)

where 1 ≤ i, j ≤ n, and M ∈ R1×2d is the learn-
able parameter. When P c

i,j > 0.5, it will be pre-
dicted that xi and xj demarcate a span of c.

3.4 Loss Function
Given input text X = (x1, x2, · · · , xn) consisting
of n tokens and set C of categories, for any c ∈ C,
define Sc ∈ {0, 1}n to be the vector whose ith
entry Sc

xi
= 1 if and only if xi is a ground-truth

start position of c. Likewise, define Ec ∈ {0, 1}n
to indicate the ground-truth end positions. Recall
the vectors startc and endc defined in Section 3.3.
Define start loss function Ls and end loss function
Le of our model as follows:

Ls =
1

n

∑
c∈C

∑
1≤i≤n

CE
(
startcxi

, Sc
xi

)
Le =

1

n

∑
c∈C

∑
1≤i≤n

CE
(
endcxi

, Ec
xi

)
where CE stands for the cross entropy.

Flat Span Extraction The final loss function of
our model is defined to be L = Ls + Le.

Nested Span Extraction More notation is
needed. Recall the matrix P c ∈ Rn×n defined
in Formula (9). Let M c ∈ Rn×n be the binary ma-
trix such that M c

i,j = 1 if and only if the tokens xi
and xj demarcate a ground-truth span of category
c. Define the match loss function

Lmatch =
1

n2

∑
1≤i,j≤n

∑
c∈C

CE
(
P c
i,j ,M

c
i,j

)
W c

i,j

where W c ∈ Rn×n is the binary matrix such that
W c

i,i = 1 if and only if P c
i,j > 0.5 or M c

i,j = 1.
Then the final loss function of our model is de-

fined to be L = α(Ls+Le)+βLmatch, where α, β
are hyper-parameters to control the contributions
towards the overall training objective.

4 Experiments

In this section, we present LEAR results on 5
widely-used benchmarks.

4.1 Datasets

Dataset We evaluate our model on three span ex-
traction tasks: flat NER, nested NER and event
detection. For flat NER, we conduct experiments
on MSRA (Levow, 2006) and Chinese OntoNote
4.0 (Pradhan et al., 2011). For nested NER, we eval-
uate our model on ACE 2004 (Doddington et al.,
2004) and ACE 2005 (NER) datasets. For event
detection, we use the ACE 20057 (ED) dataset.

For MSRA and Chinese OntoNote 4.0, which
contains three and four types of entities respec-
tively, we follow the data preprocessing strate-
gies in Li et al. (2020b) and Meng et al. (2019)
for fair comparison. ACE 2005 (NER) and ACE
2004 both annotate 7 entity categories. For ACE
2005 (NER), we use the same data split as previ-
ous works (Lin et al., 2019b); for ACE 2004, We
use the same setup as Katiyar and Cardie (2018).
ACE 2005 (ED) annotates 33 types of events and
we follow the same settings of Chen et al. (2015)
and Chen et al. (2018) to split data into train, devel-
opment, and test set. More statistics of datasets are
listed in Appendix A.4.

4.2 Baselines

Named Entity Recognition We use the follow-
ing models as baselines: (1) BiLSTM-CRF (Ma
and Hovy, 2016) uses the Bi-LSTM layer as en-
coder. (2) Seg-Graph (Wang and Lu, 2018) pro-
poses a segmental hypergragh representation to
model overlapping entity mentions. (3) BERT-
Tagger (Devlin et al., 2019) treats NER as a tag-
ging task with a bidirectional encoder representa-
tions. (4) Lattice-LSTM (Zhang and Yang, 2018)
constructs a word-character lattice for Chinese
NER. (5) Glyce-BERT (Meng et al., 2019) com-
bines glyph information with BERT pretraining for
Chinese NER. (6) Seq2Seq-BERT (Shibuya and
Hovy, 2020) views the nested NER as a sequence-
to-sequence problem. (7) Biaffine-NER (Yu et al.,
2020) predicts named entity with a biaffine network.
(8) BERT-MRC (Li et al., 2020b) treats NER as a
MRC/QA task, which is the state-of-the-art method
on both flat and nested NER.

