We Need to Talk About train-dev-test Splits

Rob van der Goot
IT University of Copenhagen
robv@itu.dk

Abstract

Standard train-dev-test splits used to bench-
mark multiple models against each other are
ubiquitously used in Natural Language Pro-
cessing (NLP). In this setup, the train data is
used for training the model, the development
set for evaluating different versions of the pro-
posed model(s) during development, and the
test set to confirm the answers to the main re-
search question(s). However, the introduction
of neural networks in NLP has led to a differ-
ent use of these standard splits; the develop-
ment set is now often used for model selec-
tion during the training procedure.Because of
this, comparing multiple versions of the same
model during development leads to overesti-
mation on the development data. As an effect,
people have started to compare an increasing
amount of models on the test data, leading to
faster overfitting and “expiration” of our test
sets. We propose to use a fune-set when devel-
oping neural network methods, which can be
used for model picking so that comparing the
different versions of a new model can safely be
done on the development data.'

1 Dataset Splits in NLP

1.1 Current State

In Natural Language Processing (NLP), a highly
empirical field, it is common to benchmark mul-
tiple models to each other on a standard dataset.
However, since most current models are super-
vised, and thus require labeled training data, the
datasets have to be split. To ensure a fair com-
parison, most datasets in NLP have standard splits.
Most datasets consist of three splits (also visualized
in Figure 1(a)):

* train: Used for training models, in some se-
tups this split can be omitted (zero-shot or
unsupervised learning).

'Source code is available at https://bitbucket.
org/robvanderg/tuneset

Test phase

Development
phase

@ () (©

Figure 1: Overview of the use of data splits. -:test

orange :dev |green :train yellow :tune. a) standard
splits for traditional machine learning models b) stan-
dard splits as used for neural network models c) our
proposed splits for neural network models.

* development (also called validation/evalua-
tion): Used to compare all different versions
of the proposed model(s). Can also be used to
get preliminary answers to the main research
questions.

e test: Used to confirm the final answer to the
research question.

One often raised worry is that if too many papers
are written based on the same test-set, overfitting
occurs, especially when only positive results are
published (Scargle, 2000). It should be noted that
we do not refer to overfitting of the models parame-
ters, but on design decisions (hyperparameters etc.),
in line with “bias from research design” as defined
by Hovy and Prabhumoye (2021). This means that
there is a bias towards methods that perform well
on this specific set. We agree that this is a dan-
ger. If we consider a more general perspective to
this problem, a certain split becomes more prone
to this when more different models are evaluated
on this exact same data. Let’s assume that there
is a threshold N that limits the number of times
we can re-use the same split for evaluation. The
number of papers that can use the same dataset for

4485

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4485-4494
November 7-11, 2021. (©)2021 Association for Computational Linguistics

https://bitbucket.org/robvanderg/tuneset
https://bitbucket.org/robvanderg/tuneset

a fair comparison is then equal to N divided by
the average number of evaluated models per paper.
From this, it follows that, no matter how large N
is, a larger average number of runs per paper will
drastically reduce the lifespan of a dataset.

For this reason, it used to be common to evalu-
ate all varieties of a newly proposed model on the
development data, and only confirm the main find-
ings (e.g. comparison of 2 most relevant models)
on the test set. This means that if we propose a new
model B, and we want to prove that it outperforms
existing model A, we would first evaluate and tune
all our varieties of model B (B;_.,) on the dev set,
and then only compare the best version of model
B to model A. These varieties of model B can
include differences in hyperparameters as well as
design decisions. From this it also logically follows
that (qualitative) analysis should not be done on
the test data.

It should be noted that in some situations a hid-
den test-set is enforced to circumvent overfitting,
for example in shared tasks, where the test data is
only shared at the end, and on benchmark websites,
where the test-labels remain hidden for the partici-
pants (Kim et al., 2011; Wang et al., 2018; Aguilar
et al., 2020; Khanuja et al., 2020). This setup is en-
forced for good reasons, and, in our opinion, should
be the standard setup in NLP

1.2 What Has Changed?

Since the introduction of neural networks, the use
of the dev set has changed. Neural network models
are commonly trained for multiple epochs over the
training data, because they are prone to overfitting
(on the training data) it is common to evaluate the
model on the dev data after each epoch, and use
the model from the epoch with the highest perfor-
mance on the dev data. This “best model selection”
(i.e. the best epoch) differs from other hyperparam-
eters, as it is re-tuned every run. In other words,
the development data is integrated into the training
procedure. This model selection has shown to be
important for final performance (Chen and Ritter,
2020). A problem now arises when we want to com-
pare our new model B to model A and train mul-
tiple models Bj ., on the same dev split. Namely,
the performance on the development data of each
model B; is likely to be overly optimistic.

People have noticed this problem, and started to
compare multiple versions of their proposed model

-+
(2]

Q

gy

§ 25-

©

v 20-

)

©

= 15-

©

>

v 10-

n

(O] 5-

©

g

3+ 2010 2020

Year

Figure 2: A boxplot visualizing the median and quan-
tiles of the number of models evaluated on test data for
a selection of 100 random papers from the ACL 2010
and ACL 2020 proceedings.

