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Abstract

Many recent works have demonstrated that un-
supervised sentence representations of neural
networks encode syntactic information by ob-
serving that neural language models are able
to predict the agreement between a verb and
its subject. We take a critical look at this
line of research by showing that it is possi-
ble to achieve high accuracy on this agreement
task with simple surface heuristics, indicating
a possible flaw in our assessment of neural net-
works’ syntactic ability. Our fine-grained anal-
yses of results on the long-range French object-
verb agreement show that contrary to LSTMs,
Transformers are able to capture a non-trivial
amount of grammatical structure.

1 Introduction

The long distance agreement task is one of the most
popular method to assess neural networks (NN)
ability to encode syntactic information: Linzen
et al. (2016) showed that LSTMs are able to predict
the subject-verb agreement in English and has initi-
ated a very active line of research. Since then, many
studies have generalized this observation to other
languages (Gulordava et al., 2018), other models
such as Transformers (Goldberg, 2019; Jawahar
et al., 2019) or have identified possible confound-
ing factors that could distort the stated conclusions
(Gulordava et al., 2018; Marvin and Linzen, 2018).
All of these studies show that NN are able to learn
a ‘substantial amount’ of syntactic information (Be-
linkov and Glass, 2019).

In this work, we propose to take an alterna-
tive look at these results by studying whether neu-
ral networks are able to predict the correct form
of a verb because they are able to build an ab-
stract, high-level (maybe hierarchical) sentence
representation (Giulianelli et al., 2018; Lakretz
et al., 2019) or solely because they capture sur-
face statistical regularities, as suggested by sev-
eral recent work (Sennhauser and Berwick, 2018;

Chaves, 2020; Li and Wisniewski, 2021). Overall,
this set of results questions one of the most fun-
damental assumption in linguistics (Lakretz et al.,
2021), namely that a sentence has a recursive struc-
ture (Everaert et al., 2015): while LSTMs with
proper parametrization can model context-free pat-
terns (Suzgun et al., 2019), Transformers are es-
sentially feed forward models relying on a large
number of attention heads. Consequently, they are,
in theory, not adapted to model hierarchical syn-
tactic patterns (Hahn, 2020) and explaining their
capacity to predict accurately syntactic agreement
patterns remains an open issue.

We bring new light on this problematic by iden-
tifying simple heuristics (§4) that can be used to
correctly predict verbal agreement, pushing further
the observation of Kuncoro et al. (2018) that a sim-
ple rule can provide highly accurate results on the
task. Using our extended set of heuristics, we iden-
tify sentences for which predicting the correct verb
form requires a more abstract representation of the
sentence. By comparing models’ performance on
these examples, we show that contrary to LSTMs,
Transformers perform consistently well in these
critical cases.

2 Test Set for French Object
Past-Participle Agreement'

We focus on the object-verb agreement (i.e. object
past-participle agreement) in French: agreement in
number and gender occurs between the object and
the past participle when the latter is used with the
auxiliary avoir (to have) and the object is located
before the verb. As shown in Figure 1, this is,
for instance, the case for past participles in object
relatives. When agreement is required, a —s suffix
(resp. —e) has to be added to past participles for

'The code of all our experiments as well as the
corpora we used in this work can be downloaded
from https://gitlab.huma-num.fr/bli/
syntactic-ability-nlm.
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plural object (resp. feminine).

To predict the past participle agreement in object
relatives, a model has to identify the object relative
pronoun, its antecedent and the auxiliary. It has
also to ignore the effect of attractors (nouns with
misleading agreement features) occurring between
the object and the past participle. Compared to
the subject-verb agreement, the French object past
participle agreement is more difficult as the target
verb form depends on a noun that is never adjacent
to the verb. The auxiliary avoir before the target
verb could also be an attractor. 2

We restrict ourselves to the number agreement
between object and past participle in the case of
object relatives to (1) design reasonably simple
patterns that can be easily extracted automatically
from raw texts, (2) extract a sufficiently large num-
ber of representative examples and (3) reduce the
importance of the anaphoric resolution problem.
These restrictions allow us to carry out a fine-
grained analysis of NN ability to extract syntactic
generalizations from non-annotated corpora (§4).

