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Abstract

Transformer architecture has become ubiqui-
tous in the natural language processing field.
To interpret the Transformer-based models,
their attention patterns have been extensively
analyzed. However, the Transformer archi-
tecture is not only composed of the multi-
head attention; other components can also
contribute to Transformers’ progressive perfor-
mance. In this study, we extended the scope
of the analysis of Transformers from solely
the attention patterns to the whole attention
block, i.e., multi-head attention, residual con-
nection, and layer normalization. Our anal-
ysis of Transformer-based masked language
models shows that the token-to-token interac-
tion performed via attention has less impact
on the intermediate representations than pre-
viously assumed. These results provide new
intuitive explanations of existing reports; for
example, discarding the learned attention pat-
terns tends not to adversely affect the perfor-
mance. The codes of our experiments are pub-
licly available.1

1 Introduction

Transformer architecture (Vaswani et al., 2017) has
advanced the state of the art in a wide range of
natural language processing (NLP) tasks (Devlin
et al., 2019; Liu et al., 2019; Lan et al., 2020).
Along with this, Transformers have become a ma-
jor subject of research from the viewpoints of en-
gineering (Rogers et al., 2020) and scientific stud-
ies (Merkx and Frank, 2021; Manning et al., 2020).

In particular, the multi-head attention, a core
component of Transformers, has been extensively
analyzed (Clark et al., 2019; Kovaleva et al., 2019;
Reif et al., 2019; Lin et al., 2019; Mareček and
Rosa, 2019; Htut et al., 2019; Raganato and Tiede-
mann, 2018; Tang et al., 2018). While these analy-
ses suggest that the multi-head attention contributes

1https://github.com/gorokoba560/
norm-analysis-of-transformer

(a) Existing analysis focusing
only on the multi-head atten-
tion (Kobayashi et al., 2020).

(b) Proposed method incor-
porating the whole attention
block (i.e., multi-head atten-
tion, residual connection, and
layer normalization) into the
analysis.

Figure 1: Visualizations of the token-by-token inter-
actions in each layer when a sentence pair is fed into
the pre-trained BERT-base. The diagonal elements
correspond to the effect of preserving the original in-
put information. The contrast between Figures 1a
and 1b demonstrates that the contextual information
contributed less to the computation of the output rep-
resentations than previously expected.

to capturing linguistic information such as semantic
and syntactic relations, some reports question the
importance of attention. For example, several stud-
ies in fields ranging from NLP (Michel et al., 2019;
Kovaleva et al., 2019) to neuroscience (Toneva and
Wehbe, 2019) empirically found that discarding
learned attention patterns from Transformers re-
tains or even improves their performance in down-
stream tasks and the ability to simulate human brain
activity. These observations imply that Transform-
ers do not heavily rely on the multi-head attention
alone, and the other components contribute to their
progressive performance.

In this study, we broaden the scope of the analy-
sis from the multi-head attention to the whole atten-
tion block, i.e., the multi-head attention, residual
connection, and layer normalization. Our analysis
of the Transformer-based masked language mod-
els (Devlin et al., 2019; Liu et al., 2019) revealed

https://github.com/gorokoba560/norm-analysis-of-transformer
https://github.com/gorokoba560/norm-analysis-of-transformer
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that the newly incorporated components have a
larger impact than expected in previous studies (Ab-
nar and Zuidema, 2020; Kobayashi et al., 2020)
(Figure 1).

More concretely, we introduce an exact de-
composition of the operations in the whole at-
tention block exploiting the norm-based analy-
sis (Kobayashi et al., 2020). Our analysis quan-
tifies the impact of the two contrasting effects of
the attention block : (i) “mixing” the input repre-
sentations via attention and (ii) “preserving” the
original input mainly via residual connection (Sec-
tion 3). Our analysis reveals that the preserving
effect is more dominant in each attention block
than previously estimated (Abnar and Zuidema,
2020; Kobayashi et al., 2020). The results also
reveal the detailed mechanism of each component
in the attention block. The residual connections
pass through much larger vectors than the vectors
produced by the multi-head attention. The layer
normalization also reduces the effect of the opera-
tion via attention.

Our finding of the relatively small impact of the
multi-head attention provides new intuitive inter-
pretations for some existing reports, for example,
discarding the learned attention patterns did not
adversely affect their performance. Our analysis
also provides a new intuitive perspective on the
behaviors of Transformer-based masked language
models. For example, BERT (Devlin et al., 2019)
highlights low-frequency (informative) words in en-
coding texts, which is consistent with the existing
methods for effectively computing text representa-
tions (Luhn, 1958; Arora et al., 2017).

The contributions of this study are as follows:

• We expanded the scope of Transformers anal-
ysis from the multi-head attention to the atten-
tion block (i.e., multi-head attention, residual
connection, and layer normalization).

• Our analysis revealed that the operation via
residual connection and layer normalization
contributes more to the internal representa-
tions than expected in previous studies (Abnar
and Zuidema, 2020; Kobayashi et al., 2020).

• We detailed the functioning of BERT: (i)
BERT tends to mix a relatively large amount
of contextual information into [MASK] in the
middle and later layers; and (ii) the contribu-
tion of contextual information in the attention
block is related to word frequency.
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Figure 2: Visualization of the attention block, consist-
ing of multi-head attention, residual connection, and
layer normalization, in the Transformer layer.

2 Background: Transformer architecture

The Transformer architecture consists of a stack of
layers. Each layer has an attention block, which is
responsible for capturing the interactions between
input tokens. The attention block can be further
divided into the three components: multi-head at-
tention (ATTN), residual connection (RES), and
layer normalization (LN) (Figure 2). This block
can be written as the following composite function:

x̃i = LN
(

ATTN(xi,X) + xi

)
, (1)

where xi ∈ Rd is the i-th input representation,
X := [x1, . . . ,xn] ∈ Rn×d is the sequence of
input representations, and x̃i ∈ Rd is the output
representation corresponding to xi. Boldface let-
ters such as x denote row vectors. In the following,
we review the computations in the ATTN, RES,
and LN components.

