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Abstract

Practical dialogue systems require robust
methods of detecting out-of-scope (OOS) ut-
terances to avoid conversational breakdowns
and related failure modes. Directly training a
model with labeled OOS examples yields rea-
sonable performance, but obtaining such data
is a resource-intensive process. To tackle this
limited-data problem, previous methods focus
on better modeling the distribution of in-scope
(INS) examples.

We introduce GOLD as an orthogonal tech-
nique that augments existing data to train
better OOS detectors operating in low-data
regimes. GOLD generates pseudo-labeled
candidates using samples from an auxiliary
dataset and keeps only the most beneficial can-
didates for training through a novel filtering
mechanism. In experiments across three tar-
get benchmarks, the top GOLD model outper-
forms all existing methods on all key metrics,
achieving relative gains of 52.4%, 48.9% and
50.3% against median baseline performance.
We also analyze the unique properties of OOS
data to identify key factors for optimally apply-
ing our proposed method.1

1 Introduction

Detecting out-of-scope scenarios is an essential
skill of dialogue systems deployed into the real
world. While an ideal system would behave ap-
propriately in all conversational settings, such per-
fection is not possible given that training data is
finite, while user inputs are not (Geiger et al.,
2019). Out-of-distribution issues occur when the
model encounters situations not covered during
training, including novel user intents, domain shifts
or custom entities (Kamath et al., 2020; Cavalin
et al., 2020). Unique to conversations, dialogue
breakdowns represent cases where the user cannot
continue the interaction with the system, perhaps

1All code and data for major experiments are available at
https://github.com/asappresearch/gold
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Figure 1: GOLD performs data augmentation by ex-
tracting utterances from a source dataset and merging
those sentences with known OOS samples from the tar-
get dataset to generate pseudo-labeled OOS examples.

due to ambiguous requests or prior misunderstand-
ings (Martinovsky and Traum, 2003; Higashinaka
et al., 2016). Such breakdowns might fall within
the distribution of plausible utterances, yet still
fail to make sense due to the given context. OOS
detection aims to recognize both out-of-distribution
problems and dialogue breakdowns.

Prior methods tackling OOS detection in text
have shown great promise, but typically assume
access to a sufficient amount of labeled OOS data
during training (Larson et al., 2019), which is unre-
alistic in open-world settings (Fei and Liu, 2016).
Alternative methods have also been explored which
train a supporting model using in-scope data rather
than directly training a core model to detect OOS
instances (Gangal et al., 2020). As a result, they

https://github.com/asappresearch/gold
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suffer from a mismatch where the objective during
training does not line up with the eventual inference
task, likely leading to suboptimal performance.

More recently, data augmentation techniques
have been applied to in-scope (INS) data to im-
prove out-of-domain robustness (Ng et al., 2020a;
Zheng et al., 2020). However, we hypothesize that
since INS data comes from a different distribution
as OOS data, augmentation on the former will not
perform as well as augmentation on the latter.

In this paper, we propose a method of
Generating Out-of-scope Labels with Data aug-
mentation (GOLD) to improve OOS detection in
dialogue. To create new pseudo-labeled examples,
we start with a small seed set of known OOS exam-
ples. Next, we find utterances that are similar to the
known OOS examples within an auxiliary dataset.
We then generate candidate labels by replacing text
from the known OOS examples with the similar
utterances uncovered in the previous step. Lastly,
we run an election to filter down the candidates to
only those which are most likely to be out-of-scope.
Our method is complementary to other indirect
prediction techniques and in fact takes advantage
of progress by other methods.

We demonstrate the effectiveness of
GOLD across three task-oriented dialogue
datasets, where our method achieves state-of-the-
art performance across all key metrics. We conduct
extensive ablations and additional experiments
to probe the robustness of our best performing
model. Finally, we provide analysis and insights on
augmenting OOS data for other dialogue systems.

2 Related Work

2.1 Direct Prediction

A straightforward method of detecting out-of-
scope scenarios is to train directly on OOS exam-
ples (Fumera et al., 2003). These situations are
encountered more broadly by the insertion of any
out-of-distribution response or more specifically
when a particular utterance does not make sense in
the current context.

Out-of-Distribution Recognition An utterance
may be out-of-scope because it was not included in
the distribution the dialogue model was trained on.
Distribution shifts may occur due to unknown user
intents, different domains or incoherent speech. We
differ from such methods since they either operate
on images (Kim and Kim, 2018; Hendrycks et al.,

2019; Mohseni et al., 2020) or assume access to
an impractically large number of OOS examples in
relation to INS examples (Tan et al., 2019; Kamath
et al., 2020; Larson et al., 2019)

Dialogue Breakdown In comparison to out-of-
distribution cases, dialogue breakdowns are unique
to conversations because they depend on con-
text (Higashinaka et al., 2016). In other words,
the utterances fall within the distribution of rea-
sonable responses but are out-of-scope due to the
state of the particular dialogue. Such breakdowns
occur when the conversation can no longer pro-
ceed smoothly due to an ambiguous statement from
the user or some misunderstanding made by the
agent (Ng et al., 2020b). GOLD also focuses on
dialogue, but additionally operates under the setting
of limited access to OOS data during training (Hen-
driksen et al., 2019).

2.2 Indirect Prediction

An alternative set of methods for OOS detection
assume access to a supporting model trained solely
on in-scope data. There are roughly three ways in
which a core detector model can take advantage of
the pre-trained supporting model.

Probability Threshold The first class of meth-
ods utilize the output probability of the support-
ing model to determine whether an input is out-
of-scope. More specifically, if the supporting
model’s maximum output probability falls below
some threshold τ , then it is deemed uncertain
and the core detector model labels the input as
OOS (Hendrycks and Gimpel, 2017). The confi-
dence score of the supporting model can also be
manipulated in a number of ways to help further
separate the INS and OOS examples (Liang et al.,
2018; Lee et al., 2018). Other variations include
setting thresholds on reconstruction loss (Ryu et al.,
2017) or on likelihood ratios (Ren et al., 2019).

Outlier Distance Another class of methods de-
fine out-of-scope examples as outliers whose dis-
tance is far away from known in-scope exam-
ples (Gu et al., 2019; Mandelbaum and Weinshall,
2017). Variants can tweak the embedding function
or distance function used for determining the de-
gree of separation. (Cavalin et al., 2020; Oh et al.,
2018; Yilmaz and Toraman, 2020). For example,
Local Outlier Factor (LOF) defines an outlier as a
point whose density is lower than that of its nearest
neighbors (Breunig et al., 2000; Lin and Xu, 2019).
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Bayesian Ensembles The final class of methods
utilize the variance of supporting models to make
decisions. When the variance of the predictions
is high, then the input is supposedly difficult to
recognize and thus out-of-distribution. Such en-
sembles can be formed explicitly through a col-
lection of models (Vyas et al., 2018; Shu et al.,
2017; Lakshminarayanan et al., 2017) or implicitly
through multiple applications of dropout (Gal and
Ghahramani, 2016).

2.3 Data Augmentation

Our method also pertains to the use of data aug-
mentation to improve model performance under
low resource settings.

Augmentation in NLP Data augmentation for
NLP has been studied extensively in the past (Jia
and Liang, 2016; Silfverberg et al., 2017; Fürstenau
and Lapata, 2009). Common methods include
those that alter the surface form text (Wei and Zou,
2019) or perturb a latent embedding space (Wang
and Yang, 2015; Fadaee et al., 2017; Liu et al.,
2020), as well as those that perform paraphras-
ing (Zhang et al., 2019). Alternatively, masked
language models generate new examples by propos-
ing context-aware replacements for the masked to-
ken (Kobayashi, 2018; Wu et al., 2019).

Data Augmentation for Dialogue Methods for
augmenting data to train dialogue systems are most
closely related to our work. Previous research has
used data augmentation to improve natural lan-
guage understanding (NLU) and intent detection in
dialogue (Niu and Bansal, 2019; Hou et al., 2018).
Other methods augment the in-scope sample repre-
sentations to support out-of-scope robustness (Ryu
et al., 2018; Ng et al., 2020a; Lee and Shalymi-
nov, 2019). Recently, generative adversarial net-
works (GANs) have been used to create out-of-
domain examples that mimic known in-scope ex-
amples (Zheng et al., 2020; Marek et al., 2021). In
contrast, we operate directly on OOS samples and
consciously generate data far away from anything
seen during pre-training, a decision which our later
analysis reveals to be quite important.

3 Background and Baselines

In this section we formally describe the task of out-
of-scope detection and the different approaches to
handling this issue.

3.1 Problem Formulation

Let Ddirect = {(x1, y1), ..., (xn, yn)} be a tar-
get dataset containing a mixture of in-scope and
out-of-scope dialogues. The input context xi =
{(S1, U1), ..., (St, Ut)} is a series of system and
user utterances within t turns of a conversation.
The desired output yi ∈ [0, 1] is a binary label rep-
resenting whether that context is out-of-scope. We
define OOS to encompass both out-of-distribution
utterances, such as out-of-domain intents or gib-
berish speech, as well as in-distribution utterances
spoken in an ambiguous manner. A model given ac-
cess to such a dataset is an OOS detector Pθ(yi|xi)
performing direct prediction.

In contrast, the problem we tackle in this pa-
per is indirect prediction, where only a limited or
nonexistent number of OOS examples are available
during training. Instead, the training data is sam-
pled from in-scope dialogues Dindirect ∼ PINS ,
and the labels yj ∈ Y represent a set of known user
intents. This data may be used to train an intent
classifier which then acts as a supporting model to
the core OOS detector during inference. Critically,
the supporting model Pψ(yj |xi) has never encoun-
tered out-of-scope utterances during training.

3.2 Baselines

Prior methods for approaching indirect prediction
generally fall into three categories: probability
threshold, outlier distance and Bayesian ensemble.
In all cases, the supporting model trained on the
intent classification task uses a pretrained BERT
model as its base (Devlin et al., 2019).

Starting with Probability Threshold baselines,
(1) MaxProb declares an example as OOS if
the maximum value of the supporting model’s
output probability distribution falls below some
threshold τ (Hendrycks and Gimpel, 2017). (2)
ODIN enhances this by adding temperature scal-
ing and small perturbations to the input which
help to increase the gap between INS and OOS
instances (Liang et al., 2018). (3) Entropy consid-
ers an example to be OOS if the supporting model
is uncertain, as determined by the entropy level
rising above a threshold τ (Lewis and Gale, 1994).

Outlier Distance baselines find OOS examples
by casting the problem as detecting outliers. Inputs
are considered outliers when their embeddings are
too far away from clusters of INS embeddings as
measured by some threshold τ . The (4) BERT
baseline embeds utterances uses the supporting
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Figure 2: Full GOLD pipeline: (1) Sample and annotate a small seed set from unlabeled target data. (2) Extract
similar matches from the source dataset. (3) Generate candidates by swapping utterances in the seed data with
match sentences. (4) Elect the top candidates to become pseudo-labeled OOS examples. (5) Aggregate all elected
labels to form the final OOS training set.

model pre-trained on intent classification and mea-
sures separation by Euclidean distance. Based
on the success in (Podolskiy et al., 2021), the
(5) Mahalanobis method embeds examples with a
vanilla RoBERTa model and uses the Mahalanobis
distance (Liu et al., 2019). Finally, inspired by
BADGE for active learning (Ash et al., 2020), the
(6) Gradient method sets the embedding of each
example as the gradient vector of the input tokens
as computed by back-propagation.

Bayesian Ensembles predict labels by the
amount of variation formed by the estimates of
an ensemble. More specifically, (7) Dropout im-
plicitly creates a new model whenever it randomly
drops a percentage of its nodes (Gal and Ghahra-
mani, 2016). During inference, each input is passed
through the supporting model k times to estimate
the user intent. If the ensemble fails to reach a
majority vote on the intent classification task, then
the example is assigned as out-of-scope.

4 GOLD

To avoid a mismatch between training and infer-
ence, we are motivated to explore the direct pre-
diction paradigm in a way the does not violate the
OOS data restriction inherent to indirect predic-
tion methods. Concretely, GOLD performs data
augmentation on a small sample of labeled OOS ex-
amples to generate pseudo-OOS data. This weakly-
labeled data is then combined with INS data for
training a core OOS detector. We limit the number
of OOS samples to be only 1% of the size of in-
scope training examples. Note that indirect meth-
ods also typically have access to a modest number
of OOS samples for tuning hyper-parameters, such
as thresholds, so this adjustment is not an exclusive
advantage of our method.

In addition to a small seed set of OOS examples,
we assume access to an external pool of utterances,
which serve as the source of data augmentations,
similar to Hendrycks et al. (2019). We refer to this
auxiliary data as the source dataset S , as opposed to
the target dataset T used for evaluating our method.
GOLD now proceeds in three basic steps. (See
Algorithm 1 for full details.)

4.1 Match Extraction

Our first step is to find utterances in the source data
that closely match the examples in the OOS seed
data. We encode all source and seed data into a
shared embedding space to allow for comparison.
When the seed example is a multi-turn dialogue, we
embed only the final user utterance. Then for each
seed utterance, we extract d similar utterances from
source S as measured by cosine distance,2 where
d is the desired number of matches. For example,
as seen in Figure 1, the seed text “Do you know if
it will rain on Friday?” extracts “Will it rain that
day?” as a match. We discuss different types of
embedding mechanisms in section 5.3.

4.2 Candidate Generation

Since dialogue contexts often contain multiple ut-
terances, we want our augmented examples to also
span multiple turns. Accordingly, our next step
involves generating candidates by carefully craft-
ing new conversations using the existing dialogue
contexts in the seed data. Each new candidate is
formed by swapping a random user utterance in the
seed data with a match utterance from the source
data. Notably, agent utterances in the seed data are
left untouched during this process.

2We also considered Euclidean distance and found that to
yield negligible difference in preliminary testing.
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4.3 Target Election

Candidates are merely pseudo-labeled as OOS, so
relying on such data as a training signal might be
quite noisy. Accordingly, we apply a filtering mech-
anism to ensure that only the candidates most likely
to be out-of-scope are “elected” to become target
OOS data. Elections are held by running all the
candidates through an ensemble of baseline detec-
tors. Specifically, we choose the top detectors from
each of the major indirect prediction categories
which results in three voters. If the majority of
voters agree that an example is out-of-scope, then
we include that candidate in our target pool.

As a last step, we aggregate the pseudo-labeled
OOS examples, the small seed set of known OOS
examples and the original INS examples to form
the final training set for our model. We train a
classifier with this data to directly predict out-of-
scope instances.

Algorithm 1 GOLD
Require: ensemble of baseline detectors e

external source dataset S
1: Input: Labeled, in-scope data from target data

T = {(x1, y1) . . . (xn, yn)}
Unlabeled data from target distribution
T ′ = {(x1) . . . (xm)}
Desired number of matches d

2: function SWAPAUGMENT(T , T ′, d)
3: seed set A ← sample and annotate T ′

4: S ′ ← embed all items in S
5: for instance i ∈ A do:
6: initialize Ai = {}
7: while size(Ai) < d: do
8: i′ ← embed instance i
9: extract m nearest neighbors of i′

from S ′ by cosine distance
10: for j ∈ m matches do:
11: candidate c← generate(j, i)
12: votes← ensemble e holds an

election on candidate c
13: if majority(votes) then:
14: Ai ← Ai ∪ c
15: end if
16: end for
17: end while
18: end for
19: A′ = aggregate(Ai)
20: augmented dataset D ← T ∪A ∪A′

21: return D
22: end function

Split STAR FLOW ROSTD
Train 22,051/1,248 60,119/4,499 30,521/3,200
Dev 2,751/178 3,239/228 4,181/453
Test 2,708/168 3,227/239 8,621/937

Table 1: Data count for each target dataset, broken
down by number of in-scope/out-of-scope examples.

5 Experimental Setup

5.1 Target Datasets
We test our detection method on three dialogue
datasets. Example counts shown in Table 1.

Schema-guided Dialog Dataset for Transfer
Learning STAR is a task-oriented dataset con-
taining 6,651 multi-domain dialogues with turn-
level intents (Mosig et al., 2020). Following the
suggestion in Section 6.3 of their paper, we adapt
the data for out-of-domain detection by selecting
responses labeled as “ambiguous” or “out-of-scope”
to serve as OOS examples. After filtering out
generic utterances (such as greetings), we are left
with 29,104 examples consisting of 152 user intents.
Since the corpus does not strictly define a train and
test set, we perform a random 80/10/10 split of
the dialogues and other minor pre-processing to
prepare the data for training.

SM Calendar Flow FLOW is also a task-
oriented dataset with turn-level annotations (An-
dreas et al., 2020). Originally built for semantic
parsing, FLOW is structured as a novel dataflow
object that takes the form of a computational graph.
For our purposes, we take advantage of the ‘Fence’
related labels found in the dataset, which repre-
sent situations where a user is straying too far
away from discussions within the scope of the sys-
tem, and thus need to be “fenced-in”. We focus
on utterances associated with a clear intent, once
again dropping turns representing greetings and
other pleasantries, which results in 71,551 exam-
ples spanning 44 total intents. The test set is hidden
behind a leaderboard, so we divide the development
set in half, resulting in an approximate 90/5/5 split
for train, dev and test, respectively.

Real Out-of-Domain Sentences From Task-
oriented Dialog ROSTD is a dataset explicitly
designed for out-of-distribution recognition (Gan-
gal et al., 2020). The authors constructed sentences
to be OOS examples with respect to a separate
dataset collected by Schuster et al. (2019). The dia-
logues found in the original dataset then represent
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the INS examples. ROSTD contains 47,913 total
utterances spanning 13 intent classes and comes
with a pre-defined 70/10/20 split which we leave
unaltered. The dataset is less conversational since
each example consists of a single turn command,
while its labels are higher precision since each OOS
instance is human-curated.

5.2 Evaluation Metrics

Following prior work on out-of-distribution de-
tection (Hendrycks and Gimpel, 2017; Ren et al.,
2019), we evaluate our method on three primary
metrics. (1) Area under the receiver operating char-
acteristic curve (AUROC) measures the probability
that a random OOS example will have a higher
probability of being out-of-scope than a randomly
selected INS example (Davis and Goadrich, 2006).
This metric averages across all thresholds and is
therefore threshold independent. (2) The area under
the precision-recall curve (AUPR) is another holis-
tic metric which summarizes performance across
multiple thresholds. The AUPR is most useful
in scenarios containing class imbalance (Manning
and Schütze, 2001), which is precisely our case
since INS examples greatly outnumber OOS ex-
amples. (3) The false positive rate at recall of N
(FPR@N) is the probability that an INS example
raises a false alarm when N% of OOS examples
are detected (Hendrycks et al., 2019). Thus, unlike
the first two metrics, a lower FPR@N is better. We
report FPR at values of N={0.90, 0.95}.

5.3 Experiments on Model Variants

In addition to testing against baseline methods, we
also run experiments to study the impact of varying
the auxiliary dataset and the extraction options.

5.3.1 Source Datasets

We consider a range of datasets as sources of
augmentation, starting with known out-of-scope
queries (OSQ) from the Clinc150 dataset (Larson
et al., 2019). Because our work falls under the
dialogue setting, we also consider Taskmaster-2
(TM) as a source of task-oriented utterances (Byrne
et al., 2019) and PersonaChat (PC) for examples
of informal chit-chat (Zhang et al., 2018). Upon
examining the validation data, we note that many
examples of OOS are driven by users attempting
to ask questions that the agent is not able to han-
dle. Thus, we also include a dataset composed of
questions extracted from Quora (QQP) (Iyer et al.,

Figure 3: AUROC performance across source datasets

2017). Finally, we consider mixing all four datasets
together into a single collection (MIX).

5.3.2 Extraction Techniques
To optimize the procedure of extracting matches
from the source data, we try four different mech-
anisms for embedding utterances. (1) We feed
each OOS instance into a SentenceRoBERTa model
pretrained for paraphrase retrieval to find simi-
lar utterances within the source data (Reimers and
Gurevych, 2019). (2) As a second option, we en-
code source data using a static BERT Transformer
model (Devlin et al., 2019). Then for each OOS
example encoded in the same manner, we extract
the nearest source utterances. (3) We embed OOS
and source data as a bag-of-words where each to-
ken is a 300-dim GloVe embedding (Pennington
et al., 2014). (4) As a final variation, we embed
all utterances with TF-IDF embeddings of 7000
dimensions. The spectrum of extraction techniques
aim to progress from methods that capture strong
semantic connections to the OOS seed data towards
options with weaker relation to original seed data.

6 Key Results

We now present the results of our main experiments.
As evidenced by Figure 3, MIX performed as the
best data source across all datasets, so we use it
to report our main metrics within Table 2. Also,
given the strong performance of GloVe extraction
technique across all datasets, we select this version
for comparison purposes in the following analyses.

6.1 STAR Results

Left columns of Table 2 present STAR re-
sults. Models trained with augmented data from
GOLD consistently outperform all other baselines
across all metrics. The top model exhibits gains
of 8.5% in AUROC and 40.0% in AUPR over the
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nearest baseline. Performance is even more im-
pressive in lowering the false positive rate with
improvements of 24.2% and 29.8% at recalls of
0.95 and 0.90, respectively. Among the different
baselines, we observe the Outlier Distance methods
generally outperforming the others, with the Maha-
lanobis method doing the best. Among GOLD vari-
ations, there are mixed results as GloVe and TF-
IDF both produce high overall accuracy. Notably,
the Paraphrase method meant to extract matches
most similar to the seed data performed the worst.

6.2 FLOW Results

Central columns of Table 2 present results on
FLOW data. Once again, GOLD models outper-
form all baselines across all metrics. This time
around, there is not an obvious winner among
baselines. On the other hand, GloVe stands out
as the clear overall top performer, with Trans-
former following closely behind. Models trained
on data augmented by GloVe show improvements
of 11.1% in AUROC, 71.9% in AUPR and 19.5%
for FPR@0.95 over the nearest baseline. We again
notice that the Paraphrase variation does not per-
form quite as well among GOLD methods.

6.3 ROSTD Results

As seen in Tables 2 and 3, GOLD outperforms not
only all baselines, but also prior work on ROSTD
across all metrics. The GloVe method cements its
standing at the top with gains of 1.7% in AUROC,
13.8% in AUPR and 97.9% in FPR@0.95 against
the top baselines. Given the consistently poor per-
formance of Paraphrase yet again, we conclude
that unlike traditional INS data augmentation, aug-
menting OOS data should not aim to find the most
similar examples to seed data. We hypothesize that
producing pseudo-labeled OOS data that are too
similar to given known-OOS data causes the model
to overfit since it is simply optimizing towards the
same examples over and over again.

7 Discussion and Analysis

In this section, we conduct follow-up experiments
to analyze the impact of our method’s components
and identify best practices when applying data aug-
mentation for OOS detection.

7.1 Ablations

How much does augmentation help? Given the
extra labels from the seed set, it is natural to ask
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Figure 4: AUROC across datasets as the number of
matches increases. A setting of d = 8 means for each
seed example, 8 augmented examples are generated.

whether the augmented data add any value. Fur-
thermore, if the augmented data are useful, then
we might want to know what an ideal number of
additional datapoints would be. Figure 4 displays
the AUROC of a model trained on varying the num-
ber of augmented datapoints, where “0” represents
including only known OOS examples. We see a
trend that accuracy improves for all target datasets
as we add more pseudo-labeled examples, showing
that augmentation helps. Improvement reaches a
max around 24 matches per seed example, which
suggests that the benefit of adding more datapoints
has a limit. Accordingly, we use 24 matches for all
results listed in Table 2.

Does the extraction technique matter? Pre-
vious sections have established that extracting
matches based on maximizing similarity to known
OOS examples might not be ideal. We now ask
what would happen if we went to the extreme by
extracting matches that have no discernible relation
to known OOS examples. The final row of Table 2
reveals the result of using random selection as an
extraction technique. While Random is not always
the worst, its poor performance across all metrics
strongly suggests that augmented data should have
at least some connection to the original seed set.

Is filtering even necessary? Since the source
data distribution is obviously distinct from the tar-
get data distribution, perhaps it is possible to bypass
elections and simply accept all candidates as OOS,
similar to Outlier Exposure from Hendrycks et al.
(2019). As seen in row 4 of Table 4, we observe that
skipping elections leads to a drop in the AUROC
of all the models on all datasets. The effect is most
pronounced for STAR, where some of the QQP
dialogues overlap with in-scope STAR domains.
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STAR Data FLOW Data ROSTD Data
Methods AUROC AUPR FPR@.95 FPR@.90 AUROC AUPR FPR@.95 FPR@.90 AUROC AUPR FPR@.95 FPR@.90
Oracle 0.9869 0.8837 11.2% 2.6% 0.8931 0.6471 62.5% 39.8% 0.9999 0.9992 0.03% 0.02%
MaxProb 0.6891 0.1824 85.8% 72.9% 0.6881 0.1581 75.4% 67.8% 0.7969 0.4554 54.3% 54.2%
ODIN 0.7012 0.1860 87.3% 75.3% 0.6893 0.1714 76.9% 69.5% 0.8087 0.4938 54.3% 54.2%
Entropy 0.7206 0.1915 87.0% 75.7% 0.6875 0.1887 77.4% 70.2% 0.8125 0.5250 54.3% 54.2%
BERT 0.7170 0.1958 85.3% 74.1% 0.5570 0.1685 98.6% 96.0% 0.9754 0.8126 8.80% 4.45%
Mahalanobis 0.8002 0.3179 73.9% 58.2% 0.7004 0.1757 82.7% 72.1% 0.9583 0.7338 19.1% 11.7%
Gradient 0.7255 0.1402 72.0% 62.7% 0.7223 0.1850 81.4% 70.0% 0.9821 0.8729 7.97% 3.87%
Dropout 0.5332 0.0631 99.9% 99.8% 0.5091 0.0707 99.9% 99.8% 0.5036 0.1991 99.9% 99.8%
Paraphrase 0.8537 0.4133 62.6% 47.5% 0.7767 0.2743 72.8% 60.4% 0.9967 0.9897 0.26% 0.16%
Transformer 0.8542 0.4251 65.9% 45.7% 0.8059 0.3228 62.7% 51.3% 0.9981 0.9904 0.21% 0.09%
GloVe 0.8683 0.4450 56.0% 40.9% 0.8022 0.3243 60.6% 49.5% 0.9990 0.9933 0.17% 0.09%
TF-IDF 0.8614 0.4539 68.1% 40.3% 0.7790 0.2758 74.2% 58.0% 0.9987 0.9905 0.56% 0.19%
Random 0.8531 0.4378 68.8% 45.4% 0.7692 0.2889 73.1% 62.0% 0.9984 0.9893 0.40% 0.19%

Table 2: Experimental results across all target datasets where bold items indicate best results, and underlined items
indicate the runner-up. First seven rows are baselines, while the bottom five rows are models trained with GOLD.

Methods AUROC↑ AUPR↑ FPR@.95↓
Likelihood (Gangal et al., 2020) 0.9822 0.9647 7.41%
OodGAN (Marek et al., 2021) 0.9899 0.9626 2.59%
GOLD w/ GloVe extraction 0.9990 0.9933 0.17%

Table 3: ROSTD results against previous works

Methods STAR FLOW ROSTD
GloVe w/ QQP 0.3885 0.3173 0.9884

w/ US 0.2186 0.1514 0.9633
w/ MQA 0.2722 0.2283 0.9873

(4) No Election 0.2487 0.2548 0.9312
(5) Tiny Seed Set 0.1983 0.2111 0.8856
(6) Swap Last 0.3678 0.2980 0.9656

Table 4: Additional AUROC results with data aug-
mented from QQP source and GloVe extraction

7.2 Applicability

How well would a direct classifier perform?
Indirect prediction is often necessary in real-life be-
cause while in-scope data may be trivial to obtain,
out-of-scope data is typically lacking. Accordingly,
we artificially limited the amount of data available
to mimic this setting. If such a limitation were to
be lifted such that a sufficient amount of known
OOS data were available, we could train a model
to directly classify such examples. The first row in
Table 2 shows the results of using all the available
OOS data to perform direct prediction and repre-
sents an upper-bound on accuracy. This also shows
there is still substantial room for improvement.

When does GOLD help the most? GOLD de-
pends on a small seed set to perform data augmen-
tation, so if this data is unavailable or extremely
sparse, then the method will likely suffer. To test
this limit, we train a model with half the size of
the seed data and double the number of matches

(d = 24 → 48) to counterbalance the effect. De-
spite having an equal amount of pseudo-labeled
OOS examples, the model with a tiny seed set (row
5 in Table 4) severely underperforms the original
model (row 1). Separately, we note that dialogue
breakdowns are more likely in conversations that
contain multiple turns of context, like in STAR, as
opposed dialogues consisting of single lines, as in
ROSTD. Given the more prominent gains by our
method in STAR, we conclude that GOLD achieves
its gains partially from being able to recognize
dialogue breakdowns.

What attributes make a source dataset useful?
In studying Figure 3, we find that the most consis-
tent single source dataset is QQP, which we use as
the default for Table 4. Reading through some ex-
amples in QQP, the pattern we found was that many
of the samples contained reasonable, but unanswer-
able questions that were beyond the skillset of the
agent. One method for curating a useful source
dataset then is to look for a corpus containing ques-
tions your dialogue model likely cannot answer.
Furthermore, PersonaChat (PC) performed particu-
larly well with STAR, a task-oriented dataset. We
believe that since goal-oriented chatbots aim to
solve specific tasks rather than engage in chit-chat,
open-domain chat datasets serve as a good source
of OOS examples.

The themes above suggest that good source
datasets are simply those sufficiently different from
the target data. We wondered if there was such as
a thing as going to ‘far’, and conversely if there
was any harm in being quite ‘close’. Concretely,
we expected a dataset containing medical ques-
tions would represent a substantially different di-
alogues compared to our target data (Ben Abacha
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and Demner-Fushman, 2019). Table 4 presents re-
sults when training with source data from a medical
question-answering dataset (MQA) or from unla-
beled samples (US) from the same target dataset.
The results show a significant drop in performance,
indicating that augmentations far away from the de-
cision boundary might not add much value. Rather,
pseudo-labels near the border of INS and OOS
instances are the most helpful. (Further analysis in
Appendix C)

How does one create good OOS examples? As
a final experiment, we replace only the last utter-
ance with a match when generating candidates,
rather than swapping any user utterance. We specu-
late this creates less diverse pseudo-examples, and
therefore decreases the coverage of the OOS space.
Indeed, row 6 in Table 4 reveals that worse candi-
dates are generated when only the final utterance
is allowed to be replaced. In conjunction with the
insight from Section 6.3 that generated examples
should be sufficiently different from given OOS ex-
amples, we believe that the key to producing good
pseudo-OOS examples is to maximize the diversity
of fake examples. OOS detection is less about
finding out-of-scope cases, but rather an exercise in
determining when something is not in-scope. This
subtle distinction implies that the appropriate in-
ductive biases should aim to move away from INS
distribution, rather than close to OOS distribution.

8 Conclusion

This paper presents GOLD, a method for improving
OOS detection when limited training examples are
available by leveraging data augmentation. Rather
than relying on a separate model to support the de-
tection task, our proposed method directly trains a
model to detect out-of-scope instances. Compared
to other data augmentation methods, GOLD takes
advantage of auxiliary data to expand the cover-
age of out-of-scope distribution examples rather
than trying to extrapolate from in-scope examples.
Moreover, our analysis reveals key techniques for
further diversifying the training data to support
robustness and prevent overfitting.

We demonstrate the effectiveness of our tech-
nique across three dialogue datasets, where our top
models outperform all baselines by a large margin.
Future work could explore detecting more granular
levels of errors, as well as more sophisticated meth-
ods of filtering candidates (Welleck et al., 2020).
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A Additional Results

This section shows the AUPR results corresponding
to the AUROC results presented in the main paper.

Figure 5: AUPR on with GloVe extraction method as
we vary the number of matches. Compare with Figure 4
in the main paper.

We note that the trend is very similar, but just
slightly harder to read since the range on the y-axis
is larger. Overall, we reach the same conclusion
that augmenting the examples certainly provides a
benefit over simply training on the seed data alone.

B Latency Impact

Since GOLD is a data augmentation method, an
OOS detector trained with this method incurs no
additional cost during inference. In contrast, Prob-
ability Threshold methods will experience extra
latency, albeit only minimally, from calculating
whether an example falls below the threshold. Sep-
arately, the Outlier Distance methods must measure
the distance to multiple clusters which takes a bit of
time. Additionally, the Dropout method must pass
the input through N models that form the Bayesian
ensemble, leading to much slower inference.

With that said, our OOS detector only performs
binary classification. So if it were to be deployed in
a real-world task, such as intent classification, there
would need to be an additional downstream model
that separately classified the intents when the OOS
detector labels a dialogue as in-scope. To mitigate
this issue, a simple solution could be running the
intent classifier alongside the OOS detector. Thus,
rather than waiting for the result of the detector
to start the prediction, the classifier would run in
parallel and the classification results would be used
only when the detector deemed it necessary.

Methods STAR FLOW ROSTD
Random w/ MIX (default) 0.438 0.289 0.989
Random w/ MQA 0.245 0.176 0.979
Random w/ US 0.209 0.142 0.958

Table 5: AUPR results with varying source datasets and
Random extraction technique

C Source Dataset vs. Technique

One might be curious to know whether choosing
a source data or a technique is more important.
Before answering this, we first note that source
datasets (such as MIX) are not directly comparable
to extraction techniques (such as GloVe) since they
are different directions to improve performance.
Source datasets impose the set of options to choose
from, whereas extraction techniques determine how
you select the options from that set. Both decisions
can be combined together, and are not mutually
exclusive.

With that said, there is some evidence that choos-
ing the appropriate source dataset can make a more
substantial impact. As initial evidence, notice that
the Random extraction technique performs surpris-
ingly well. This suggests that the gains come
largely from using an advantageous source dataset
that contains dialogue related examples near the
INS and OOS border. Thus, Random extraction
will naturally select some data points near the bor-
der as well, and do decently well. In contrast, Sec-
tion 6.2 compares two new source datasets (MQA
and US) that are not near the border, so Random
selection of these points should cause the model to
do poorly.

To verify this, we ran an additional experiment
which extracted MQA samples using a Random ap-
proach rather than using GloVe as done originally.
Table 5 reveals that indeed AUPR drops noticeably
across all datasets. Similar decreases emerge when
the experiment is run on the US dataset as well.
Therefore, we conclude that selection of the source
dataset can be fairly critical to success.