Building a Test Set Sentences used in the num-
ber agreement task are extracted automatically
from the 8,638,145 sentences of the French Guten-
berg corpus.’ We use the FLAUBERT parser (Le
et al., 2019) and the pretrained French model of
spaCy (Honnibal et al., 2020) to automatically
parse the sentences of the Gutenberg project. We
also consider the gold annotations of the 45,088
sentences of the French Universal Dependency tree-
banks (Zeman et al., 2020) to evaluate the impact
of parsing errors on the corpus quality.

We extract examples of object-verb agreement
from sentences’ syntactic and morphological anno-
tations using simple rules,* resulting in a corpus
of 104 sentences (68% singular and 32% plural)
extracted from the UD treebank and of 68,794 sen-
tences (65% singular and 35% plural) extracted
from the Gutenberg project. In French, the singu-
lar is identical to the unmarked form of the past
participle verbs, making the frequency statistics
unbalanced in favor of singular.

We evaluate the quality of our automatic ex-
traction procedure by comparing the examples ex-
tracted using the gold annotations of UD treebank
to those extracted from predicted annotations of

2See example(1) in Figure 1, a (has_3Sg) could be a num-
ber attractor for target verb acceptées(accepted_Pl)

3https ://www.gutenberg.org/

“See appendix C for a full description

UD treebank sentences (generated by FLAUBERT
and spaCy). Our automatic procedure correctly
picked up 98%° of the object past participle agree-
ment examples.

3 Language Models

We contrast two types of incremental language
models in our experiments: LSTM models and
incremental Transformer models. Both models are
modeling the probability of a sentence x as:

n

P(X) :HP({L'Z'|.731...Q}Z‘_1) (1)

i=1

All neural models are trained to compute
P(z;|z1 ... zi—1) and they all use the same generic
template:

P(:L’Z|.C61 S xi_l) = SOFTMAX(WdeCCi_l + b)

2
Ci—1 = CONTEXT(e1 e ei,l) 3)
e; = WepeX; 4)

where x; are one-hot word vectors; W, and
W 4. are tied parameter matrices, the latter being
the transpose of the former, encoding respectively
the word embeddings and the output layer of the
language model.

A context model (CONTEXT) is either an incre-
mental LSTM or a Transformer decoder where the
sequence of embeddings e; . .. e, is masked (i.e.
the probability of the i-th word is estimated know-
ing only the first (i-1) words of the sentences, con-
trary to the ‘standard’ Transformer models which
assume that the whole sentence is known). The
context vector c returned by the context model is
either the hidden vector of the LSTM at step¢ — 1
or the vector returned by the upper layer of the
Transformer at step ¢ — 1.

Our LSTM models use 2 layers while our Trans-
former language model use 16 layers and 16 heads.
Both models are using embeddings of size 768 and
are trained on the same data. For Transformers
we add positional embeddings to the word embed-
dings e; using the cosine scheme and weighting
described by Vaswani et al. (2017). Since all the
models use a word-based tokenization and not a
subword tokenizer, we bound the vocabulary to the
50,000 most frequent tokens found in the training
data and use an <unk> token to encode the least
frequent tokens.

3Qualitative analysis is in Section C of the appendix.
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the-DET-3Sg

directeur a acceptées

director-N-M-Sg has-AUX-3Sg accepted-PP-F-P1

(1) Le nombre d offres qu\e
The-DET-Sg number-N-M-Sg of-ADP offers-N-F-P1 that-PRON
The number of offers that the director has accepted...
(2) Les offres q\u\e les directeurs ont

The-DET-PI

The offers that the directors have accepted...