B’s on the test data (Figure 1(b)).? To confirm this
trend, we counted the number of novel models (i.e.
non-baseline) evaluated on the test data for 100
random papers of the ACL 2010 and 2020 proceed-
ings. Results show a clear trend: in 2020 there are
more models evaluated on the test set per paper
(Figure 2). For example, in 2010 50% of the papers
evaluated less than 4 models on the test data, in
2020 this was the case for only 25% of the papers.
The annotator (with 7 years full-time research expe-
rience in NLP) observed that in many cases it is not
explicitly reported for results on which split they
are based (especially in 2020), but in most cases,
this could be derived from comparing the analysis
results with the main results or from the repository.
Furthermore, the papers in 2010 more often used
non-benchmark datasets created specifically for a
study, for which running multiple models on the
test data is arguably less severe. More details about
the annotation are reported in the appendix.

To sum up, when using the development set for
model picking, one is left with a choice for model
comparison: use the dev data or the test data. If
the dev data is used, performance is easily overes-
timated because the model picking was done on
the same set. If the test data is used, overfitting of
design decisions will more quickly happen on the
test data, and it becomes obsolete faster.

’this tweet anecdotally shows how it became stan-
dard to have seen test data in non-shared task setups:
https://twitter.com/marian_nmt/status/
1331728574307438597. Furthermore, the EMNLP
2020 call for papers asked authors to report “Corresponding
validation performance for each reported test result”:
https://2020.emnlp.org/call-for-papers

4486

https://twitter.com/marian_nmt/status/1331728574307438597
https://twitter.com/marian_nmt/status/1331728574307438597
https://2020.emnlp.org/call-for-papers

2 Related Work

Gorman and Bedrick (2019) and Coltekin (2020)
propose to use random data splits instead of the
standard splits. In other words, they propose to
shuffle the whole dataset multiple times, and ex-
tract a train, dev, and test split from each random
shuffle. This would avoid overfitting, as “the use
of a single standard split, may result in avoidable
Type I error” (Gorman and Bedrick, 2019). As
pointed out by Sggaard et al. (2021), these random
splits have another danger. It is good practice to
create stratified datasplits based on some attributes
(e.g., time, speaker, document etc.). This strati-
fied sampling leads to more realistic performance
estimates for real-world situations (as we assume
we want to employ our models for new samples,
from other time-periods, speakers or documents).
The problem now becomes that after shuffling and
re-splitting, it is very likely that sentences from,
for example, the same document are both in the
training data and the test data, which leads to (unre-
alistically) higher performances in the experiments
of both Gorman and Bedrick (2019) and Coltekin
(2020). Therefore, Sggaard et al. (2021) propose
other strategies to resplit the data. They show that
using biased splits better approximate real-world
performance on new samples (i.e. from another
dataset) as standard splits, but still lead to a large
overestimation of performance. In both of these
proposed setups (random and biased splits), the
splits that are proposed are still train-dev-test splits.
This means that if the same splits are used across
different papers, over-estimation on either dev/test
would still occur (depending which one is used
to compare Bj), and overfitting still occurs. If
instead, new splits are generated for each paper,
overestimation still happens, and direct compari-
son between different papers is more complex.
Recently, there has been an increasing inter-
est in other aspects of evaluation of NLP mod-
els, including automatic testing of specific abili-
ties (Ribeiro et al., 2020), significance testing (Dror
et al., 2018; Sadeqi Azer et al., 2020), effect of
random seeds (Reimers and Gurevych, 2018) and
reproducibility (Fokkens et al., 2013; Cohen et al.,
2018; Wieling et al., 2018; Branco et al., 2020;
Belz et al., 2021). We consider all of these prob-
lems (including random/biased splits) orthogonal
to the problem of overfitting on the test set, as in
all of the proposed setups/solutions train-dev-test
splits are still used. This is also the case for k-

fold cross-validation which is a standard method
to combat overfitting, within the & folds, there are
still dev-sets on which one will overfit if for each
fold, hyperparameter tuning, model-picking and
analysis is done on the same data.

3 The Tune Split

The solution we propose to the problem introduced
in Section 1.2 follows logically from the observa-
tion that we do not have a data split left for compar-
ing the models. We simply introduce an additional
data split, which we call the fune split (Figure 1(c)).
This tune data can be used to pick the best model,
thereby leaving the development set out of the train-
ing procedure. Then the best model B out of B; .,
to compare against model A can be picked based
on the development data, and the superiority of
model B; can be confirmed on the test data. This
also makes a comparison to traditional machine
learning models fairer, as they also do not make
use of the dev data during training.

One clear downside of this approach is that there
is less data remaining for the other splits. To over-
come this, one could also pick the best hyperpa-
rameters/settings for model B based on the dev
split, while using the tune split for model picking,
and then for the final comparison add the tune split
to the train split and use the development data for
picking the best model. This procedure is the same
as it would be in a shared task setup, where the
train+dev data can be used however the partici-
pants see fit, but the test data remains unseen until
the final comparison.