7This corpora is designed for multi-tasks, such as event de-
tection and NER. Data source: https://catalog.ldc.
upenn.edu/LDC2006T06

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
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Event Detection We compare with the following
methods: (1) DMCNN (Chen et al., 2015) builds a
dynamic multi-pooling convolutional model; (2)
JRNN (Nguyen et al., 2016) employs bidirec-
tional RNN for ED; (3) ANN-AugAtt (Liu et al.,
2017) uses annotated event argument information
to get better attention scores; (4) JMEE (Liu et al.,
2018b) enhances GCN with self-attention and high-
way network; (5) EE-GCN (Cui et al., 2020) learns
token representation via edge-enhanced GCN with
specific syntactic label incorporated. (6) EKD
(Tong et al., 2020) is the state-of-the-art method
on the ACE2005 dataset. (7) BERT_QA_Trigger
(Du and Cardie, 2020) formalizes event detection
as a QA task.

Furthermore, to compare the efficiency between
QA Formalization and LEAR, we instantiate the
traditional paradigm as a baseline for efficiency
comparison in the simplest way, which only con-
tains a BERT encoder and two fully connected
layers as the classifiers. We denote this baseline
model as Traditional Formalization.

4.3 Experimental Setups

We use BERT (Devlin et al., 2019) as the back-
bone to learning the contextualized representation
of the texts. More specifically, we implement our
model based on the BERT-large model for NER
task, which is the same as BERT-MRC (Li et al.,
2020b). In the event detection task, we use the
BERT-base model as the backbone. We adopt the
adam optimizer (Kingma and Ba, 2015) with a
linear decaying schedule to train our model. The
detail of hyper-parameters settings is listed in Ap-
pendix A.3.

To make results comparable in the efficiency
comparison experiment (as shown in Table 3),
all models take the BERT-base as the backbone
and set all hyperparameters to the same except
max_seq_len of QA Formalization. The higher
max_seq_len meets the requirement of taking the
question as extra input for QA Formalization.

Effectiveness Evaluation We use micro-average
precision, recall, and F1 as evaluation metrics. A
prediction is considered correct only if both its
boundary and category are predicted correctly.

Efficiency Evaluation We use the time costs (in
seconds) of training and inference to evaluate the ef-
ficiency of different models. Specifically, 1) Train-
ing: the time cost of training in one epoch; 2)

English ACE2005 for ED (Flat)

Model P R F1
DMCNN (Chen et al., 2015) 75.6 63.6 69.1
JRNN (Nguyen et al., 2016) 66.0 73.0 69.3
ANN-AugAtt (Liu et al., 2017) 78.0 66.3 71.7
JMEE (Liu et al., 2018b) 76.3 71.3 73.7
EE-GCN (Cui et al., 2020) 76.7 78.6 77.6
BERT_QA_Trigger† (Du and Cardie, 2020) 71.12 73.70 72.39
EKD (Tong et al., 2020) 79.1 78.0 78.6

LEAR 82.04 81.18 81.61

English ACE 2004 for NER (Nested)

Model P R F1
Seg-Graph (Wang and Lu, 2018) 78.0 72.4 75.1
Seq2seq-BERT (Straková et al., 2019) - - 84.40
DYGIE (Luan et al., 2019) - - 84.7
BERT-MRC† (Li et al., 2020b) 85.05 86.32 85.98
Biaffine-NER (Yu et al., 2020) 87.3 86.0 86.7

LEAR 87.89 85.86 86.87

English ACE 2005 for NER (Nested)

Model P R F1
Seg-Graph (Wang and Lu, 2018) 76.8 72.3 74.5
DYGIE (Luan et al., 2019) - - 82.9
Seq2seq-BERT (Straková et al., 2019) - - 84.33
Biaffine-NER (Yu et al., 2020) 85.2 85.6 85.4
BERT-MRC† (Li et al., 2020b) 87.16 86.59 86.88