offers-N-F-Pl that-PRON the-DET-P1

directors-N-M-P1

acceptées

have-AUX-3P1 accepted-PP-F-PI

Figure 1: Examples of object-verb agreement in French. The past participle in the relative clause (in blue) has to
agree in gender and in number with its object (also in blue) when the latter is placed before the verb. To predict the
agreement the model has to identify the antecedent of the relative pronoun (dashed arrow)

size

corpus o LSTMs  Transformers

Original Test Set
overall 68,497 80,8412 93.5 114
4 heuristics 32,311  96.4 16 99.0 104
3 heuristics 13,222 84.0 117 95.1 415
2 heuristics 8,869 66.5 107 89.5 193
1 heuristic 10,946 55.7 +3.5 84.2 +3.0
0 heuristic 3,149 349 +6.8 74.1 +4.1

Permuted Test Set
overall 68,497  69.0 106 704 119
4 heuristics 32,311 87.0 412 88.0 108
3 heuristics 13,222 73.6 406 73.9 109
2 heuristics 8,869 52.0 403 548 118
1 heuristic 10,946 35.3 +0.3 37.4 +1.5
0 heuristic 3,149 30.2 104 32.6 119

Table 1: Accuracy achieved by LSTMs and Transform-
ers on the object-verb agreement task for the Original
and Permuted test sets. Results are averaged over the
three best models in terms of the validation perplexity
for each architecture

This setting aims to get reasonably fair
comparisons between LSTM and Transformers.
To train the models, we extracted raw text
from a recent French Wikipedia dump using
WikiExtractor (Attardi, 2015) and then seg-
mented and tokenized it with the Moses tok-
enizer (Koehn et al.,, 2007). We filtered out
sentences with more than 5% unknown words
based on the lemma annotations generated by
TreeTagger (Schmid, 1999). Finally, we sam-
pled a subset containing 100M tokens and split it
into training, validation and test sets with a stan-
dard 8:1:1 proportion.

4 Experimental Results

In our experiments, following Linzen et al. (2016)
and Gulordava et al. (2018), we compare the prob-
abilities a language model assigns to the singular

form of the target participle and its plural form
given a prefix.5 We consider the model has pre-
dicted the agreement correctly if the form with the
correct number has a higher probability than the
form with the incorrect number.

Table 1 reports the accuracy of two types of mod-
els evaluated in this framework. Even for this dif-
ficult task, the models perform, overall, very well:
LSTMs achieve an accuracy of 80.8%, a perfor-
mance similar to the one reported in the literature.’
With an accuracy of 93.5%, Transformers perform
even better. These preliminary results support the
conclusion, drawn by many works, that neural net-
works encode syntactic information.

However, we believe that this conclusion must
be taken with great care: because of confound-
ing factors, a language model could predict the
correct form without actually capturing syntactic
information. For instance, as our test set is unbal-
anced (section 2) a naive model always choosing
the singular form of the participle achieves an ac-
curacy of 65%, a score that puts into perspective
the performance of LSTMs. More importantly,
Gulordava et al. (2018) and Kuncoro et al. (2018)
observed that the agreement task can be partially
solved by collocational information or a simple
heuristic, namely the number of the first noun of
the prefix. In the following, we propose several
experiments to strengthen these first results.

4.1 Agreement with Surface Heuristics

Extending the observations of Kuncoro et al.
(2018), we identify four heuristics that a model
could adopt to predict the verb’s number only from

®The prefix is made of words from the beginning of a
sentence up to and excluding the target past participle

"For instance, for the subject-verb agreement task, Gulor-
dava et al. (2018) reported an overall accuracy of 81% for
English and Mueller et al. (2020) of 83% for a wide array of
constructions in French.
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Heuristics Accuracy
h1: First noun 69.5%
h2: Last noun 88.6%
h3: Last token 60.3%
h4: Majority number 70.0%

Table 2: Heuristics” accuracy on French object past par-
ticiple agreement task

surface information. Each of these heuristics as-
sumes that the target past participle agrees system-
atically in number with:

hl. the first noun in the prefix;

h2. the last noun in the prefix;

h3. the last token in the prefix with a mark of
number;

h4. the majority number expressed in the prefix.