Multi-head attention (ATTN): The ATTN
takes the role of mixing contextual information
into output representations. Formally, given input
representations X , the H head ATTN computes
the output ATTN(xi,X) ∈ Rd for each input xi:

ATTN(xi,X) =

H∑
h=1

ATTN h (xi,X), (2)

where ATTN h (xi,X) ∈ Rd denotes the
output vector from each attention head h.
ATTN h (xi,X) is computed by each attention
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head h as follows:

ATTN h (xi,X)

=
n∑

j=1

α
h
i,j

(
xjW

h
V + b

h
V

)
W

h
O ,

(3)

α
h
i,j := softmax

xj∈X

(
q(xi)k(xj)

>
√
dh

)
, (4)

q(x) := xW
h
Q + b

h
Q , (5)

k(x) := xW
h
K + b

h
K , (6)

where W h
Q ,W

h
K ,W

h
V ∈ Rd×dh , and W h

O ∈

Rdh×d are the weight matrices, and b h
Q , b

h
K , and

b
h
V ∈ Rdh are the bias vectors. dh denotes the

dimension of each head (64 is usually used), and
dh ×H = d holds. Here, Q, K, and V stand for
Query, Key, and Value, respectively. Note that in a

typical attention analysis, the attention weight α h
i,j

has been assumed to represent the contribution of
the input xj to computing x̃i.

Residual connection (RES): In RES, the origi-
nal input vector for the multi-head attention (xi) is
added to its output vector:

ATTN(xi,X) 7→ ATTN(xi,X) + xi. (7)

Layer normalization (LN): LN first normalizes
the input vector and then applies a transformation
with learnable parameters γ ∈ Rd and β ∈ Rd:

LN(y) =
y −m(y)

s(y)
� γ + β ∈ Rd, (8)

where m(y) ∈ R and s(y) ∈ R denote the
element-wise mean and standard deviation2, re-
spectively. Here, subtraction and division are also
performed on an element-wise basis. The normal-
ized vector, (y−m(y))/s(y), is then transformed
with γ and β; here, � denotes the element-wise
multiplication.

Note that analyzing the feed-forward networks
in each layer is beyond the scope of this study and
will be carried out as future work.

2Specifically, m(y) := 1
d

∑
k y

(k) and s(y) :=√
1
d

∑
k

(
y(k) −m(y) + ε

)2, where y(k) denotes the k-th
element of the vector y and ε ∈ R is a small constant to
stabilize the value.

3 Proposal: Analyzing attention blocks

For analyzing Transformers, solely observing
the attention weights has been a common
method (Clark et al., 2019; Kovaleva et al., 2019,
etc.). We extend the scope of analysis to the whole
attention block (ATTN, RES, and LN).

3.1 Strategy: Norm-based analysis
Kobayashi et al. (2020) introduced the norm-based
analysis to extend the scope of analysis from the
attention weights to the whole multi-head attention.
We follow this norm-based analysis and extend its
scope to the whole attention block.

The norm-based analysis first attempts to de-
compose the output vector x̃i into the sum of the
transformed input vectors {xj}:

x̃i =
∑

j Fi(xj), (9)

where Fi is an appropriate vector-valued function.
Then, the contribution of xj to x̃i can be expressed
by the norm of Fi(xj). In the next subsection,
we indicate that this norm-based method can be
applied to analyzing the whole attention block. In
other words, the output of the attention block is also
be decomposed into the sum of the transformed
input vectors without any approximation.

3.2 Decomposing output into a sum of inputs
The output x̃i is decomposed into a sum of terms
associated with each input xj . First, ATTN (Equa-
tion 2) can be decomposed into a sum of vec-
tors (Kobayashi et al., 2020):

ATTN(xi,X) =
n∑

j=1

H∑
h=1

α
h
i,j f

h (xj), (10)

f h (x) :=

(
xW

h
V + b

h
V

)
W

h
O . (11)

Second, in RES, no interaction between subscripts
i and j occurs, and the form is already additively
decomposed. Third, by exploiting the linearity of
m(·), we can derive the “distributive law” of LN
and decompose it. Let y =

∑
j yj be the input to

LN. Then,

LN(y) =
∑
j

gy(yj) + β, (12)

gy(yj) :=
yj −m(yj)

s(y)
� γ. (13)

See Appendix A for the derivation.
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With these decompositions of ATTN and LN, the
output of the whole attention block can be written
as the sum of vector-valued functions with each
input vector inX as an argument:

x̃i = LN (ATTN(xi,X) + xi) (14)

= LN

(
H∑

h=1

n∑
j=1

α
h
i,j f

h (xj) + xi

)
(15)

=
∑
j 6=i

gy

( H∑
h=1

α
h
i,j f

h (xj)
)

+ gy

( H∑
h=1

α
h
i,i f

h (xi)
)

+ gy(xi) (16)

+ β,

y := ATTN(X,xi) + xi. (17)

3.3 Measuring the contribution of context
Regarding the success of the contextualized repre-
sentations in NLP, an interesting issue is the loca-
tion and strength of the context mixing performed
in the model. Based on this issue, we investigate
the attention block by categorizing the terms in
Equation 16 into the two effects:3

1. Mixing contextual information into the output
representation by the ATTN:

x̃
i← context :=

∑
j 6=i

gy

( H∑
h=1

α
h
i,j f

h ( xj )
)

.

We measure the magnitude of this context-
mixing effect by the norm ‖x̃i←context‖. This
strength refers to the amount of information
from the surrounding contexts {x1, . . . ,xn}\
{xi} in calculating x̃i.

2. Preserving the original information via ATTN
and RES:

x̃
i← i

:= gy

( H∑
h=1

α
h
i,i f

h ( xi )
)

+ gr( xi ).

We measure the magnitude of the preserv-
ing effect by the norm ‖x̃i←i‖. This strength
refers to the amount of information from the
original vector xi used in calculating x̃i. At
the attention block, information from the in-
put vector xi can flow through two ways: (i)
attention to the original input (the first term)
and (ii) residual connection (the second term).

3The biasβ affects neither the context-mixing effect nor the
preserving effect. Thus, we ignored this term in our analysis.

To summarize the relative strength of the context-
mixing effect, the context-mixing ratio is defined
as follows:

ri =
‖x̃

i← context ‖

‖x̃
i← context ‖+ ‖x̃

i← i
‖

. (18)

A higher mixing ratio indicates that the mixing
effect is more dominant than the preserving effect
in the computation of x̃i.

Note that Abnar and Zuidema (2020) assumed
that the multi-head attention and residual connec-
tion always equally impact the output, i.e., r ≈ 0.5
in the analysis of Transformers. However, our ex-
periments revealed that, in practical masked lan-
guage models, the mixing ratio is considerably be-
low 0.5.

4 Experiments: Analysis of mixing ratio

The context-mixing ratio of the attention blocks
in pre-trained masked language models was ana-
lyzed using the proposed norm-based analysis. The
obtained results were different from those of the
existing methods that analyze only some of the
components in the attention block.