LEAR 84.85 87.95 86.63

Chinese OntoNotes 4.0 for NER (Flat)

Model P R F1
Lattice-LSTM (Zhang and Yang, 2018) 76.35 71.56 73.88
BERT-Tagger (Devlin et al., 2019) 78.01 80.35 79.16
Glyce-BERT (Meng et al., 2019) 81.87 81.40 81.63
BERT-MRC† (Li et al., 2020b) 82.98 81.25 82.11

LEAR 81.12 84.86 82.95

Chinese MSRA for NER (Flat)

Model P R F1
Lattice-LSTM (Zhang and Yang, 2018) 93.57 92.79 93.18
BERT-Tagger (Devlin et al., 2019) 94.97 94.62 94.80
Glyce-BERT (Meng et al., 2019) 95.57 95.51 95.54
BERT-MRC† (Li et al., 2020b) 96.18 95.12 95.75

LEAR 96.23 95.57 95.96

Table 2: Results in five benchmarks. The best results
are in bold, † means QA Formalization methods.

Inference: the time cost for the model to get all
prediction results of the test set.

4.4 Main Results

Effectiveness Table 2 shows the performance of
our LEAR compared with the above state-of-the-art
methods on the test sets. We can see that our LEAR
outperforms all other models on four benchmarks,
i.e., +3.01%, +0.84%, +0.21%, +0.17%, respec-
tively on ACE 2005 (ED), OntoNote 4.0, MSRA
and ACE 2004. This improvement indicates that
the explicit fusion with a dedicated module is better
than the implicit fusion based on the self-attention
mechanism. Since the joint-encoding of QA For-
malization, the “attention” of self-attention mecha-
nism will be distracted by text, not entirely focus on
the question. Thus the label knowledge introduced
by label annotation is not fully exploited. By con-
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Task Dataset |C| Traditional Formalization QA Formalization LEAR

Train Inference Train Inference Train Inference

ED ACE 2005 33 349.9(x1.0) 5.8(x1.0) 11456.2(x32.7) 176.1(x30.4) 1005.5(x2.9) 9.8(x1.7)

NER

MSRA 3 167.8(x1.0) 5.1(x1.0) 626.7(x3.7) 14.5(x2.8) 206.8(x1.2) 5.6(x1.1)
OntoNotes 4.0 4 58.3(x1.0) 5.2(x1.0) 258.1(x4.4) 19.7(x3.8) 74.4(x1.3) 6.1(x1.2)
ACE 2005 7 103.9(x1.0) 4.3(x1.0) 684.4(x6.6) 26.3(x6.1) 167.8(x1.6) 5.1(x1.2)
ACE 2004 7 87.1(x1.0) 3.4(x1.0) 604.8(x6.9) 20.5(x6.0) 145.5(x1.7) 4.3(x1.3)

Table 3: The efficiency comparison of different methods. (·) indicates the relative efficiency compare with the
Traditional Formalization (e.g., TLEAR

TTraditional Formalization
).

trast, our LEAR learns knowledge-enhanced rep-
resentations for each token by a semantics-guided
fusion module, whose attention entirely focuses on
the label annotation.

Efficiency Table 3 shows that our LEAR is much
faster than QA Formalization, i.e., reducing the
training and inference time by 76% and 77%
on average, respectively. The reduction in train-
ing/inference time is positively correlated with the
number of categories |C|, which benefits from
breaking the joint-encoding limitation of QA For-
malization. As Table 4 shows, the time complexity
of LEAR during inference is O(n2 + |C|mn), in
which we ignore the cost for the encoding of label
annotations in our LEAR. Because LEAR only en-
codes all label annotations once and reuses their
representations during the inference, which is fa-
vorable for industrial applications in the resource-
limited online environment. In contrast, the time
complexity of QA Formalization is O(|C| · (n +
m)2), causing a dramatic decrease in efficiency of
inference.