The example (2) in Figure 1 illustrates the tokens
that each heuristic relies on to make its decision.
These heuristics are not tailored to the prediction
of the object-past participle agreement in French:
they could easily be used to other agreement tasks
in other language. More complicated, task-specific
heuristics could have been designed. We could, for
instance, consider the first noun on the left of the
relative pronoun.

Surprisingly enough, as reported in Table 2, on
our test set, these heuristics achieve an accuracy
between 60.3% (for h3) and 88.6% (for h2). These
results challenge our previous conclusion: they
show that the ability to predict the correct number
of the verb cannot be used to prove that a model
captures abstract syntactic relations, since a simple
surface heuristic outperforms LSTMs and achieves
an accuracy only slightly worse than that of Trans-
formers. On the contrary, it suggests that NN, like
Eliza, only extract and combine surface patterns to
make their decisions.

To shed further light on this new perspective, we
use these heuristics to quantify the ‘difficulty’ of
the task: for each example of our test set, we count
the number of heuristics that predict the correct
form and consider that the higher this number, the
easier the prediction. We then divide our test set
into five different subsets according to the number
of heuristics that a model could rely on to predict
the verb form: the 4 heuristics group gathers the
‘easiest’ examples, while examples in the 0 heuris-
tic group are the most difficult, for which the choice
of the verb number cannot rely on simple surface

size

corpus i LSTMs  Transformers
in sentences
Original Test Set
overall 68,497 80,8112 93.5 414
Singular 44,599 96.4 +1.1 98.9 +0.4
plural 23,898 51.6 +4.7 83.5 +3.3
Nonce Test Set
overall  68,497*3 78,1110 92.6 119
singular  44,599*%3 93 453 96.8 109
plural 23,898%3  50.3 168 84.7 136
Mirror Test Set
overall 68,497 59,8 +2.5 81.3 +92.7
singular 23,898 90.6 +1.8 91.8 +0.7
plural 44,599 43.5 +4.5 75.8 +3.8

Table 3: Accuracy achieved by LSTMs and Transform-
ers on different experimental settings, by target verb
number and averaged

heuristics and requires building a more abstract
representation of the sentence.

Table 1 reports the results achieved by our mod-
els according to the prediction difficulty. The two
architectures have a very different behavior: while
they both show high agreement prediction accu-
racy in the simplest case (the 4 heuristics group),
LSTMs’ performance drops sharply with increas-
ing task difficulty: with an accuracy of only 34.9%
on the most difficult examples (the O heuristic
group), they perform worse than random. On the
contrary, even if Transformers’ performance also
degrades with increasing task difficulty, they per-
form consistently much better on all groups: they
are still predicting the correct verb number for
74.1% of the most difficult examples, suggesting
that Transformers are able to extract certain abstract
generalizations.

4.2 Control Experiments

To corroborate these results and avoid some known
pitfalls of the agreement task, we have performed
four control experiments.

Lexical Cues Following Gulordava et al. (2018),
we convert the original test set into a nonsensical
but grammatically correct test set to ensure that
the model is not using collocational information
to choose the correct form of the verb. ° Results
in Table 3 show that for LSTMs (resp. Transform-
ers), the global accuracy drops from 80.8% (resp.

8Table 5 in the appendix describes examples of sentences
in each of these groups.

°Generation procedure is detailed in Section C of the ap-
pendix.
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93.5%) for the original set to 78.1% (resp. 92.6%)
for the so-called nonce test set. This drop is of
the same order of magnitude as that reported by
Gulordava et al. (2018), showing that the lexical
or collocational confounds have only a moderate
impact on models’ performance in our agreement
prediction task.