It should be noted that in cross-domain or cross-
lingual setups, similar solutions have recently been
proposed. In these setups, people commonly use
the source dataset dev split for model picking (Ke-
ung et al., 2020). To have a pure cross-domain or
cross-lingual setup, it is important to not tune on
all target domains/languages as you are likely to
overestimate performance when no target data is
available. Artetxe et al. (2020) therefore argue to
only use the dev set of one target language and re-
port test results on other languages. ANother case
where a similar solution was sometimes used, is the
devtest set in machine translation, which is used
at least since the WMT 2006 shared task (Koehn
and Monz, 2006). This split is an effect of having
many sequential shared task, where new test-data
is added every year. In some work, the dev split is
used for model-picking and the testdev split is used

4487

as development data. However, to the best of our
knowledge, there is no offical use (nor guidelines)
on the function of the devtest split. An alternative
solution is introduced by Chen and Ritter (2020),
who propose methods for picking the best model
that do not rely on any labeled data.

4 Case Study

To evaluate the effect of having a separate tune
split, we perform a case study in which we
fine-tune a transition-based (Nivre, 2008) Bi-
LSTM (Graves and Schmidhuber, 2005) parser and
a transformer-based (Vaswani et al., 2017) deep
biaffine parser (Dozat and Manning, 2017) on the
same datasets. We use the Universal Dependencies
(UD) 2.8 data (Zeman et al., 2021) as benchmark,
and use the UUParser (Smith et al., 2018a) and the
MaChAmp (van der Goot et al., 2021) implementa-
tions of the corresponding parsers.

4.1 Experimental Setup

We use the datasets selected by Smith et al. (2018b).
We concatenate the train and dev set (we omit
the test data in these experiments, to avoid over-
analyzing it), and resplit the resulting data in 4
splits: the last 3,000 sentences are used for 1,000
sentences respectively for the test, dev, and tune
split, and the remaining data is used as training
data. We do not shuffle the sentences, as they are
chronologically ordered in many cases, resulting
in a (somewhat) stratified split, thereby avoiding
overestimation of performance because train/test
have overlapping sources (as done by Gorman and
Bedrick (2019) and Coltekin (2020)).> We consider
two finetuning setups:

* train+tune for training, model-picking and hy-
perparameter tuning on dev (Figure 1(a)).

* train for training, model-picking on tune, hy-
perparameter tuning on dev (Figure 1(c), our
proposed setup). In this setup, we concatenate
train and tune for the final evaluation on the
test set with the optimal hyperparameters.

For both parsers we make a selection of hyper-
parameters to tune, and take the default values as
starting point. We use no external embeddings
for the UUParser, and initialize MaChAmp with
mBERT to cover a variety of setups. Hence, a fair

3We also provide an alternative splitting method for UD

data, for setups where the original test-split is to be used for the
final comparison, more details can be found in the appendix.

MaChAmp UUParser
Dataset Dif -T +T |Dif -T +T
grc_proiel 2/4 72.28 72.19|2/7 78.17 77.38
ar_padt 1/4 82.11 81.82|0/7 77.60 77.63
en_ewt 1/4 88.89 88.90|1/7 82.64 82.90
fi_tdt 2/4 88.41 87.85|1/7 80.50 80.81
zh_gsd 1/4 83.13 82.66|0/7 69.67 69.27
he_htb 2/4 8449 84.33|1/7 73.22 73.30
ko_gsd 2/4 81.99 82.32|0/7 7728 77.15
ru_gsd 2/4 88.51 88.48|1/7 80.14 79.84
sv_talbanken | 1/4 82.76 82.89|1/7 71.11 71.40

Table 1: Results (LAS) of tuning with both strategies.
Dif reports the number of optimal hyperparameters that
differ between the two setups, -T(une) is using dev for
model picking as well as hyperparameter-tuning, and
+T(une) is our proposed setup.

comparison can only be made between the setups,
and not between the parsers. The exact hyperpa-
rameter ranges that were evaluated are reported in
the appendix. We perform a grid search for each
dataset, and compare the performance on test as
well as the number of hyperparameters that have a
different optimal value across both setups.

4.2 Results

Results (Table 1) show that performance of both
evaluated setups only have minimal differences on
the test data.* Even though there are different op-
timal hyperparameters found for all datasets for
MaChAmp and for 6/9 for the UUParser, none
of the differences are significant with a paired
bootstrap test (10,000 resamples), both with and
without Bonferroni correction (Bonferroni, 1936).
Hence, the results indicate that for the final per-
formance it is irrelevant which splits to use in this
setup. However, when the tune split is used, we
can do a much more valuable (qualitative or quan-
titative) analysis on the development data, which
would be less realistic to do when we used dev al-
ready for hyperparameter tuning as well as model
picking.

5 Conclusion

We have reflected on the default dataset splits used
in NLP (and actually also more widely in machine
learning) to tune design decisions (architectures,
hyperparameters, etc.) of neural network based
models, which can easily lead to overfitting on

4“Performance differences between the development and
test split are reported in the appendix.

4488

the test data. This is an effect of the fact that in
standard setups, neural networks use the develop-
ment data during training, and it thus became more
common to compare multiple versions of the same
model on the test data. The solution to this problem
is simple, we need another data split to do model
picking, or avoid using the dev set in the training
procedure, by learning which model to pick using
other heuristics (Chen and Ritter, 2020). We call
this split the tune-split. The only downside of using
a separate tune-split, is that there is less data avail-
able for the other splits. This can be circumvented
by using train+tune for the final (test-)runs of the
model. We evaluated the effect of the tune-split for
two common NLP benchmarks by tuning two dif-
ferent types of models. One of them showed to be
more robust against the evaluated hyperparameter
ranges, whereas the other showed a clear perfor-
mance improvement when using a tune-split. This
proposed solution is orthogonal to other proposed
practices for a hygienic experimental setup like
significance testing, random splits, and evaluating
specific abilities of our models.

Acknowledgements

I would like to thank Barbara Plank, Mike Zhang,
Max Miiller-Eberstein, Maria Barret, Elisa Bassig-
nana, Marija Stepanovic, Christian Hardmeier, and
Antonio Toral for feedback on a draft of this paper
and discussions about evaluation of NLP models.
Thanks to the anonymous reviewers for their inter-
esting suggestions. This research is supported by
an Amazon Faculty Research award.

References

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020. LinCE: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 1803—1813, Marseille, France. Euro-
pean Language Resources Association.

Mikel Artetxe, Sebastian Ruder, Dani Yogatama,
Gorka Labaka, and Eneko Agirre. 2020. A call
for more rigor in unsupervised cross-lingual learn-
ing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 7375-7388, Online. Association for Compu-
tational Linguistics.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2021. A systematic review of re-
producibility research in natural language process-
ing. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 381-393,
Online. Association for Computational Linguistics.

Carlo Bonferroni. 1936. Teoria statistica delle classi
e calcolo delle probabilita. Pubblicazioni del R Is-
tituto Superiore di Scienze Economiche e Commeri-
ciali di Firenze, 8:3-62.

Anténio Branco, Nicoletta Calzolari, Piek Vossen,
Gertjan Van Noord, Dieter van Uytvanck, Jodo Silva,
Luis Gomes, André Moreira, and Willem Elbers.
2020. A shared task of a new, collaborative type
to foster reproducibility: A first exercise in the
area of language science and technology with RE-
PROLANG?2020. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5539-5545, Marseille, France. European Language
Resources Association.

Yang Chen and Alan Ritter. 2020. Model selection for
cross-lingual transfer using a learned scoring func-
tion. arXiv preprint arXiv:2010.06127.

K. Bretonnel Cohen, Jingbo Xia, Pierre Zweigen-
baum, Tiffany Callahan, Orin Hargraves, Foster
Goss, Nancy Ide, Aurélie Névéol, Cyril Grouin, and
Lawrence E. Hunter. 2018. Three dimensions of
reproducibility in natural language processing. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Cagn Coltekin. 2020. Verification, reproduction and
replication of NLP experiments: a case study on
parsing Universal Dependencies. In Proceedings
of the Fourth Workshop on Universal Dependencies
(UDW 2020), pages 46-56, Barcelona, Spain (On-
line). Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383-1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted
Pedersen, Piek Vossen, and Nuno Freire. 2013. Off-
spring from reproduction problems: What replica-
tion failure teaches us. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1691-1701, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

4489

https://www.aclweb.org/anthology/2020.lrec-1.223
https://www.aclweb.org/anthology/2020.lrec-1.223
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.18653/v1/2020.acl-main.658
https://www.aclweb.org/anthology/2021.eacl-main.29
https://www.aclweb.org/anthology/2021.eacl-main.29
https://www.aclweb.org/anthology/2021.eacl-main.29
https://www.aclweb.org/anthology/2020.lrec-1.680
https://www.aclweb.org/anthology/2020.lrec-1.680
https://www.aclweb.org/anthology/2020.lrec-1.680
https://www.aclweb.org/anthology/2020.lrec-1.680
https://www.aclweb.org/anthology/L18-1025
https://www.aclweb.org/anthology/L18-1025
https://www.aclweb.org/anthology/2020.udw-1.6
https://www.aclweb.org/anthology/2020.udw-1.6
https://www.aclweb.org/anthology/2020.udw-1.6
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://www.aclweb.org/anthology/P13-1166
https://www.aclweb.org/anthology/P13-1166
https://www.aclweb.org/anthology/P13-1166

Kyle Gorman and Steven Bedrick. 2019. We need to
talk about standard splits. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2786-2791, Florence,
Italy. Association for Computational Linguistics.

Alex Graves and Jiirgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral networks, 18(5-6):602-610.

Dirk Hovy and Shrimai Prabhumoye. 2021. Five
sources of bias in natural language processing. Lan-
guage and Linguistics Compass, 15(8).

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas
Bhardwaj. 2020. Don’t use English dev: On the
zero-shot cross-lingual evaluation of contextual em-
beddings. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 549-554, Online. Association for
Computational Linguistics.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 35753585, Online. Association
for Computational Linguistics.

Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Aki-
nori Yonezawa. 2011. Overview of Genia event task
in BioNLP shared task 2011. In Proceedings of
BioNLP Shared Task 2011 Workshop, pages 7-15,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Philipp Koehn and Christof Monz, editors. 2006. Pro-
ceedings on the Workshop on Statistical Machine
Translation. Association for Computational Linguis-
tics, New York City.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513-553.

Nils Reimers and Iryna Gurevych. 2018. Why com-
paring single performance scores does not allow
to draw conclusions about machine learning ap-
proaches. arXiv preprint arXiv:1803.09578.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902—
4912, Online. Association for Computational Lin-
guistics.

Erfan Sadeqi Azer, Daniel Khashabi, Ashish Sabhar-
wal, and Dan Roth. 2020. Not all claims are created
equal: Choosing the right statistical approach to as-
sess hypotheses. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5715-5725, Online. Association for
Computational Linguistics.

Jeffrey D Scargle. 2000. Publication bias: The “file-
drawer” problem in scientific inference. Journal of
Scientific Exploration, 14(1):91-106.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018a.
82 treebanks, 34 models: Universal Dependency
parsing with multi-treebank models. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
113-123, Brussels, Belgium. Association for Com-
putational Linguistics.

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2018b. An investigation of the inter-
actions between pre-trained word embeddings, char-
acter models and POS tags in dependency pars-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2711-2720, Brussels, Belgium. Association
for Computational Linguistics.

Anders Sggaard, Sebastian Ebert, Jasmijn Bastings,
and Katja Filippova. 2021. We need to talk about
random splits. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1823-1832, Online. Association for Computational
Linguistics.

Rob van der Goot, Ahmet Ustiin, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Mas-
sive choice, ample tasks (MaChAmp): A toolkit
for multi-task learning in NLP. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 176—-197, Online. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000-6010.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Martijn Wieling, Josine Rawee, and Gertjan van Noord.
2018. Squib: Reproducibility in computational lin-
guistics: Are we willing to share? Computational
Linguistics, 44(4):641-649.

Changlong Yu, Jialong Han, Haisong Zhang, and Wil-
fred Ng. 2020. Hypernymy detection for low-
resource languages via meta learning. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3651-3656,
Online. Association for Computational Linguistics.

4490

https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.acl-main.329
https://doi.org/10.18653/v1/2020.acl-main.329
https://www.aclweb.org/anthology/W11-1802
https://www.aclweb.org/anthology/W11-1802
https://aclanthology.org/W06-3100
https://aclanthology.org/W06-3100
https://aclanthology.org/W06-3100
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://arxiv.org/pdf/1803.09578.pdf
https://arxiv.org/pdf/1803.09578.pdf
https://arxiv.org/pdf/1803.09578.pdf
https://arxiv.org/pdf/1803.09578.pdf
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.506
https://doi.org/10.18653/v1/2020.acl-main.506
https://doi.org/10.18653/v1/2020.acl-main.506
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D18-1291
https://www.aclweb.org/anthology/2021.eacl-main.156
https://www.aclweb.org/anthology/2021.eacl-main.156
https://www.aclweb.org/anthology/2021.eacl-demos.22
https://www.aclweb.org/anthology/2021.eacl-demos.22
https://www.aclweb.org/anthology/2021.eacl-demos.22
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/coli_a_00330
https://doi.org/10.1162/coli_a_00330
https://doi.org/10.18653/v1/2020.acl-main.336
https://doi.org/10.18653/v1/2020.acl-main.336

Daniel Zeman, Joakim Nivre, Mitchell Abrams,

Elia Ackermann, Noémi Aepli, Hamid Aghaei,
Zelijko Agi¢, Amir Ahmadi, Lars Ahrenberg,
Ika Alfina, Lene Antonsen, Katya Aplonova, An-
gelina Aquino, Carolina Aragon, Maria Jesus
Aranzabe, Bilge Nas Arican, Hérunn Arnardét-
tir, Gashaw Arutie, Jessica Naraiswari Arwidarasti,
Masayuki Asahara, Deniz Baran Aslan, Luma
Ateyah, Furkan Atmaca, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Keerthana Balasubramani, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu Mititelu,
Starkadur Barkarson, Victoria Basmov, Colin Batch-
elor, John Bauer, Seyyit Talha Bedir, Kepa Ben-
goetxea, Gozde Berk, Yevgeni Berzak, Irshad Ah-
mad Bhat, Riyaz Ahmad Bhat, FErica Biagetti,
Eckhard Bick, Agné Bielinskiené, Kristin Bjar-
nadottir, Rogier Blokland, Victoria Bobicev, Loic
Boizou, Emanuel Borges Volker, Carl Borstell,
Cristina Bosco, Gosse Bouma, Sam Bowman, Adri-
ane Boyd, Anouck Braggaar, Kristina Brokaite,
Aljoscha Burchardt, Marie Candito, Bernard Caron,
Gauthier Caron, Lauren Cassidy, Tatiana Caval-
canti, Gililsen Cebiroglu Eryigit, Flavio Massimil-
iano Cecchini, Giuseppe G. A. Celano, Slavomir Cé-
plo, Neslihan Cesur, Savas Cetin, Ozlem Cetinoglu,
Fabricio Chalub, Shweta Chauhan, Ethan Chi,
Taishi Chika, Yongseok Cho, Jinho Choi, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinkov4,
Aurélie Collomb, Cagri Coltekin, Miriam Con-
nor, Marine Courtin, Mihaela Cristescu, Phile-
mon. Daniel, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Mehmet Oguz De-
rin, Elvis de Souza, Arantza Diaz de Ilarraza,
Carly Dickerson, Arawinda Dinakaramani, Elisa
Di Nuovo, Bamba Dione, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Hanne Eckhoff, Sandra Eiche, Marhaba
Eli, Ali Elkahky, Binyam Ephrem, Olga Erina,
TomaZ Erjavec, Aline Etienne, Wograine Evelyn,
Sidney Facundes, Richard Farkas, Marilia Fer-
nanda, Hector Fernandez Alcalde, Jennifer Fos-
ter, Cldudia Freitas, Kazunori Fujita, Katarina Gaj-
doSova, Daniel Galbraith, Marcos Garcia, Moa
Girdenfors, Sebastian Garza, Fabricio Ferraz Ger-
ardi, Kim Gerdes, Filip Ginter, Gustavo Godoy,
Iakes Goenaga, Koldo Gojenola, Memduh Gokir-
mak, Yoav Goldberg, Xavier Gémez Guinovart,
Berta Gonzalez Saavedra, Bernadeta Griciaté, Ma-
tias Grioni, Loic Grobol, Normunds Griizitis, Bruno
Guillaume, Céline Guillot-Barbance, Tunga Giingor,
Nizar Habash, Hinrik Hafsteinsson, Jan Haji¢, Jan
Haji¢ jr., Mika Himildinen, Linh Ha MYy, Na-
Rae Han, Muhammad Yudistira Hanifmuti, Sam
Hardwick, Kim Harris, Dag Haug, Johannes Hei-
necke, Oliver Hellwig, Felix Hennig, Barbora
Hladk4, Jaroslava Hlavacov4, Florinel Hociung, Pet-
ter Hohle, Eva Huber, Jena Hwang, Takumi Ikeda,
Anton Karl Ingason, Radu Ion, Elena Irimia, Ol4jidé
Ishola, Kaoru Ito, Tomas Jelinek, Apoorva Jha,
Anders Johannsen, Hildur Jonsdottir, Fredrik Jgr-
gensen, Markus Juutinen, Sarveswaran K, Hiiner

4491

Kagikara, Andre Kaasen, Nadezhda Kabaeva, Syl-
vain Kahane, Hiroshi Kanayama, Jenna Kanerva,
Neslihan Kara, Boris Katz, Tolga Kayadelen, Jes-
sica Kenney, Viclava Kettnerovd, Jesse Kirchner,
Elena Klementieva, Arne Kohn, Abdullatif Kok-
sal, Kamil Kopacewicz, Timo Korkiakangas, Na-
talia Kotsyba, Jolanta Kovalevskaité, Simon Krek,
Parameswari Krishnamurthy, Oguzhan Kuyrukcu,
Asli Kuzgun, Sookyoung Kwak, Veronika Laippala,
Lucia Lam, Lorenzo Lambertino, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev, John Lee,
Phuong L& Hong, Alessandro Lenci, Saran Lertpra-
dit, Herman Leung, Maria Levina, Cheuk Ying Li,
Josie Li, Keying Li, Yuan Li, KyungTae Lim, Bruna
Lima Padovani, Krister Lindén, Nikola Ljubesié,
Olga Loginova, Andry Luthfi, Mikko Luukko,
Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christo-
pher Manning, Ruli Manurung, Biisra Marsan,
Catalina Maranduc, David Marecek, Katrin Marhei-
necke, Héctor Martinez Alonso, André Martins, Jan
Masek, Hiroshi Matsuda, Yuji Matsumoto, Alessan-
dro Mazzei, Ryan McDonald, Sarah McGuinness,
Gustavo Mendonga, Niko Miekka, Karina Mis-
chenkova, Margarita Misirpashayeva, Anna Missild,
Citilin Mititelu, Maria Mitrofan, Yusuke Miyao,
AmirHossein Mojiri Foroushani, Judit Molndr,
Amirsaeid Moloodi, Simonetta Montemagni, Amir
More, Laura Moreno Romero, Giovanni Moretti,
Keiko Sophie Mori, Shinsuke Mori, Tomohiko
Morioka, Shigeki Moro, Bjartur Mortensen, Bohdan
Moskalevskyi, Kadri Muischnek, Robert Munro,
Yugo Murawaki, Kaili Miiiirisep, Pinkey Nain-
wani, Mariam Nakhlé, Juan Ignacio Navarro Horfii-
acek, Anna Nedoluzhko, Gunta NeSpore-Bérzkalne,
Manuela Nevaci, Luong Nguyén Thi, Huyén
Nguyén Thi Minh, Yoshihiro Nikaido, Vitaly Niko-
laev, Rattima Nitisaroj, Alireza Nourian, Hanna
Nurmi, Stina Ojala, Atul Kr. Ojha, Adéday Oluokun,
Mai Omura, Emeka Onwuegbuzia, Petya Osen-
ova, Robert Ostling, Lilja @vrelid, Saziye Betiil
Ozates, Merve Ozcelik, Arzucan Ozgiir, Balkiz
Oztiirk Bagaran, Hyunji Hayley Park, Niko Partanen,
Elena Pascual, Marco Passarotti, Agnieszka Pate-
juk, Guilherme Paulino-Passos, Angelika Peljak-
Lapinska, Siyao Peng, Cenel-Augusto Perez, Na-
talia Perkova, Guy Perrier, Slav Petrov, Daria
Petrova, Jason Phelan, Jussi Piitulainen, Tommi A
Pirinen, Emily Pitler, Barbara Plank, Thierry
Poibeau, Larisa Ponomareva, Martin Popel, Lauma
Pretkalnina, Sophie Prévost, Prokopis Prokopidis,
Adam Przepiérkowski, Tiina Puolakainen, Sampo
Pyysalo, Peng Qi, Andriela Riibis, Alexandre Rade-
maker, Taraka Rama, Loganathan Ramasamy, Car-
los Ramisch, Fam Rashel, Mohammad Sadegh Ra-
sooli, Vinit Ravishankar, Livy Real, Petru Rebeja,
Siva Reddy, Georg Rehm, Ivan Riabov, Michael
RieBler, Erika Rimkuté, Larissa Rinaldi, Laura Rit-
uma, Luisa Rocha, Eirikur Rognvaldsson, Mykhailo
Romanenko, Rudolf Rosa, Valentin Rosca, Davide
Rovati, Olga Rudina, Jack Rueter, Kristjdn Rinars-
son, Shoval Sadde, Pegah Safari, Benoit Sagot,
Aleksi Sahala, Shadi Saleh, Alessio Salomoni, Tanja