Method Time Complexity
Traditional Formalization O(n2)
QA Formalization O(|C| · (n+m)2)
LEAR O(n2 + |C|mn)

Table 4: The time complexity of different model archi-
tectures during inference.

To summarize, the fundamental starting points
of the proposed paradigm include: 1) decompos-
ing question-text joint encoding into two separate
encoding modules; 2) explicitly integrating label
knowledge by a dedicated module. The above ex-
periments confirm that our LEAR, an instantiation
of the proposed paradigm, outperforms previous
SOTA methods in effectiveness and efficiency.

5 Analysis

5.1 Analysis for Model Variants

To demonstrate the effectiveness of our method, we
build a series of variants of LEAR. For the seman-
tics encoding module, we set: 1) Label Embed-
ding Layer (LEL): replacing the encoder module
of label annotations with a label embedding layer,
which is initialized by glove (Pennington et al.,
2014). The F1 scores drop 0.86% on average. The
results show that the improvement of our LERA
comes from understanding the label annotation,
which is handled well by the shared encoder. 2)
Label Name Encoding (LNE): replacing the label
annotations with corresponding label names. The
results drop 0.53% on average, indicating that la-
bel names contain less label knowledge than label
annotation.

In order to survey the semantics fusion strategy,
we set: 1) Average Pooling & Add (AP & Add):
replacing the semantics-guided attention mecha-
nism with average pooling and integrating label
knowledge by add operation. The F1 scores drop
by 0.80% on average. 2) Sentence Features &
Similarity (SF & Sim): using the sentence-level
features of label annotations (i.e., the embedding
of [CLS] symbol) instead of token-level features.
Thus the semantics-guided attention mechanism
turns into the similarity calculation between token
embedding and label feature. The F1 scores drop
by 0.56%. The above two settings retain the extra
learnable parameters introduced by the fusion mod-
ule. The results show that the improvement comes
from the better exploitation of label knowledge, not
the larger parameters. Besides, the results demon-
strate that fine-grained (i.e., token-level) features
are more effective.

All the above experiments show the effectiveness
of our LEAR. Furthermore, the worst-performing
variants of LERA still rival the QA Formalization
method, which powerfully demonstrates the superi-
ority of the proposed paradigm.
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Model ACE 2005 (ED) ACE 2005 (NER) ACE 2004 OntoNotes 4.0 MSRA

LEAR 81.61 86.63 86.87 82.95 95.96
– LNE 80.96 (↓ 0.65) 85.83 (↓ 0.80) 86.20 (↓ 0.67) 82.58 (↓ 0.37) 95.82 (↓ 0.14)
– LEL 79.72 (↓ 1.89) 85.34 (↓ 1.29) 85.88 (↓ 0.99) 82.92 (↓ 0.03) 95.85 (↓ 0.11)
– AP & Add 79.68 (↓ 1.93) 85.74 (↓ 0.89) 86.18 (↓ 0.69) 82.56 (↓ 0.39) 95.88 (↓ 0.08)
– SF & Sim 79.76 (↓ 1.85) 86.31 (↓ 0.32) 86.67 (↓ 0.2) 82.72 (↓ 0.23) 95.76 (↓ 0.2)

Table 5: The performance of the model variants. The values in table are F1 scores on test sets.

5.2 Performance in Data-Scarce Scenarios

Dataset Settings LEARw/o LEAR

ACE 2005 (NER) 1-shot 3.23 15.42
5-shot 38.77 43.92

ACE 2004 1-shot 13.30 22.81
5-shot 38.11 39.03

OntoNotes 4.0 1-shot 1.89 7.28
5-shot 39.21 41.32

MSRA 1-shot 0.16 0.39
5-shot 21.28 26.22

ACE 2005 (ED) 1-shot 23.31 30.23
5-shot 63.04 63.52

Table 6: F1 scores on exploring the extremely data-
scarce scenarios.8 Both methods take the BERT-base
as the base model. The best results are in bold.