4.1 General setup
Model: We investigated the 32 variants of the
masked language models (BERT with five different
sizes, BERT-base trained with 25 different seeds,
and RoBERTa with two different sizes). In Sec-
tion 4, the results for BERT-base and RoBERTa-
base are demonstrated. The results for the other
models are provided in Appendix B and C. Note
that most of our findings reported in this section
generalize across these model variants. Exceptions
are discussed in the relevant section (Section 4.4).

Data: We experimented with the following four
datasets: (i) Wikipedia (Clark et al., 2019), (ii) the
Stanford Sentiment Treebank v2 dataset (SST-2,
Socher et al., 2013), (iii) the Multi-Genre Natu-
ral Language Inference corpus (MNLI, Williams
et al., 2018), and (iv) the standard CoNLL-2003
Named Entity Recognition dataset (CoNLL’03-
NER, Tjong Kim Sang and De Meulder, 2003).
The statistics of the datasets are shown in Table 1.
Owing to the limitation of space, we only give the
results for the Wikipedia data in Section 4. The
trends observed for the Wikipedia dataset were gen-
eralized across the other datasets (see Appendix B).
Note that each sequence of the Wikipedia dataset
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Data #Samples Avg. length Domains

Wikipedia 992 122 Web encyclopedia
SST-2 872 25 Movie reviews
MNLI 1000 39 10 distinct genres
CoNLL’03-NER 1000 21 News

Table 1: Details of the datasets. Avg. length is the
number of tokens segmented by BERT per sample.

consists of paired consecutive paragraphs. Each se-
quence is fed into the models with masking applied
to 15% of tokens 80% of the time.4

Analysis methods: We compared the context-
mixing ratio computed with the following five ana-
lyzing methods:

• ATTN-W: Analyzing ATTN via attention
weights, which has been applied in many exist-
ing studies (Clark et al., 2019; Kovaleva et al.,
2019; Mareček and Rosa, 2019, etc.). The
ratio, where attention weight assigned to the
original input vector αi,i corresponds to the
preserving effect, and the others correspond
to the mixing effect, is calculated as follows:

1

H

H∑
h=1

∑
j 6=i α

h

i,j∑
j 6=i α

h

i,j + α
h

i,i

=

∑
h

∑
j 6=i α

h

i,j

H
.

• ATTN-N: Analyzing ATTN via the vector
norm (Kobayashi et al., 2020). The mixing
ratio is calculated as

‖
∑

h

∑
j 6=i α

h

i,jf
h (xj)‖

‖
∑

h

∑
j 6=i α

h

i,jf
h (xj)‖+ ‖

∑
h= α

h

i,i f
h (xi)‖

.

• ATTNRES-W: Analyzing ATTN and RES
via attention weights, as Abnar and Zuidema
(2020) did. They assumed that the residual-
aware attention matrix is constructed as
0.5A+ 0.5I . Here,A is the actual attention
matrix and I is the identity matrix considered
as the effect of residual connection. The mix-
ing ratio is calculated as

1

H

H∑
h=1

∑
j 6=i 0.5α

h

i,j∑
j 0.5α

h

i,j + 0.5
.

• ATTNRES-N (proposed): Analyzing ATTN
and RES via the vector norm – a version of
our proposed method that does not consider
LN. The mixing ratio is calculated as

4For the other datasets, we used 1000 samples from their
validation set or used all of their validation set if the number
of sequences is less than 1000.

Methods Mean Max Min

— BERT-base —
ATTN-W 97.1 100.0 45.0
ATTN-N 85.2 100.0 4.9
ATTNRES-W 48.6 50.0 22.5
ATTNRES-N 22.3 65.7 2.0
ATTNRESLN-N 18.8 61.3 1.3
— RoBERTa-base —
ATTN-W 95.8 100.0 3.8
ATTN-N 84.4 100.0 13.8
ATTNRES-W 47.9 50.0 1.9
ATTNRES-N 19.6 69.9 1.8
ATTNRESLN-N 16.2 73.4 1.5

Table 2: Mean, maximum, and minimum values of the
mixing ratio computed with each method.

‖
∑

h

∑
j 6=i α

h

i,jf
h (xj)‖

‖
∑

h

∑
j 6=i α

h

i,jf
h (xj)‖+ ‖

∑
h α

h

i,i f
h (xi) + xi‖

.

• ATTNRESLN-N (proposed): Analyzing
ATTN, RES, and LN via the vector norm –
the method proposed in Section 3. This corre-
sponds to the ri in Equation 18.

4.2 Results

We computed the mixing ratio of each token in each
layer (each attention block) of the models with the
five analysis methods (Section 4.1). The average,
maximum, and minimum mixing ratios are shown
in Table 2. Each row corresponds to a different
analysis method.

Lower mixing ratio than in existing methods:
Table 2 shows that the mixing ratios obtained from
the proposed ATTNRES-N and ATTNRESLN-N

largely differ from those obtained from the existing
methods. Whereas the attention analyses (ATTN-
W and ATTN-N) yield mixing ratios of 84–97%
and ATTNRES-W yields 48%–49%, our proposed
method (ATTNRESLN-N) yields about 16 and 19%
on average. The visualizations of the token-by-
token interactions in the common attention map
style become almost diagonal patterns (Figure 1).
These demonstrate that each layer’s context mixing
is lower than previously expected, and RES and
LN largely cancel the mixing by ATTN. Observing
the only ATTN and making an inference about the
Transformer layer may lead to misleading. Note
that Srivastava et al. (2015) reported a similar trend
that stacked feed-forward networks tend to priori-
tize the “preserving” effect in skip connections.

Consistent trends across model sizes: Our
method consistently shows the lowest mixing ra-
tio among the compared methods for BERT and
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RoBERTa models of various sizes (BERT-large,
medium, small, tiny, and RoBERTa-large) (Ap-
pendix B). Interestingly, the context-mixing ratio
is higher in the models with fewer layers (37% in
BERT-tiny, but 15% in BERT-large).

4.3 Connections to previous studies
Our finding of a lower mixing ratio than previously
thought provides explanations for previous results
and is consistent with the pre-training strategy.

Token identifiability: The low context-mixing
ratio is consistent with Brunner et al. (2020)’s re-
ports on what they called “token identifiability.”
They showed that input tokens can be well pre-
dicted only from the corresponding internal rep-
resentations within BERT, especially in shallower
layers, suggesting that context mixing is performed
little by little. Our analysis results of the whole
attention block were consistent with this finding.

Masked language modeling objective: Regard-
ing the masked token prediction task5 during the
pre-training, BERT and RoBERTa learn to con-
duct the following operations for a given input se-
quence: (i) infilling the [MASK] with plausible
words, (ii) replacing the normal (non-special) to-
kens that might not fit their context (i.e., randomly
replaced tokens) with plausible one, and (iii) re-
constructing the original input tokens that might fit
their context.

In our experiments and in common practical use,
most tokens in the input sequence are not masked
and fit their context. Thus, BERT is assumed to
reconstruct the inputs for these tokens (i.e., behave
as an auto-encoder). From this point of view, the
superiority of the preserving effect is the intuitive
behaviors of the masked language models.

Low impact of discarding learned attention pat-
terns: Several studies have reported the low im-
pact of discarding the learned attention patterns
in Transformers. Michel et al. (2019) and Koval-
eva et al. (2019) reported that the attention pat-
terns of many attention heads in Transformers can
be removed or overwritten into the uniform pat-
terns with almost no change in their performance,
and this even brought about improvements in some
cases. Voita et al. (2019) also reported the same

5For masked language modeling in BERT and RoBERTa
pre-training, 15% of the tokens are randomly chosen from
the input sequence, of which 80% are replaced with [MASK],
10% are replaced with random words, and 10% are kept un-
changed.

phenomenon using a pruning method with addi-
tional training. In addition, Toneva and Wehbe
(2019) reported that using uniform attention in
early layers of BERT instead of the learned atten-
tion patterns leads to a better ability to simulate
human brain activity.

Our analysis shows that most of the attention
signal is reduced by the immediately following
modules, RES and LN. This fact may explain the
above observations that discarding the learned at-
tention patterns of many attention heads does not
cause a severe difference.

4.4 Mechanism
How is the mixing effect conducted in multi-head
attention largely suppressed in the whole attention
block? We discuss the mechanism role of ATTN
and LN in suppressing the mixing ratio.

ATTN reduces context-mixing ratio: RES is a
mechanism that equally adds together the output
of ATTN and the input in a one-to-one fashion
(Equation 7). Considering this, the mixing ratio
in the scope of ATTN and RES is expected to be
about 50%, while the mixing ratio was actually
substantially below 50% (19–22% in ATTNRES-
N) (Section 4.2). This suggests that the output
of ATTN is much smaller than the input; in other
words, ATTN seems to have the effect of largely
shrinking inputs to compute the output. How is this
achieved?

Recall that the output of ATTN is a weighted
sum of the affine-transformed vector f h (x) us-

ing with attention weight α h
i,j (Equation 10). We

describe and empirically show that (i) the affine
transformation in ATTN has the effect of shrink-
ing the inputs, and (ii) the attention weights and
affine-transformed vectors cancel each other out on
specific vectors. We describe a brief idea here and
provide the detailed derivation of each equation in
the Appendix C.

First, under a coarse assumption, multiple affine
transformations performed in the multi-head atten-
tion can be integrated into a single one:

f(x) :=
∑H

h=1 f
h (x). (19)

Assume that the input vector x is a sample from the
standard normal distribution: x ∼ N (0, Id). Then
we can estimate its magnitude by E‖x‖ ≈

√
d

and the magnitude after affine transformation by

E‖f(x)‖ ≈
√∑d

k=1 σ
2
k, where σ1, . . . , σd denote
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 3: Mixing ratio in each layer of BERT calculated from each method.

singular values of f . Thus, the expansion rate of f
is approximately estimated by

‖f(x)‖/‖x‖ ≈
√∑d

k=1 σ
2
k /
√
d. (20)

If the ratio is lower than one, f has a tendency
of shrinking the input. For commonly used large
models, results stably demonstrated the shrinking
tendency (layer mean of the expansion rate was
0.88 < 1.0 for BERT-base and 0.80 < 1.0 for
BERT-large). Note that, for smaller models, results
demonstrated the expanding tendency (layer mean
1.24 for BERT-mini and 1.86 for BERT-tiny). This
is consistent with the result that the latter models
tended to have a higher mixing ratio than the former
models (Section 4.2). Detailed results are shown in
Appendix C.3.

Furthermore, attention weight α h
i,j boosts the

shrinking effect. Kobayashi et al. (2020) reported
the negative correlation between ‖f h (xj)‖ and

α
h
i,j on frequent tokens. That is, ATTN wastes a

lot of attention weights α h
i,j by assigning them to

small vectors ‖f h (xj)‖.
To summarize, ATTN’s shrinking effect is prob-

ably achieved by (i) the shrinking in f alone and
(ii) further shrinking through the cancellation of
α and ‖f(x)‖. By these mechanisms, ATTN can
contribute to decreasing the mixing ratio.

LN reduces the context-mixing ratio: LN con-
tains not only the vector normalization but also
the affine transformation with learnable parameters
(Equation 8). Although the validity or usage of LN

has been investigated in terms of stability and speed
of training (Parisotto et al., 2020; Liu et al., 2020),
the effects of affine transformation have rarely been
explored. By comparing the mixing ratios obtained
from ATTBRES-N and ATTNRESLN-N (Table 2),
we discovered that LN reduced the context-mixing
ratio. This suggests that the scaling (by γ) of the
affine transformation shrinks the vector from ATTN
and emphasizes RES over ATTN.

5 Detailed analysis

We further analyzed the mixing ratio of the masked
language models in detail from the perspectives
of both the layer and word attributes. In this sec-
tion, we inherit the experimental setup (Section 4.1)
from the previous section and demonstrate results
for BERT-base with the Wikipedia dataset. The re-
sults for the other experimental settings are shown
in Appendix B and D. Note that only the finding
reported in Section 5.2 did not generalize across
model variants, and we exceptionally discuss this
point in the body.

5.1 Differences by layers and token types

Figure 3 shows the mixing ratio in each layer of the
BERT model (results for other models are shown
in Appendix B). Each subfigure corresponds to a
different analysis method, each row represents a
layer, and each column represents a token type. The
averaged results of the following token categories
and their overall average (“overall”) are reported:
(i) non-special tokens (“normal”), (ii) [MASK],
(iii) [CLS], and (iv) [SEP].
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Methods Spearman’s ρ
all tokens w/o special tokens

ATTN-W 0.16 0.14
ATTN-N −0.39 −0.41
ATTNRES-W 0.16 0.14
ATTNRES-N −0.84 −0.86
ATTNRESLN-N −0.54 −0.58

Table 3: Spearman’s ρ between the frequency rank and
the mixing ratio calculated by each method. In the
“w/o special tokens” setting, it was calculated without
[CLS] and [SEP].
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Figure 4: Relationship between the frequency rank
of tokens and the mixing ratio calculated with the
ATTNRESLN-N.

Results and discussion: Our proposed method
showed that the mixing ratio is higher in the earlier
layers than in the later ones (see the “overall” trend
in Figure 3e).6 This trend mirrors the tendency
that a deep neural network with “gates” similar to
residual connections passes through the input more
in the later layers (Srivastava et al., 2015).

Furthermore, our method showed a distinctive
trend for the [MASK] tokens. In the middle and
deep layers, the mixing ratio for [MASK] becomes
higher (19–30%) than the overall trends (15–20%).
Note that this trend becomes clearer when consider-
ing the RES and LN. This trend implies that in the
middle and deep layers, BERT refers to contextual
information for predicting the masked words. The
trends of the other masked language models are
shown in Appendix B.

5.2 Word frequency and mixing ratio
In this section, we will discuss the property of
BERT related to the word frequency.7

6The Spearman’s ρ between the “overall” mixing ratio and
the layer depth are −0.67 and −0.98 in “overall” of BERT-
base and RoBERTa-base, respectively.

7Following Kobayashi et al. (2020), we counted the fre-
quency for each word type by reproducing the training data of

Results: Table 3 lists the Spearman’s rank cor-
relation ρ between the frequency rank (e.g.,
rank(“the”) = 1, rank(“and”) = 6, etc.) and
the mixing ratio across tokens in the text data.

The results obtained from ATTNRES-N and
ATTNRESLN-N indicate a surprisingly stronger
negative correlation than the results obtained by
the existing methods (Figure 4). This indicates that
BERT discounts the information of high-frequency
words compared with low-frequency ones.8

Discussion: Discounting high-frequency words
is a common practice for making the semantic
representation of a sentence or a text from word
representations; examples are Luhn’s heuristic in
classical text summarization (Luhn, 1958) and the
smooth inverse frequency (SIF) weighting in sen-
tence vector generation (Arora et al., 2017). Our
frequency-based results reveal that attention blocks
in BERT achieve this desirable property.

Our observation may also explain the phe-
nomenon that adding up BERT’s internal or out-
put representations does not produce a good
sentence vector (Reimers and Gurevych, 2019).
In contrast, in static word embeddings (e.g.,
word2vec (Mikolov et al., 2013)), the norm en-
codes the word importance derived from its fre-
quency (Schakel and Wilson, 2015); we can gener-
ate a good sentence vector by simply adding these
static word vectors (Yokoi et al., 2020). Our find-
ing suggests that BERT encodes the token’s impor-
tance through the context-mixing ratio rather than
the norm.9 In this sense, it is plausible that addi-
tive composition using BERT’s internal or output
representations does not perform well.

Generalizability: Contrary to the other experi-
mental results, only the relationship between word
frequency and mixing ratio (Figure 4) was not con-
sistent across different model sizes. For the larger
variant (BERT-large), a stronger negative correla-
tion between them was indicated than for BERT-
base, while for the smaller variants (BERT-medium,
BERT-small, BERT-mini, and BERT-tiny), even a
positive correlation or no correlation was indicated
(see Appendix D). Generally, larger BERT models

BERT.
8Kobayashi et al. (2020) reported that ATTN in BERT

tends to discounts frequent words when mixing contexts. We
found even stronger trends after broadening the scope of anal-
ysis.

9In BERT, it may be difficult for the norm to encode the
token importance, because the norm is fixed at each layer
normalization.
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(BERT-base and BERT-large) achieve better per-
formance on downstream tasks. The different re-
sults across model sizes suggest that this desirable
property can be learned when the representational
power is sufficient.

6 Related work

6.1 Probing Transformers

As current neural-based models have an end-to-end,
black-box nature, existing studies have adopted sev-
eral strategies to interpret their inner workings (Car-
valho et al., 2019; Rogers et al., 2020; Braşoveanu
and Andonie, 2020). In analyzing Transformers,
previous studies have mainly employed the fol-
lowing approaches: (i) observing the vanilla atten-
tion weights (Clark et al., 2019; Kovaleva et al.,
2019; Reif et al., 2019; Lin et al., 2019; Mareček
and Rosa, 2019; Htut et al., 2019; Raganato and
Tiedemann, 2018; Tang et al., 2018) or the ex-
tended version (Brunner et al., 2020; Abnar and
Zuidema, 2020), (ii) computing the gradient (Clark
et al., 2019; Brunner et al., 2020), and (iii) ana-
lyzing the vector norm (Kobayashi et al., 2020).
We adopted the norm-based analysis because this
method can be naturally extended to the analysis
of the whole attention block and it has some ad-
vantages (Kobayashi et al., 2020) that will also be
discussed in the following paragraph.

As for broadening the scope of the analysis, Ab-
nar and Zuidema (2020) modified the attention ma-
trix to incorporate the residual connections into the
analysis. However, they assumed that the multi-
head attention and residual connection equally con-
tributed to the computation of the output repre-
sentations without any justification (Section 4.1).
Brunner et al. (2020) employed a gradient-based
approach for analyzing the interaction of input
representations; however, the gradient ignores the
impact of the input vector (i.e., only observing
∂x̃i/∂xj neglects the impact of xj itself) as de-
scribed in Section 6.2 of Kobayashi et al. (2020).
Note that our norm-based analysis can include the
magnitude of the impact of inputs in the analysis.

6.2 RES and LN in Transformers

Although residual connections (RES) (He et al.,
2016) and layer normalization (LN) (Ba et al.,
2016) have rarely been considered in probing
studies, they are known to play important roles
in both model performance and training conver-
gence (Parisotto et al., 2020; Liu et al., 2020).

Dong et al. (2021) revealed that the residual connec-
tions are important in attention-based architectures.
They demonstrated that the output of self-attention
networks without residual connections converges
to a rank-1 matrix quickly with increasing its layer
depth. In addition, as a similar component to RES,
Srivastava et al. (2015) proposed “gates” that ad-
just the amount of routing of the input information.
Their experiments using stacked feed-forward net-
works for image classification also show consistent
trends with ours – the effect of preserving the orig-
inal input is dominant especially in the later lay-
ers. Inspired by this observation, Liu et al. (2020)
modified the Transformer architecture to enhance
the original input in the residual connections and
demonstrated that this extension leads to better per-
formance and convergence. Note that several vari-
ants of the Transformer-based architecture with
different arrangements of RES and LN have also
been proposed (Klein et al., 2018; Xiong et al.,
2020; Parisotto et al., 2020), and analyzing these
models is one of our future works.