Samardzi¢, Stephanie Samson, Manuela Sanguinetti,
Ezgi Saniyar, Dage Sirg, Baiba Saulite, Yanin
Sawanakunanon, Shefali Saxena, Kevin Scannell,
Salvatore Scarlata, Nathan Schneider, Sebastian
Schuster, Lane Schwartz, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko
Shimada, Hiroyuki Shirasu, Yana Shishkina, Muh
Shohibussirri, Dmitry Sichinava, Janine Siewert,
Einar Freyr Sigurdsson, Aline Silveira, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simko,
Maria Simkov4, Kiril Simov, Maria Skachedubova,
Aaron Smith, Isabela Soares-Bastos, Carolyn Spa-

dine, Rachele Sprugnoli, Steinhor Steingrimsson,
Antonio Stella, Milan Straka, Emmett Strickland,
Jana Strnadov4a, Alane Suhr, Yogi Lesmana Sulestio,
Umut Sulubacak, Shingo Suzuki, Zsolt Szanto,
Dima Taji, Yuta Takahashi, Fabio Tamburini, Mary
Ann C. Tan, Takaaki Tanaka, Samson Tella, Isabelle
Tellier, Marinella Testori, Guillaume Thomas, Li-
isi Torga, Marsida Toska, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Utku Tiirk, Francis Ty-
ers, Sumire Uematsu, Roman Untilov, Zdenka
Uresova, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Rob van der Goot, Mar-
tine Vanhove, Daniel van Niekerk, Gertjan van No-
ord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Natalia Vlasova, Aya Wakasa,
Joel C. Wallenberg, Lars Wallin, Abigail Walsh,
Jing Xian Wang, Jonathan North Washington, Max-
imilan Wendt, Paul Widmer, Seyi Williams, Mats
Wirén, Christian Wittern, Tsegay Woldemariam,
Tak-sum Wong, Alina Wréblewska, Mary Yako,
Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan,
Koichi Yasuoka, Marat M. Yavrumyan, Arife Betiil
Yenice, Olcay Taner Yildiz, Zhuoran Yu, Zdenék
Zabokrtsky, Shorouq Zahra, Amir Zeldes, Hanzhi
Zhu, Anna Zhuravleva, and Rayan Ziane. 2021. Uni-
versal dependencies 2.8.1. LINDAT/CLARIAH-CZ
digital library at the Institute of Formal and Ap-
plied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

4492

http://hdl.handle.net/11234/1-3687
http://hdl.handle.net/11234/1-3687

A Details of Annotation

The annotator is asked to find the number of runs
per test split of each dataset, where the number
of reported metrics is not important, and multiple
random seeds are not counted as multiple runs. If a
paper contains multiple datasets, the “main” dataset
is counted, or an average is used. If a figure con-
tains more then 10 versions of a model, it is counted
as only 10 different models. Results reported in
an appendix are not counted. Baselines (as defined
by the original authors) are not counted. We skip
papers that do not introduce results of a new model,
as well as analysis only papers (a total of 15 pa-
pers in 2010 and 5 papers in 2020 are skipped). It
should be noted that the annotator observed that
analysis papers are often using the test-set for anal-
ysis which is undesirable in our opinion, as this
easily leads to overfitting. One paper included in
this analysis already included a tune-set in a cross-
lingual setup (Yu et al., 2020), similar as the papers
mentioned in Sectionfefsec:relWork.

B Proposed Splits for UD data

We propose a strategy for resplitting the Universal
Dependencies (Zeman et al., 2021) datasets so that
they also include a tune-set. First, for datasets
without development set, we create one from the
last 100 sentences of the training data.>. Then we
take one third of the development split, and use this
as the tune split. With this splitting strategy, the
training data size remains the same as the original,
and we assume that for tuning only little data is
necessary (hence we keep a larger dev set).

Code to generate these splits can be found in
scripts/9.udResplit.py in the repo.

C Experimental details

For our experiments we selected the ranges of hy-
perparameters reported in Table 2.

D Difference in Performance Between
Dev and Test

The difference in score between dev and test for
each setup are shown in Table 3. However, it should
be noted that this comparison is not completely
fair, as for the proposed setup, the final model is
trained on more data when getting the scores on the
test data, so the difference is expected to be more

3In UD, a training set is prioritized over a dev set if the
dataset is small.

MaChAmp

Learning rate [le-4, 1e-5]
Dropout [.2,.3, 4]
cut_frac [.1,.2,.3]
decay [.35, 38, 5]
UUparser

Graphs based [True, False]
Learning rate [le-2, 1e-3, le-4]
Word emb. size [50, 100, 200]
Char emb. size [100, 500]
Number BiLSTM layers [1, 2]

Table 2: Evaluated hyperparameters of MaChAmp and
the UUParser(defaults are bold).

MaChAmp UUParser

-T +T -T +T
grc_proiel 053 1.06 | 099 149
ar_padt 0.09 125 0.00 2.16
en_ewt -1.94 -1.77 | -0.64 047
fi_tdt -094 -1.05|-0.56 0.79
zh_gsd -0.38 1.70 | -0.85 2.86
he_htb 099 1.65| 0.80 3.29
ko_gsd -1.80 033 | -2.27 0.11
ru_gsd 001 1.71 | -1.08 2.01
sv_talbanken | -3.69 -0.47 | -4.91 -0.48

Table 3: Difference in performance between dev and
test set. Lower scores indicate that performance on the
test set is lower as compared to dev.

positive (the difference is significant for both the
UUParser and MaChAmp with a paired bootstrap
test p=0.05; dataset results are used as samples).

E Results of Hyperparameter Search

The optimal hyperparameters for both setups are
shown in Table 4 for the UUParser and in Table 5
for MaChAmp.

4493

Data Graph LR WordS. CharS. #-layers

- Data LR dropout cut_frac decay
UD_ Ancient_Greek-PROIEL
-Tune 1 0.001 100 500 2 UD_Ancient_Greek-PROIEL
+Tune 1 0.0001 50 500 2 -Tune 0.0001 04 0.1 0.35
UD_Arabic-PADT +Tune 0.0001 04 0.2 038
-Tune 1 0.001 50 100 2 UD_Arabic-PADT
+Tune 1 0.001 50 100 2 -Tune 0.0001 0.3 0.2 0.5
UD_English-EWT +Tune 0.0001 0.4 0.2 0.5
-Tune 1 0.001 200 500 2 UD_English-EWT
+Tune 1 0.001 200 100 2 -Tune 0.0001 04 0.2 038
UD_Finnish-TDT +Tune 0.0001 0.4 0.2 035
-Tune 1 0.001 100 100 2 UD_Finnish-TDT
+Tune 1 0.001 50 100 2 “Tune 0.0001 0.3 02 05
UD_Chinese-GSD +Tune 0.0001 0.4 02 035
-Tune 1 0.001 50 500 2 UD. Chinese-GSD
fTune 10001 50 500 2 Tune 0.0001 0.2 0.1 05
%ﬁ;?ebrew'?% w0l 50 o0 , +Tune 0.0001 0.3 01 05
' UD_Hebrew-HTB
+Tune 1 0.001 100 500 2
UD Korean-GSD -Tune 0.0001 0.3 0.1 0.5
-Tu;e 1 0.001 50 500 2 +Tune 0.0001 0.3 0.2 038
+Tune 1 0.001 50 500 » UD_Korean-GSD
UD Russian-GSD -Tune 0.0001 0.3 0.2 038
-Tune 1 0.001 50 500 2 +Tune 0.0001 0.3 0.1 0.5
+Tune 10001 200 500 2 UD_Russian-GSD
UD_Swedish-Talbanken -Tune 0.0001 0.4 0.2 0.5
_Tune 1 0.001 100 500 2 +Tune 0.0001 0.2 0.3 0.5
+Tune 1 0.001 50 500 2 UD_Swedish-Talbanken
-Tune 0.0001 0.3 0.2 0.5
Table 4: Optimal hyperparameter for the UUParser, +Tune 0.0001 04 0.2 05

both without a tune set (-Tune) and with a tune set

(+Tune). WordS. = size of word embeddings, CharS. Taple 5: Optimal hyperparameter for MaChAmp, both

= size of character embeddings, #layers = number of ithout a tune set (-Tune) and with a tune set (+Tune).
BiLSTM layers.

4494