To verify that exploiting label knowledge is
beneficial in data-scarce scenarios, we introduce
LEARw/o for comparison. LEARw/o is short for
LEAR without label knowledge, whose settings are
the same with LEAR except that BERT alone rather
than shared encoder and label semantic fusion mod-
ule are used (i.e., the standard fine-tuning). We
conduct two sets of experiments for each dataset
using various proportions of the training data: 1-
shot and 5-shot. For the 1-shot setting, we sample
one sentence for each category in the training set,
and the setting of 5-shot is similar. We repeat each
experiment 5 times. Tabel 6 shows that our LEAR
demonstrates superior performance, for example,
obtaining up to +12% absolute improvement and
+6.8% on average across all datasets in the 1-shot
setting. This is in line with our expectation since
LEAR enhances the text representation with label
knowledge, which provides more prior informa-
tion.

In the appendix, we list the further analysis about
the effect of different span decoding strategies and
the comparison between solving span extraction
in the multi-label classification (our LEAR) or
sequence-labeling manner (e.g., a CRF layer).

8We does not compare with QA paradigm methods because
prior works does not report their training data.

6 Related Work

Event Detection (ED). Event Detection aims at
extracting event triggers from a text and classifying
them. It is dominantly solved in a representation-
based manner, where triggers are represented by
embedding. In case of no extra information, the
representation can be obtained by a powerful text
encoder which is usually based on CNN (Chen
et al., 2015), RNN (Nguyen et al., 2016), or atten-
tion mechanism (Yang et al., 2019b; Tong et al.,
2020). Besides, the representation can be enhanced
by extra information. Examples of typical extra in-
formation include syntactic information (Liu et al.,
2018b; Cui et al., 2020) and knowledge base (Liu
et al., 2016; Chen et al., 2017). In particular, la-
bel knowledge is attracting more and more atten-
tion (Li et al., 2020a; Du and Cardie, 2020), which
usually formalizes ED as a QA problem.

Named Entity Recognition (NER). Named en-
tity recognition seeks to locate named entities in an
unstructured text and classify them into pre-defined
categories such as person, organization, location,
etc. Traditional methods treat it as a classification
task and use CRFs (Lafferty et al., 2001; Sutton
et al., 2007) as the backbone. Then neural networks
become a prevalent tool in NER with the develop-
ment of deep learning. Recently, the performance
of NER has been further improved by large-scale
language models such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019). When label knowl-
edge is available, state-of-the-art performance can
be obtained by formulating NER as a QA problem.

7 Conclusion

In this paper, we propose a novel paradigm to ex-
ploit label knowledge to boost the span extraction
task and further instantiate a model named LEAR.
Unlike the existing QA Formalization methods,
LEAR first encodes the text and label annotations
independently, and uses a semantic fusion module
to integrate label knowledge into the text represen-
tation explicitly. In this way, we can overcome the
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inefficiency and underutilization problems of QA
Formalization. Experimental results show that our
model outperforms the previous works and enjoys
a significantly faster training/inference speed.
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A Appendix

A.1 Details of the Heuristic Match Principle

Algorithm 1 span determination (Yang et al.,
2019a)
In: startc, endc, and sequence length l.
Out: Result list L that each item is a span plays

cth category.
1: Initiate: as ← −1, ae ← −1
2: for i← 0 to l do
3: if In state 1 and startcxi

> 0.5 then
4: as ← i and change to state 2
5: end if
6: if In state 2 then
7: if the startcxi

> 0.5 then
8: as ← i if startcxi

> startcas
9: end if

10: if endcxi
> 0.5 then

11: ae ← i and change to state 3
12: end if
13: end if
14: if In state 3 then
15: if endcxi

> 0.5 then
16: ae ← i if endcxi

> endcae
17: end if
18: if startcxi

> 0.5 then
19: Append [as, ae] to L
20: as ← −1, ae ← i and change to

state 2
21: end if
22: end if
23: end for

Algorithm 1 contains a finite state machine,
which changes from one state to another in re-
sponse to startc, endc. There are three states to-
tally: 1) Neither start nor end has been detected; 2)
Only a start has been detected; 3) A start as well
as an end have been detected. Specially, the state
changes according to the following rules: State 1
changes to State 2 when the current token is a start;
State 2 changes to State 3 when the current token is
an end; State 3 changes to State 2 when the current
token is a new start. Notably, if there has been a
start and another start arises, we will choose the
one with higher probability, and the same for end.