7 Conclusions

In this paper, we have extended a norm-based analy-
sis to broaden the scope of analyzing Transformers
from the multi-head attention alone to the whole
attention block, i.e., multi-head attention, residual
connection, and layer normalization. Our analy-
sis of the masked language models revealed that
the context-mixing ratio in each block is much
lower than expected in previous studies, demon-
strating that RES and LN largely cancel the mixing
by ATTN. This observation can provide new expla-
nations for some unexpected results were reported
on Transformers in fields ranging from NLP to
neuroscience (e.g., discarding the learned attention
patterns did not adversely affect the performance).
Our detailed analysis further suggested that BERT
discounts highly frequent, low-informative tokens.

Although our method is applicable to analyzing
other variants of Transformers, our experiments
were limited to the Transformer-based masked lan-
guage models. In addition, the Transformer is not
composed of only the attention block; feed-forward
and embedding layers also exist. We plan to extend
this work in both directions.
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A Derivation of “distributive law” of LN

In Section 3.2, we introduced the “distributive law”
for LN (layer normalization) in Equations 12 and
13. Here, we show its derivation. Let z =

∑
j zj

be the input to LN. Then, Equations 12 and 13 are
derived as follows:

LN(z) =
z − 1

d

∑
k z

(k)
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� γ + β (21)
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j zj −
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� γ + β (23)
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j

zj −m(zj)

s(z)
� γ + β (24)

=
∑
j

gz(zj) + β. (25)

B Mixing ratio in other settings

In Sections 4 and 5, we showed the experimental re-
sults of mixing ratio for BERT-base with Wikipedia
dataset. We also conducted the experiments with
the pre-trained BERT-large (Devlin et al., 2019),
BERT-medium, BERT-small, BERT-mini, BERT-
tiny (Turc et al., 2019), and RoBERTa-large (Liu
et al., 2019). Table 4 shows the architecture hy-
perparameters of each model. Table 5 shows the
statistics of the mixing ratio for each model. Fig-
ures 5 to 11 show the mixing ratio at each layer
(each attention block) of each model.

We also conducted it with the other three
datasets. Table 6 shows the statistics of the mixing
ratio for BERT-base on each dataset. Figures 12
to 14 show the mixing ratio at each layer of BERT-
base on each dataset.

Furthermore, we conducted it with 25 BERT-
base models trained with different seeds by Sellam
et al. (2021). Table 7 shows the statistics of the mix-
ing ratio for the models on the Wikipedia dataset.
Figures 15 to 17 show the mixing ratio at each layer
of three models (trained with 0th, 5th, 20th seeds)
from them.

In Section 5.1, we showed the distinctive trend
for the [MASK] tokens in BERT-base with the
Wikipedia dataset. Even in the other models and
with the other datasets, the mixing ratio for the
masked tokens was relatively high in the middle
and deep layers (Figures 5 to 14e).

Contrary to the results for the masked tokens, the
trend for the beginning of sentence token ([CLS]
or <s>) was different across these models (Fig-
ures 5 to 11). For BERT-large, RoBERTa-large,
and RoBERTa-base, the layer with the highest mix-
ing ratio for CLS was the first layer, while for the
other models, it was the final or penultimate layer.
Different trends between BERT and RoBERTa can
be naturally explained by the fact that RoBERTa
is pre-trained without the next sentence predic-
tion. Although we cannot interpret the difference
of trends across BERT models with various sizes,
it was consistent among them in that the later lay-
ers mix contextual information into [CLS] with a
relatively high mixing ratio. This implies that, in
the later layers, BERT conducts some operations
specialized to the next sentence prediction task.
Solving such a discourse-level task in the later lay-
ers is consistent with the previous report that BERT
makes lower-level decisions (e.g., part-of-speech
tagging) in the earlier layers and that the later lay-
ers have high-level information (e.g., knowledge
on co-reference) (Tenney et al., 2019).

C Details on the investigation of the
mechanism of ATTN’s shrinking

We describe the details of Section 4.4.

C.1 Affine transformation in ATTN
Integration of each head’s affine
transformation
To consider the scaling effect of the affine transfor-
mations in ATTN, we integrate each head’s affine
transformation f h into one affine transformation
f : Rd 7→ Rd, under a coarse assumption. First, for
simplicity, we assume that all heads in an ATTN
assign the same weights

α
1
i,j = · · · = α

H

i,j ≡ αi,j . (26)

Then, the computation of ATTN (Equation 10) can
be rewritten as follows:

ATTN(xi,X) =

n∑
j=1

H∑
h=1

α
h
i,j f

h (xj) (27)

≈
n∑

j=1

αi,j

H∑
h=1

f h (xj) (28)

=
n∑

j=1

αi,jf(xj), (29)
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where

f(x) :=

H∑
h=1

f h (x). (30)

Concrete computation of f
From Equation 11, the affine transformation f is

f(x) =
H∑

h=1

(
xW

h
V + b

h
V

)
W

h
O . (31)

Following the Transformer implementation, it can
be further simplified as follows:

f(x) =
(
xW V + bV

)
WO, (32)

W V :=
[
W

1
V . . . W

H

V

]
∈ Rd×d, (33)

bV :=
[
b

1
V . . . b

H

V

]
∈ Rd, (34)

WO :=


W

1
O

...

W
H

O

 ∈ Rd×d. (35)

On the difference in arguments of ATTN and f
In Section 4.4, we considered the scaling effect of
ATTN, using the affine transformation f . One may
wonder about the difference between arguments of
ATTN (i.e., xi) and arguments of f (i.e., xj) in
Equation 29. We can give two kinds of justification
to this question.

In the estimation of the expansion rate, we con-
sider the expected value. From the symmetry of xi

and xj , when the expected value for xj is obtained,
the expected value for xi is obtained. In the actual
BERT model, it has been empirically confirmed
that two token vectors xi,xj ∈ X contained in
the same contextX exist in a fairly close position
(xi ≈ xj). First, Ethayarajh (2019) found that the
cosine similarity between the intra-sentence repre-
sentations in BERT is much larger than 0. Second,
the norm of input vectors has just been unified by
the layer normalization in the previous layer. Thus,
for our target models, xi ≈ xj is not a strong
assumption.

Affine transformation as linear transformation
The affine transformation f : Rd 7→ Rd in
ATTN can be viewed as a linear transformation
f̃ : Rd+1 7→ Rd+1. Given x̃ :=

[
x 1

]
∈

Rd+1, where 1 is concatenated to the end of each

input vector x ∈ Rd, the affine transformation f
can be viewed as:

f̃(x̃) = x̃W̃
V
W̃

O
(36)

W̃
V

:=


0

W V ...
0

bV 1

 ∈ R(d+1)×(d+1)

(37)

W̃
O

:=


0

WO ...
0

0 . . . 0 1

 ∈ R(d+1)×(d+1).

(38)

The “affine transformation” mentioned in Sec-
tion 4.4 represent this linear transformation f̃ , and
we measured the singular values of f̃ .

C.2 Expected expansion rate for a random
vector

In the following, we introduce the derivation of the
expansion rate of the affine transformation f , that
is,

‖f(x)‖
‖x‖

≈

√∑d
k=1 σ

2
k√

d
. (39)

We assume that the input vector x is a sample from
the standard normal distribution:

x = (x1, . . . , xd) ∼ N (0, Id). (40)

First, the expectation value of ‖x‖2 is as fol-
lows (Vershynin, 2018):

E
x
‖x‖2 = E

x

d∑
k=1

x2
k =

d∑
k=1

E
x

x2
k = d. (41)

Then, we have ‖x‖ ≈
√
d.

Next, let the singular value decomposition of
the linear transformation f is f = UΣV >, where
Σ = diag(σ1, . . . , σd) ∈ Rd×d is the diagonal
matrix of singlar values of f . As the matrix V
is orthogonal, the following random vecotr f also
follows the standard normal distribution, as does
x:

y = (y1, . . . , yd) := V >x ∼ N (0, Id). (42)
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By the orthogonal transformation by U does not
change the norm, we need to estimate ‖Σy‖2 in
order to estimate ‖f(x)‖2 = ‖UΣV >x‖2.

E
y
‖Σy‖2 = E

y

d∑
k=1

σ2ky2
k =

d∑
k=1

σ2kExy2
k (43)

=
d∑

k=1

σ2k. (44)

Then, we have ‖f(x)‖ ≈
√∑d

k=1 σ
2
k.

To summarize,

‖f(x)‖
‖x‖

≈

√∑d
k=1 σ

2
k√

d
. (45)

C.3 Results for other models
Table 8 shows the expected expansion rate of f for
each model.

D Relationship between word frequency
and mixing ratio in other settings

We also conducted the experiment shown in Sec-
tion 5.2 with the pre-trained BERT-large, BERT-
medium, BERT-small, BERT-mini, and BERT-tiny.
However, we didn’t do for RoBERTa-large and
RoBERTa-base due to the difficulty of reproducing
the pre-training dataset to count the word frequency.
Table 9 lists the Spearman’s rank correlation ρ be-
tween the frequency rank and the mixing ratio for
each model. We discussed the inconsistency of the
results across different model sizes in Section 5.2.

We also conducted it with the other three
datasets. Table 10 lists the Spearman’s rank corre-
lation ρ between the frequency rank and the mixing
ratio for each dataset.

Furthermore, we conducted with 25 BERT-base
models trained with different seeds. Table 11 lists
the Spearman’s rank correlation ρ between the fre-
quency rank and the mixing ratio for the models on
the Wikipedia dataset.

Models Hidden dim. #Layer #Head

BERT-large 1026 24 16
BERT-base 768 12 12
BERT-medium 512 8 8
BERT-small 512 4 8
BERT-mini 256 4 4
BERT-tiny 128 2 2
RoBERTa-large 1026 24 16
RoBERTa-base 768 12 12

Table 4: Architecture hyperparameters of each model.

Methods Mean Max Min

— BERT-large —
ATTN-W 97.4 100.0 15.0
ATTN-N 87.0 100.0 5.6
ATTNRES-W 48.7 50.0 7.5
ATTNRES-N 19.1 87.4 1.8
ATTNRESLN-N 14.9 86.6 1.6

— BERT-base —
ATTN-W 97.1 100.0 45.0
ATTN-N 85.2 100.0 4.9
ATTNRES-W 48.6 50.0 22.5
ATTNRES-N 22.3 65.7 2.0
ATTNRESLN-N 18.8 61.3 1.3
— BERT-medium —
ATTN-W 95.6 100.0 49.5
ATTN-N 83.4 99.9 9.7
ATTNRES-W 47.8 50.0 24.8
ATTNRES-N 20.9 49.2 3.8
ATTNRESLN-N 18.7 65.2 1.2

— BERT-small —
ATTN-W 96.2 100.0 57.7
ATTN-N 85.3 100.0 10.3
ATTNRES-W 48.1 50.0 28.9
ATTNRES-N 29.6 80.4 6.7
ATTNRESLN-N 27.2 85.5 7.3

— BERT-mini —
ATTN-W 95.5 100.0 50.9
ATTN-N 85.7 100.0 10.4
ATTNRES-W 47.8 50.0 25.4
ATTNRES-N 27.2 68.1 7.3
ATTNRESLN-N 26.4 70.7 6.6

— BERT-tiny —
ATTN-W 94.1 99.9 38.6
ATTN-N 90.4 99.9 28.3
ATTNRES-W 47.1 50.0 19.3
ATTNRES-N 37.8 77.9 18.1
ATTNRESLN-N 37.3 70.4 17.6
— RoBERTa-large —
ATTN-W 96.7 100.0 10.1
ATTN-N 87.8 99.9 15.2
ATTNRES-W 48.4 50.0 5.0
ATTNRES-N 19.8 87.8 4.3
ATTNRESLN 19.7 87.9 4.3
— RoBERTa-base —
ATTN-W 95.8 100.0 3.8
ATTN-N 84.4 100.0 13.8
ATTNRES-W 47.9 50.0 1.9
ATTNRES-N 19.6 69.9 1.8
ATTNRESLN-N 16.2 73.4 1.5

Table 5: Mean, maximum, and minimum values of the
mixing ratio in seven variants of the masked language
models, computed with each method.
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 5: Mixing ratio at each layer of BERT-large calculated from each method.

Methods Mean Max Min

— Wikipedia —
ATTN-W 97.1 100.0 45.0
ATTN-N 85.2 100.0 4.9
ATTNRES-W 48.6 50.0 22.5
ATTNRES-N 22.3 65.7 2.0
ATTNRESLN-N 18.8 61.3 1.3

— SST-2 —
ATTN-W 92.5 100.0 2.2
ATTN-N 80.3 99.8 6.7
ATTNRES-W 46.3 50.0 1.1
ATTNRES-N 22.5 50.4 2.4
ATTNRESLN-N 18.5 44.9 1.1

— MNLI —
ATTN-W 94.6 100.0 10.0
ATTN-N 83.5 99.9 6.8
ATTNRES-W 47.3 50.0 5.0
ATTNRES-N 22.4 65.4 2.8
ATTNRESLN-N 18.3 60.7 1.2
— CoNLL’03 NER —
ATTN-W 91.7 100.0 1.5
ATTN-N 79.0 99.9 7.0
ATTNRES-W 45.8 50.0 0.8
ATTNRES-N 22.4 51.5 2.7
ATTNRESLN-N 18.6 45.8 0.8

Table 6: Mean, maximum, and minimum values of the
mixing ratio in each method for BERT-base on each
data.

Methods Mean (SD) Max Min

ATTN-W 96.1 (0.1) 100.0 8.8
ATTN-N 85.2 (0.4) 100.0 7.4
ATTNRES-W 48.1 (0.1) 50.0 4.4
ATTNRES-N 21.9 (0.3) 64.6 3.4
ATTNRESLN-N 17.5 (0.4) 67.7 1.4

Table 7: Mean, maximum, and minimum values of the
mixing ratio in each method for 25 BERT-base mod-
els trained with different random seeds by Sellam et al.
(2021). Mean value is the average of the values from 25
models, and the standard deviation (SD) is also listed.
Maximum and minimum values are the maximum and
minimum of these values from 25 models, respectively.
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 6: Mixing ratio at each layer of BERT-medium calculated from each method.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 7: Mixing ratio at each layer of BERT-small calculated from each method.

Models Mean (SD) Min Max

BERT-large 0.80 0.61 1.08
BERT-base 0.88 0.63 1.05
MultiBERTs (base) 0.88 (0.01) 0.65 1.43
RoBERTa-large 0.94 0.67 1.09
BERT-medium 0.87 0.60 1.41
BERT-small 1.31 0.78 2.41
BERT-mini 1.24 0.65 2.48
BERT-tiny 1.86 1.63 2.09
RoBERTa-base 1.30 1.10 1.49

Table 8: Mean, maximum, and minimum values of the
scaling magnification in each layer for nine variants
of the masked language models. In the “MultiBERTs
(base)”, results for 25 BERT-base models trained with
different random seeds by Sellam et al. (2021) are re-
ported. Mean value is the average of the values from 25
models, and the standard deviation (SD) is also listed.
Maximum and minimum values are the maximum and
minimum of these values from 25 models, respectively.
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 8: Mixing ratio at each layer of BERT-mini calculated from each method.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 9: Mixing ratio at each layer of BERT-tiny calculated from each method.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 10: Mixing ratio at each layer of RoBERTa-base calculated from each method.
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 11: Mixing ratio at each layer of RoBERTa-large calculated from each method.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 12: Mixing ratio at each layer of BERT-base calculated from each method on the SST-2.
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 13: Mixing ratio at each layer of BERT-base calculated from each method on the MNLI.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 14: Mixing ratio at each layer of BERT-base calculated from each method on the CoNLL’03 NER.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 15: Mixing ratio at each layer of BERT-base trained with 0th seed.
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(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 16: Mixing ratio at each layer of BERT-base trained with 10th seed.

(a) ATTN-W. (b) ATTN-N
(Kobayashi et al.,
2020).

(c) ATTNRES-W
(Abnar and Zuidema,
2020).

(d) ATTNRES-N. (e) ATTNRESLN-N.

Figure 17: Mixing ratio at each layer of BERT-base trained with 20th seed.
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Methods Spearman’s ρ
all tokens w/o special tokens

— BERT-large —
ATTN-W 0.44 0.44
ATTN-N −0.53 −0.56
ATTNRES-W 0.44 0.44
ATTNRES-N −0.83 −0.84
ATTNRESLN-N −0.71 −0.75

— BERT-base —
ATTN-W 0.16 0.14
ATTN-N −0.39 −0.41
ATTNRES-W 0.16 0.14
ATTNRES-N −0.84 −0.86
ATTNRESLN-N −0.54 −0.58
— BERT-medium —
ATTN-W −0.09 −0.11
ATTN-N −0.13 −0.14
ATTNRES-W −0.09 −0.11
ATTNRES-N −0.41 −0.43
ATTNRESLN-N −0.02 −0.03

— BERT-small —
ATTN-W −0.05 −0.07
ATTN-N 0.26 0.26
ATTNRES-W −0.05 −0.07
ATTNRES-N −0.22 −0.20
ATTNRESLN-N 0.19 0.21

— BERT-mini —
ATTN-W −0.52 −0.55
ATTN-N −0.15 −0.17
ATTNRES-W −0.52 −0.55
ATTNRES-N 0.23 0.25
ATTNRESLN-N 0.42 0.44

— BERT-tiny —
ATTN-W −0.75 −0.77
ATTN-N −0.62 −0.64
ATTNRES-W −0.75 −0.77
ATTNRES-N 0.26 0.27
ATTNRESLN-N 0.24 0.25

Table 9: The Spearman’s ρ between the frequency rank
and the mixing ratio calculated by each method for five
variants of pre-trained BERT. In the “w/o special to-
kens” setting, it was calculated without [CLS] and
[SEP].

Methods Spearman’s ρ
all tokens w/o special tokens

— Wikipedia —
ATTN-W 0.16 0.14
ATTN-N −0.39 −0.41
ATTNRES-W 0.16 0.14
ATTNRES-N −0.84 −0.86
ATTNRESLN-N −0.54 −0.58

— SST-2 —
ATTN-W 0.22 0.19
ATTN-N −0.24 −0.33
ATTNRES-W 0.22 0.19
ATTNRES-N −0.81 −0.84
ATTNRESLN-N −0.42 −0.54

— MNLI —
ATTN-W 0.22 0.19
ATTN-N −0.31 −0.40
ATTNRES-W 0.22 0.19
ATTNRES-N −0.77 −0.84
ATTNRESLN-N −0.40 −0.50

— NER —
ATTN-W 0.16 0.09
ATTN-N −0.22 −0.34
ATTNRES-W 0.16 0.09
ATTNRES-N −0.79 −0.85
ATTNRESLN-N −0.41 −0.57

Table 10: The Spearman’s ρ between the frequency
rank and the mixing ratio calculated by each method
for the four variants of datasets. In the “w/o special
tokens” setting, it was calculated without [CLS] and
[SEP].

Methods Spearman’s ρ
all tokens (SD) w/o special tokens (SD)

ATTN-W 0.35 (0.01) 0.35 (0.07)
ATTN-N −0.23 (0.01) −0.25 (0.09)
ATTNRES-W 0.35 (0.01) 0.35 (0.07)
ATTNRES-N −0.79 (0.02) −0.80 (0.02)
ATTNRESLN-N −0.36 (0.10) −0.38 (0.11)

Table 11: Spearman’s ρ between the frequency rank
and the mixing ratio calculated by each method for for
25 BERT-base models trained with different random
seeds. In the “w/o special tokens” setting, it was cal-
culated without [CLS] and [SEP]. Both of the val-
ues are the mean of the values from 25 models, and the
standard deviation (SD) is also listed.