Frequency Bias and Imbalanced Data An-
other possible confound identified in this work (§2)
results from the imbalance between classes: most
of the past participles in French are singular and
65% of the target past participle in our test set are
singular. That is why, as expected, models per-
form better in predicting singular form than plural
form(Original Test Set of Table 3): both LSTMs
and Transformers predict almost perfectly singular
forms (accuracy: 96.4% and 98.9%), but accuracy
on plural verbs drops sharply: LSTMs correctly
predict 51.6% of the plural forms and Transform-
ers appear to be more robust with an accuracy of
83.5%.

To ensure, a model is not simply memorizing the
most frequent form of a verb, we have generated a
mirror test set in which each plural verb is automat-
ically transformed into singular (and vice-versa) as
well as the corresponding object and all its adjec-
tive and pronoun modifiers to make sure that the
modified sentence is grammatically correct.

The accuracy of LSTMs and Transformers on
the mirror set is of 59.8% and 81.3% (Table 3).
This drop suggests that more frequent forms are
more likely to be better predicted, even though
Transformers are more robust to the low frequency
bias. Compared to the nonce setting, models’ per-
formance is impacted to a much larger degree in
mirror setting. We don’t have a clear explanation
to this surprising observation, which need to be
explored through new experiments.

Distance Following Linzen et al. (2016) we have
examined how models’ performance on this agree-
ment task is affected by distance between the object
and the target verb. Results, reported in Table 8
in the appendix show that models’ performance
decreases slightly as the distance increases, except
for the shortest distance, thus replicating the results
of Linzen et al. (2016).

Word Order We now test to which extent a
model relies on word order to predict the verb
number. We convert each original example into
a scrambled example by randomly permuting its

prefix. As reported in Table 1, despite the fact that
the syntax has been destroyed in shuffled prefixes
setting, both models still achieve high accuracy for
the easy examples but achieve worse than chance
accuracy for the 0 and I heuristic groups, confirm-
ing that syntactic information is critical for models
to solve the most difficult cases. For Transformers,
the difference in accuracy between the original and
permuted setting on the O heuristic group extends
up to 41.5 percentage points! These results suggest
that Transformers perform significantly better than
surface heuristics and capture a non trivial amount
of word order information.

5 Conclusions

We ran a fine-grained analysis of NN’s syntactic
generalization capabilities in processing French
object-verb agreement for grammatical number, a
phenomenon crucially depending on hierarchical
syntactic structure. We designed a new evalua-
tion protocol based on four shallow heuristics that
the models could adopt to perform number agree-
ment task. Our experiments show that, contrary to
LSTMs, Transformers extract a non trivial amount
of syntactic information.

In future work, we will investigate the kind of
syntactic information Transformers are encoding
and the relationship between the superficial heuris-
tics and hierarchical syntactic structure process-
ing in Transformer models. In particular, our re-
sults intriguingly suggest that Transformers rely
on word order information to predict verb agree-
ment, despite the fact that they don’t model word
order explicitly beyond marking each word with
its absolute-position embedding. We plan to study
this question in future work.
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A Language Models

Hyperparameters and perplexities The results
reported in the paper are averaged over three best
models in terms of the validation perplexity after 40
training epochs for LSTMs and 50 training epochs
for Transformer. The detailed information of the
top 3 LSTM and Transformer models is described
in table 4.

For the LSTM models, we used embeddings of
size 768, with 2 layers. The total parameters are
47,900,241 and we explored the following hyper-
parameters, for a total of 12 combinations:

1. batch size: 32, 64(only for learning rate

0.0001)

2. dropout rate: 0.0, 0.1, 0.2, 0.3

3. learning rate: 0.001, 0.0001

For the Transformer models we used embed-
dings of size 768, with 16 layers, each with 16
heads. The total parameters are 126,674,513. Train-
ing was performed with stochastic gradient descent.
The initial learning rate was fixed to 0.02 and we
used a cosine scheduling on 50 epochs without an-
nealing. The first epoch was dedicated to warmup
with a linear incremental schedule for the learn-
ing rate. Batches are of size 64 run in parallel on
8 GPUs except for warmup where the size was
fixed to 8. We explored the initial learning rate of
0.01 and 0.02, the dropout rate of 0.0, 0.1, and 0.2,
resulting in a total of 6 combinations.

B Surface heuristics

We defined four heuristics that a model could adopt
to predict the verb’s number only from surface in-
formation. And then we divided the test set into five
subsets based on the number of heuristics, Table 5
describes the examples for each subgroup.

C Construction of test sets

Extraction procedure Extraction of the object-
verb agreement examples is based on the depen-
dency structure and morphological information
of sentences. Concretely, a valid example has
to include a NOUN and VERB connected by an
acl:relcl dependency arc as well as a direct
object que (that); the auxiliary connected to the
target verb has to be avoir (to have). Using the mor-
phological information, we filtered out sentences in
which the noun and the verb do not agree in number
and gender as well as sentences in which not all
words from the antecedent to the target(enclosed)

occur in the language model’s vocabulary. To re-
duce the importance of anaphoric resolution prob-
lems, we have ruled out the complex and ambigu-
ous cases: long distance dependencies (First exam-
ple in Figure 2) and coordinated object noun phrase
as antecedent case (Second example in Figure 2).
But we didn’t exclude the propositional phrase as
antecedent case, because there is no ambiguity in
determining the antecedent of the relative pronoun,
illustrated by the third example in Figure 2.

Qualitative evaluation of extraction procedure
Our automatic extraction procedure correctly iden-
tified 102 examples from automatically parsed
UD treebanks sentences among 104 examples us-
ing the gold annotation of French UD treebanks.
Our procedure excluded the first missed exam-
ple by annotating the intervening relative pro-
noun que (that) as conjunction: formule qu’avec
un sens de la nuance plus marseillais que bri-
tannique, le président de I’académie a appliquée
(formular,,,.s, with a sense of nuance that was
more Marseillais than British, that the president
of the academy appliedr,,_s,). And for the sec-
ond one: une maniere de révolution sur lui-méme,
qu’il a opérée... (A way of revolutiong.;_s; on
himself, that he operatedgcpsg...), the automati-
cally parsed annotation erroneously identified the
antecdent as ‘way’ instead of ‘revolution’. The two
missed examples reflect also the difficulty of this
task for a model.

Nonce test set To test the extent to which the
lexical or collocational information contribute to
model’s performance on number agreement task,
we adapted the generation procedure of Gulor-
dava et al. (2018) to generate three "colorless green
idea" (Chomsky et al., 1957) sentences for each
original sentence: each content word of the origi-
nal sentence is replaced with a random word from
the same syntactic category (i.e.,the same POS and
morphological features). During the substitution
procedure, we excluded the word forms that ap-
peared in the treebank with more than one POS
to make sure that the random words used are all
with unambiguous POS(e.g., données can be a plu-
ral noun(data) or the plural past participle of verb
donner (give)). To respect the argument structure
constraints, the target verb could only be replaced
by another random transitive word. So the Nonce
Test Set retains the grammatical syntax of original
sentences but are highly semantically implausible.
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hidden/
embedding size layers batchsize dropoutrate learningrate bestepoch ppl

LSTM 768 2 32 0.1 0.001 21 40.5
768 2 32 0.2 0.0001 38 39.3
768 2 64 0.2 0.0001 36 37.9
Transformer 768 16 64 0 0.02 41 314
768 16 64 0.2 0.01 50 28.5
768 16 64 0.1 0.01 49 28.2

Table 4: Hyperparameters and perplexities of top 3 LSTMs and Transformers used in this work

Subsets Examples Heuristics class

4 Les offres;,; que les directeurs;,» ont;,; acceptées... h1,h2,h3,h4 Plural
The offers_PI that the_Pl directors_Pl have_Pl accepted_PI ...

3 Le nombre d’offres;,» qu’ils ont;; acceptées... h2,h3,h4 Plural
The number_Sg of offers_Pl that they_Pl have_Pl accepted_Pl ...

2 Les offres qu’il a acceptées... h1,h2 Plural
The offers_Pl that he_Sg has_Sg accepted_Pl ...

1 Les offres;,| que le directeur a acceptées... hl Plural
The offers_Pl that the_Sg director_Sg has_Sg accepted_PI ...

0 Le nombre d’offres que le directeur a acceptées... none Plural

The number_Sg of offers_Pl that the_Sg director_Sg has_Sg accepted_PI ...

Table 5: Examples of five subsets according to the number of heuristics that a model could rely on to predict the
verb form

V's ~
(1) Les offres que Pierre dit que Marie a acceptées
The offers that Peter sayss that Mary has accepted

The offers that Peter says Mary accepted.

- ~

A//

(2) Les disques et les livres q\u’ il a achetés

The disks and the books that he has bought

Disks and books that he has bought...

- ~
- ~

(3) Les propositions de la fédération qu’ il a faites
The proposals of the federation that he has made

The proposals of the federation that he has made...

Figure 2: The test set excluded the complex long distance dependencies (1) and ambiguous coordinated object
noun phrase (2), but kept the prepositional phrase as antecedent cases like (3)
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size
corpus LSTMs  Transformers
in sentences

Nonce Test Set
overall 68,497  78.1 119 92.6 +19
4 heuristics 32,311 943 114 98.3 107
3 heuristics 13,222  80.3 195 935419
2 heuristics 8,869 63.2 +2.1 89.1 +29
1 heuristic 10,946 53.0 151 84.0 435
0 heuristic 3,149 323 111 69.1 445

Table 6: Accuracy achieved by LSTMs and Transform-
ers on the nonce test set, based on prediction difficulty

Table 7 gives an example of a nonsensical sentence
converted from its original version.

Mirror test set We generate a singular version
of each plural object sentence and vice versa by
substituting respectively the antecedent and target
verb of each original sentence with their opposite
number form. We converted also the adjective and
pronoun modifiers of the antecedent to their oppo-
site number form if they are present. At the end,
we got a "inverted copy" of the original set in terms
of class distribution, 35% singular and 65% plural
compared to its original version: 65% singular and
35% plural. Table 7 gives an example of the mirror
sentence converted from its original version.

D Detailed results

Nonce Set The detailed results on Nonce Test Set
are reported in Table 6.

Distance Table 8 reports the average prediction
accuracy on Original Test set as a function of dis-
tance between the antecedent and the target verb.
The shortest distance (i.e. construction with only
two intervening tokens: the relative pronoun and
the auxiliary verb) is more challenging for both
LSTMs and Transformers due to the attraction ef-
fect of the auxiliary. In this non-canonical con-
struction(1,599 examples), the embedded subject
in the objective clause occurs after its predicate.
Our fine-grained analysis shows that in this non-
canonical case, when the number of the intervening
auxiliary is different with that of the past partici-
ple verb, LSTMs’ performance drops to 41.9% and
Transformers still achieve an accuracy of 80%, sug-
gesting that Transformer are more robust to resist
the lure of adjacent auxiliary attractor.
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Test sets  Examples label

Original  Les offres que le directeur a acceptées... P1
The offers_PlI that the director has accepted_PI ...

Nonce Les omellettes que le professeur a attachées... PI
The omelettes_PI that the professor has attached_PI ...

Mirror L offre que le directeur a acceptée Sg
The offer_Sg that the director has accepted_Sg ...

Permuted directeur a Les que offres le acceptées ... PI

director has The that offers_Pl the accepted_PI ...

Table 7: Examples of test sets used in original and control experiments

2 tokens 3-4 5-6 7-8 9-10 11-12 13-14
LSTMs 731109 829115 787112 759106 741103 72106 693112
Transformers 88.0:‘:3.0 95.]:‘:1.2 92-4:t1.6 89.7:‘:1.9 87.8:‘:2_2 85.2:‘:2_2 83.1 +1.7
# examples 1,599 44,012 14,945 4,799 1729 756 327

Table 8: Accuracy as a function of distance (i.e. number of tokens) between the antecedent and the target verb

4610