A.2 Effect of Span Decoding Strategy
Table 7 shows the effect of the different span decod-
ing strategies. All of them use the BERT encoder
as backbone. The differences are (1) Strategy A

OntoNotes 4.0 for NER

Strategy Method F1

A BERT-spanv1 82.65
BERT-spanv2 82.14

B BERT-crf 81.65

BERT-softmax 81.30

Table 7: Results with different span decoding strategies.
BERT-spanv1 is the LEARw/o mentioned above.

treats span decoding as a multi-label classification
problem with 2×|C| binary classifiers, which aims
to predict the boundary of a span. This strategy is
inspired by the QA task and it is adopted in BERT-
span and our LEAR. BERT-spanv1 employs the
heuristic match principle, and BERT-spanv2 uses
the nearest match principle, both mentioned in sec-
tion 3.3. (2) The most commonly-used Strategy B
treats span decoding as a multi-class classification
problem with BIO or BIOS schema, and is adopted
in BERT-softmax and BERT-crf. Compared with
BERT-softmax, BERT-crf adds a conditional ran-
dom field (CRF) layer to model the dependencies
between predictions, usually yielding better perfor-
mance but worse efficiency.

The results show that: (1) The strategy used by
LEAR has better performance than the traditional
way. The reason might be that, the span decod-
ing strategy in our approach is start/end position
matching, which only needs to predict the span’s
boundary. In contrast, the strategy adopted in pre-
vious methods needs to predict both boundary and
internal words, which is much harder, especially for
a longer span. (2) The comparison between BERT-
spanv1 and BERT-spanv2 shows that, the heuristic
match principle could achieve better results by mak-
ing the most of information from probability. (3)
Besides, there is an extra benefit for Strategy A.
It naturally tackles the nested span issue, which
means that candidate span overlaps with different
categories.

A.3 Details of Hyper-Parameters Settings

All hyper-parameters of our model are listed in
Table 8 in detail.

A.4 Statistics of the datasets used in the
experiments

Table 9 shows the statistics of the datasets used in
the experiments. For ACE2005 (ED), we refer to
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random seed max_seq_len batch size epoch dropout rate learning rate

encoder layer task layer

ACE 2005 (ED) 1 256 32 30 0.1 1e-5 2e-4
ACE 2005 (NER) 42 128 32 20 0.1 3e-5 6e-5

ACE 2004 42 128 32 30 0.1 3e-5 3e-4
OntoNotes 4.0 42 128 32 5 0.1 8e-6 8e-5

MSRA 42 128 32 20 0.1 3e-5 6e-5

Table 8: Hyper-parameter settings for each experiment.

ACE 2005(ED) ACE2005(NER) ACE2004 OntoNote 4.0(Chinese) MSRA

train dev test train dev test train dev test train dev test train dev test

sentences 13919 880 810 7294 971 1057 6200 745 812 15650 4301 4346 41729 4637 4366

spans # total 4496 279 574 24703 3218 3029 22201 2514 3035 13367 6950 7684 70446 4157 6181
# nested - - - 5052 598 638 5416 623 779 - - - - - -

(20.45%) (18.58%) (21.06%) (24.40%) (24.78%) (25.67%)

Table 9: Statistics of the datasets used in the experiments. Spans are considered nested only if they are overlapped
or nested in the different category.

the previous work9 to process raw data, which fol-
lows standard data splitting strategy. NER datasets
we used are provided in the previous SOTA work10.

9https://github.com/thunlp/HMEAE
10https://github.com/ShannonAI/

mrc-for-flat-nested-ner

https://github.com/thunlp/HMEAE
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner

