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Abstract

There is an increasing interest in the use of
mathematical word problem (MWP) genera-
tion in educational assessment. Different from
standard natural question generation, MWP
generation needs to maintain the underlying
mathematical operations between quantities
and variables, while at the same time ensuring
the relevance between the output and the given
topic. To address above problem, we develop
an end-to-end neural model to generate diverse
MWPs in real-world scenarios from common-
sense knowledge graph and equations. The
proposed model (1) learns both representations
from edge-enhanced Levi graphs of symbolic
equations and commonsense knowledge; (2) au-
tomatically fuses equation and commonsense
knowledge information via a self-planning
module when generating the MWPs. Exper-
iments on an educational gold-standard set and
a large-scale generated MWP set show that
our approach is superior on the MWP genera-
tion task, and it outperforms the SOTA models
in terms of both automatic evaluation metrics,
i.e., BLEU-4, ROUGE-L, Self-BLEU, and hu-
man evaluation metrics, i.e., equation relevance,
topic relevance, and language coherence. To en-
courage reproducible results, we make our code
and MWP dataset public available at https://
github.com/tal-ai/MaKE_EMNLP2021.

1 Introduction

A mathematical word problem (MWP) is a coher-
ent narrative that provides clues to the underlying
correct mathematical equations and operations be-
tween variables and numerical quantities (Cetintas
et al., 2010; Moyer et al., 1984). MWPs challenge
a student from a wide range of skills such as liter-
acy skills for understanding the question, analytical
skills for recognizing the problem type and apply-
ing arithmetical operators (Rembert et al., 2019;
Moon-Rembert and Gilbert, 2019). Table 1 shows

∗ The corresponding author: Zitao Liu

one such problem1 where students are asked to
infer the counts of chickens and rabbits.

Math Word Problem
Chickens and rabbits were in the yard.
Together they had 27 heads and 86 legs.
How many rabbits were in the yard?

Equations x+y=27 Solutions x=11
2x+4y=86 y=16

Table 1: An illustrative example of an MWP.

In this paper, our objective is to automati-
cally generate well-formed MWPs. Such automa-
tion will not only reduce the teachers’ burden of
manually designing MWPs, but provide students
with a sufficiently large number of practice exer-
cises, which help students avoid rote memorization
(Williams, 2011; Wang and Su, 2016).

A large spectrum of models have been developed
and successfully applied in a broad area of natu-
ral question generation (NQG) (Pan et al., 2019; Li
et al., 2018; Liu et al., 2020; Sun et al., 2018; Zhang
and Bansal, 2019; Kurdi et al., 2020; Guan et al.,
2021a,b) and there has been a recent movement
from the NQG community towards automatic gen-
eration of MWPs (Koncel-Kedziorski et al., 2016a;
Polozov et al., 2015; Zhou and Huang, 2019). For
example, Koncel-Kedziorski et al. (2016a) pro-
posed a two-stage rewriting approach to edit exist-
ing human-authored MWPs. Polozov et al. (2015)
conducted the MWP generation as a constrained
synthesis of labeled logical graphs that represent
abstract plots.

In general, there exists a large number of NQG
models representing various text data and their syn-
tax and semantics (Pan et al., 2019). However,
automatic generation of MWPs still presents nu-
merous challenges that come from special char-
acteristics of real-world educational scenarios as
follows: (1) MWP generation models need to not
only generate fluent sentences but understand the
mathematical variables, numerical quantities, op-

1One MWP example from https://www.hackmath.
net/en/math-problem/56

https://github.com/tal-ai/MaKE_EMNLP2021
https://github.com/tal-ai/MaKE_EMNLP2021
https://www.hackmath.net/en/math-problem/56
https://www.hackmath.net/en/math-problem/56
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erations, and their relations. Moreover, the models
are supposed to be able to generalize to unseen
equations. (2) Multiple studies have found that
MWPs with real-life plots help conceptual knowl-
edge understanding, discourse comprehension and
children engagement (Carpenter et al., 1980; Rem-
bert et al., 2019). (3) Computerized educational
assessment systems require diverse MWP results
even given similar input equations, which helps
prevent students from rote memorization (Deane
and Sheehan, 2003).

To overcome the above challenges, in this paper,
we present a novel neural generation model MaKE
(short for Mathematical word problem generation
from commonsense Knowledge and Equations),
which aims to automatically generate coherent and
diverse MWPs from given equations in students’
real-life scenarios. More specifically, to fully under-
stand the mathematical variables, numerical quan-
tities, operations, and their relations, equations are
transformed into an edge-enhanced Levi graph. We
adopt the gated graph neural networks (GGNNs)
to learn representative embeddings from the equa-
tion based symbolic Levi graph. Meanwhile, the
same procedure is applied to the external common-
sense based knowledge graph (CSKG), which helps
generate topic-relevant and semantically valid sen-
tences in real-life settings. We choose to use the
conditional variational autoencoder (VAE) frame-
work to generate MWPs from diversity promoting
latent states. Furthermore, in the decoding stage,
we develop a self-planning module to dynamically
select and fuse information from both equations
and commonsense knowledge, which improves syn-
tax structure of generated MWP sentences. Overall
this paper makes the following contributions:

• We propose a GGNN based conditional VAE
model for MWP generation. To the best of
our knowledge, we are the first to introduce
the combinational architecture of GGNN and
condition VAE for MWP generation.

• We design a novel self-planning decoding
module to wisely fuse information from equa-
tions and commonsense knowledge with im-
plicit schedule, which helps generate semanti-
cally valid MWPs.

• The proposed model achieves the SOTA
scores and outperforms existing methods by a
significant margin on real-world educational
MWP datasets from both automatic machin-
ery and human evaluation metrics.

2 Related Work

2.1 Natural Question Generation
Previous research has directly approached the task
of automatically generating questions for many use-
ful applications such as augmenting data for the
QA tasks (Li et al., 2018; Sun et al., 2018; Zhang
and Bansal, 2019), helping semantic parsing (Guo
et al., 2018) and machine reading comprehension
(Yu et al., 2020; Yuan et al., 2017), improving con-
versation quality (Mostafazadeh et al., 2016; Dong
et al., 2019), and providing student exercises for ed-
ucation purposes (Koncel-Kedziorski et al., 2016a).

Various NQG methods are developed which can
be divided into two categories: heuristic based
approaches and neural network based approaches
(Pan et al., 2019; Kurdi et al., 2020). The former
generates questions in two stages: it first obtains in-
termediate symbolic representations and then con-
structs the natural language questions by either re-
arranging the surface form of the input sentence
or generating with pre-defined question templates.
The latter neural approaches view the NQG task
as a sequence-to-sequence (seq2seq) learning prob-
lem and jointly learn generation process in an end-
to-end manner (Yao et al., 2018; Zhou et al., 2018).

2.2 Math Word Problem Generation
Different from standard NQG tasks, generating
MWPs not only needs the syntax, semantics and
coherence of the output narratives, but requires
understandings of the underlying symbolic repre-
sentations and the arithmetic relationship between
quantities. In general, MWP generation approaches
can be divided into three categories: (1) template
based approaches; (2) rewriting based approaches;
and (3) neural network based approaches.

Template based approaches usually fall into a
similar two-stage process: they first generalize
an existing problem into a template or a skeleton,
and then generate the MWP sentences from the
templates (Williams, 2011; Polozov et al., 2015;
Bekele, 2020). Deane and Sheehan (2003) used
semantic frames to capture both scene stereotypi-
cal expectations and semantic relationships among
words and utilized a variant of second-order predi-
cate logic to generate MWPs. Wang and Su (2016)
leveraged the binary expression tree to represent
the story of the MWP narrative and composed the
natural language story recursively via a bottom-up
tree traversal. Template based approaches heavily
rely on the tedious and limited hand-crafted tem-
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plates, leading to very similar generated results.
This cannot meet the demand of a large number of
high-quality and diverse MWPs.

Rewriting based approaches target the MWP gen-
eration problem by editing existing human-written
MWP sentences to change their theme without
changing the underlying story (Koncel-Kedziorski
et al., 2016a; Moon-Rembert and Gilbert, 2019).
For example, Koncel-Kedziorski et al. (2016a) pro-
posed a rewriting algorithm to construct new texts
by substituting thematically appropriate words and
phrases. Rewriting based approaches are more flex-
ible compared with templates based approaches.
However, there are several drawbacks that prevent
them from providing the large number of MWPs.
First, the generation process is based on existing
MWPs, which significantly limits the generation
ability. Second, students easily fall into rote memo-
rization since it is too trivial to notice that the under-
lying mathematical equations are still unchanged.

Recent attempts have been focused on exploit-
ing neural network based approaches that generat-
ing MWPs from equations and topics in an end-to-
end manner (Zhou and Huang, 2019; Liyanage and
Ranathunga, 2020). Zhou and Huang (2019) de-
signed a neural network with two encoders to fuse
information of both equations and topics and dual-
attention mechanism to generate relevant MWPs.
Liyanage and Ranathunga (2020) tackled the gen-
eration problem by using the long short term mem-
ory network with enhanced input features, such
as character embeddings, word embeddings and
part-of-speech tag embeddings.

The closest work to our approach is Zhou and
Huang (2019) and the main differences are as fol-
lows: (1) Zhou and Huang (2019) directly encode
the equation by a single-layer bidirectional gated
recurrent unit (GRU), while we first convert equa-
tions into Levi graph and conduct the encoding by
the GGNN model; (2) instead of directly using the
pre-trained embeddings of similar words given the
topic, we choose to learn the topic relevant rep-
resentations from an external CSKG; and (3) we
choose to use the VAE framework to promoting
more diverse results.

3 Learning from Commonsense
Knowledge and Equations

Our objective is to automatically generate a signifi-
cant number of diverse MWPs in students’ real-life
scenarios from valid equations. In addition, we

support the personalized generation in which stu-
dents (or teachers) can determine the story plots of
MWPs by specifying topics and mapping relations
between variables and entities (i.e., “x: chicken,
y: rabbits”, “x: apple, y: banana”, etc.). A topic
indicates a type of real-world scenarios, such as
animals, fruits, etc.

As shown in Figure 1, we adopt the encoder-
decoder generation framework. The input includes
a set of equations and a knowledge graph with a
specific topic. We construct Levi graphs (Levi,
1942) from symbolic equations and the CSKG re-
spectively (See Section 3.1). After that, we employ
GGNNs to extract the full graph structure informa-
tion about equations and real-life story plots (See
Section 3.2). Then, we generate target sentence
by a conditional VAE with a self-planning mod-
ule (See Section 3.3). The self-planning module
enables the decoder to pay different portions of
attention to the equations and the CSKG.

Please note that in this paper, we focus on gener-
ating MWPs with linear equations of two variables
without any constraint. Our framework can be eas-
ily generalized into MWPs with different numbers
of variables with little modification.

3.1 Levi Graph Construction

3.1.1 Equation Based Symbolic Graph

The equation based symbolic graph is designed to
capture the relations among mathematical variables
and numerical quantities, and build connections be-
tween mathematical variables and the correspond-
ing commonsense knowledge. In this work, we
consider the linear equations (with two variables)
behind the MWPs as ax+ by = m; cx+ dy = n,
where x and y are the variables and a, b, c, d, m,
and n are positive integer quantities. More equation
variants are discussed in Appendix A.1.

Equations are first converted to a symbolic graph
as shown in Figure 2 (a). In the symbolic graph,
edge labels, i.e., Add to res, Mul, etc. represent-
ing the mathematical relations play important roles
in the MWP generation, where “Add to res” indi-
cates addition operation to the result operand and
“Mul” indicates multiply operation. In order to
well capture such relations, we model the edge la-
bels as explicit nodes. Following previous work
in Beck et al. (2018), we transform the symbolic
graph into its equivalent edge-enhanced Levi graph
(Levi, 1942) by adding two nodes for each labeled
edge. One node denotes the forward direction of



4228

MLP

Prior Net

Linear

Posterior 

Net

zp

zq

KL

Equation-based

Symbolic Graph

Equation Node

Embedding

Commonsense

Knowledge Graph

CSKG Node 

Embedding

Equation Graph 

Embedding

CSKG Graph

Embedding

GGNN

GGNN

Mean 
Pooling

Mean 
Pooling

GGNN

Chicken and rabbits

…

yard ?

Gold-standard Sentence Embedding

GRU GRU GRU GRU GRU
?

ht+1

MLP

EOS

Linear

Decoder

h0

c1
BOS

Linear

h1

Plan

c2

MLP

Chicken

…

Chicken

h2

c3

MLP

and

and

h3

c4

MLP

rabbits

ct

yard

ht

ct+1

MLP

?

Plan Linear Plan Linear Plan Linear Plan…

…
Self-Attention 

GRU

Figure 1: The overview of the proposed framework. The blue dot line (or red dash line) is only enabled in the
training (or inference) stage. ⊕ denotes the vector concatenation. Linear represents the linear transformation and
Plan denotes the self-planning module (discussed in Section 3.3).
the relation and one represents the reverse. By
adding reverse nodes, we encourage more informa-
tion flow from the reverse direction, in the same
way, RNN-based encoders benefit from right-to-
left propagation. Furthermore, we explicitly add
self-loop edges to each node in the Levi graph. The
symbolic Levi graph is depicted in Figure 2 (b).
More details on Levi graph transformation can be
found in Appendix A.2.

3.1.2 Commonsense Based Knowledge Graph
In order to generate valid questions in students’
real-life scenarios, we utilize explicit knowledge
from a self-derived CSKG specifically designed for
MWP generation. We have to admit that our CSKG
is of particularly tiny size compared to publicly
available knowledge graphs like ConceptNet and
Wikipedia. However, we have exclusive relation-
ships that can be utilized for MWPs generations,
i.e., (apple, has unit of measurement, pound), (ba-
nana, has price unit, yuan), (chicken, has feet num-
ber, 2), etc. These commonsense knowledge triples
are extracted from MWP texts in a semi-automatic
manner. Specifically, for each MWP, we first apply
the part-of-speech tagger from Stanford CoreNLP2

with some heuristic rules for automatic common-
sense knowledge extraction. Furthermore, because
the generation process requires high-quality com-
monsense information, we ask crowd workers to
verify the extracted results, which includes both
entities and the corresponding attributes. For ex-
ample, for the MWP shown in Table 1, the auto-
parsed entities are Chickens and Rabbits and the ex-
tracted relations are (1) a belong_to relation show-
ing that the Chickens belong to livestock; and (2)
a has_head_entity relation showing that the Chick-

2https://nlp.stanford.edu/software/
tagger.shtml

ens have head entity head. The similar relations
about Rabbits are extracted as well. We form these
triples into our commonsense knowledge graphs.
Moreover, we explicitly select a few entities from
the above extraction process as “topics” and these
topic terms can be revised by the crowd workers
if they are mis-extracted. The topic entities are ob-
tained from a given K-12 educational vocabulary.
Figure 2 (c) illustrates a sample of a CSKG with a
topic of Livestock.

With the help of CSKG, students or teachers are
able to set their own preferences when generating
MWPs by choosing different topics, such as zoo,
transportation, etc. This external commonsense
knowledge provides additional background infor-
mation that improves the generated results diver-
sity. Moreover, the CSKG improves the generation
quality by alleviating ill-informed wordings or sen-
tences. For instance, in spite of no grammatical
errors, it makes no sense to have “rabbits live in the
ocean” or “apple has two feet”. Similar to the Levi
graph construction procedure in Section 3.1.1, we
introduce additional nodes for relations in CSKG
and add reverse and self-loop edges. The CSKG
Levi graph is shown in Figure 2 (d).

3.2 Gated Graph Neural Encoding

Following the success of GGNN models (Beck
et al., 2018; Ruiz et al., 2019), we use GGNNs
to capture both the mathematical relations among
variables and quantities and the real-life associa-
tions among entities in the MWPs. Specifically,
let G = {V, E} be an edge-enhanced Levi graph
where V and E are the sets of nodes and edges. Let
av,u be the similarity between node v and node
u from its row-wise normalized adjacent matrix.
Given an input Levi graph G that may represent

https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/tagger.shtml
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Figure 2: (a) a sample symbolic graph of equation “ax+by = m”; (b) the edge-enhanced Levi graph of the same
equation; (c) an illustrative sample of the CSKG under topic livestock; (d) the corresponding edge-enhanced Levi
graph of CSKG. The red dash arrows represent the reverse edges and the blue dot arrows represent the self-loop
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either the equations or the CSKG, the basic recur-
rence of the GGNN model is defined as follows:

gv0 = ev0 ; γvt =
∑

u∈N(v)

av,ugut−1;

zvt = σ(Wzγvt +Uzgvt−1);

rvt = σ(Wrγvt +Urgvt−1);

g̃vt = tanh(Whγvt +Uh(rvt � gvt−1));

gvt = (1− zvt )� gvt−1 + zvt � g̃vt

where ev0 denotes the initial embedding of node
v. N(v) is the set of neighbor nodes for v and σ
is the sigmoid function. � is the component-wise
multiplication function and zvt and rvt are gating
vectors.

Let G0 = [g1
0;g

2
0; · · · ;g

|V|
0 ] be the initial word

embedding matrix of all the nodes and Gn be
the matrix of representation of node embeddings
from the above GGNN model after n iterations,
i.e., Gn = [g1

n;g
2
n; · · · ,g

|V|
n ]. Similar to He et al.

(2016), we ease the downstream learning tasks with
embedding augmentation. We apply a linear trans-
formation on the concatenation of G0 and Gn, i.e.,
G∗ = W∗[G0;Gn]. Such augmented node rep-
resentations contain abstract context information,
which are used in our language generator in Sec-
tion 3.3. Let Ge

∗ and Gk
∗ be the augmented GGNN

embeddings of the equations and the CSKG. Mean-
while we apply a mean pooling operation over Ge

∗
and Gk

∗ to get the graph-level equation representa-
tion (ge

∗) and CSKG representation (gk
∗).

3.3 Conditional VAE with Self-Planning
In this section, we introduce our VAE architecture
with the self-planning module for the MWP gener-
ation. Our self-planning module makes dynamic
fusion on the learned representations of equations
and CSKG to generate the MWPs.

Let Y be the random variable representing the
texts of MWPs and Z be the diversity promoting
latent variable of the distribution of the MWPs. Let
C be the random variable representing the condi-
tions of both the explicit equations and the implicit
CSKG learned from GGNNs. We model the MWP
generation by the conditional distribution as fol-
lows: p(Y |C) =

∫
p(Y |C,Z)p(Z|C)dZ where

p(Y |C,Z) is the MWP generator and p(Z|C) is
the prior net. Since the integration of Z is in-
tractable, we apply variational inference and op-
timize the evidence lower bound as follows:

log p(Y |C) ≥ Eq(Z|C,Y )

[
log p(Y |C,Z)

]
−DKL

(
q(Z|C, Y )||p(Z|C)

)
where DKL(·||·) denotes the KL-divergence.

Following conventions, we assume both the prior
net and posterior net of Z following the isotropic
Gaussian distributions, i.e., p(Z|C) ∼ N (µp, σpI)
and q(Z|C, Y ) ∼ N (µq, σqI). The prior net only
encodes the given conditions of both the explicit
equations and the implicit CSKG while the poste-
rior net encodes both given conditions and the texts
of MWPs. Both the prior net and the posterior net
are built upon the GGNNs shown in Figure 1 as
follows:

[µp; logσp] = MLP
(
[ge∗;g

k
∗ ]
)
;

[µq; logσq] = Wq([ge∗;gk∗ ;GRU(y)]
)
+ bq

Due to the flexibility of language, there may
exist more than one reasonable expression that cov-
ers the same input but in different sequence. For
example, “Chickens and rabbits were in the yard.
Together they had 27 heads and 86 legs." can be
rewritten as “Teacher finds 27 heads and 86 legs
in the yard, in which there are only chickens and
rabbits.". The former expression can be viewed as
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the plan of first generating commonsense sentences
and then the symbolic sentences, while the latter
one is first generating symbolic sentences then com-
monsense sentences. We capture such diversity of
reasonable presentations with both latent variable
Z and input graphs C. Different samples of Z
will lead to different self-planning results. To start
the decoding process, we initialize the hidden state
h0 = [z;ge

∗;g
k
∗ ], where z is sampled from the pos-

terior net q(Z|C, Y ) ∼ N (µq,σqI) and the prior
net p(Z|C) ∼ N (µp,σpI) during the training and
inference procedures respectively.

At each decoding time step t, we dynamically
decide the portions of input information from the
equations and the CSKG respectively based on the
current hidden state ht, which can keep track of
the current generating state. We use the attention
mechanism to conduct the self-planning between
explicit symbolic equations and implicit CSKG.
The dynamic self-planning module takes the de-
coder’s current hidden state (ht), node representa-
tions of equations (Ge

∗) and CSKG (Gk
∗) as input

and outputs the context-aware planning state (ct)
of the current time step. Specifically, we compute
ct as follows:
ct = βt ∗ cet + (1− βt) ∗ ckt ; βt = softmax(Wβht);

cet =
∑
v∈Ve

αet,vg
e
v; ckt =

∑
v∈Vk

αkt,vg
k
v ;

αet,v = exp(oet,v)/
∑
v′∈Ve

exp(oet,v′);

αkt,v = exp(okt,v)/
∑
v′∈Vk

exp(okt,v′);

oet,v = ve> tanh(Weht +Uegev);

okt,v = vk
>
tanh(Wkht +Ukgkv)

where βt represents the self-planning distribution
at time step t.

The final context vector is the fusion of the
symbolic and commonsense knowledge graphs.
The next-step hidden state (ht+1) is the combi-
nation of current hidden state (ht), self-planning
context state (ct) and the representation of
currently generated word (wt), i.e, ht+1 =
GRU(ht,W

d[ct;wt]+bd) where Wd and bd are
the linear transformation matrix and the bias term.
We further generate the next word by feeding hid-
den state ht+1 to linear transformation and softmax
layer to get the next-token probability distribution.

The final objective function consists (1) maxi-
mizing the probability of ground-truth sequence
texts, which promotes the predictions generated by
the posterior net and the MWP generator closer

to the distribution of the gold-standard data; and
(2) minimizing the KL-divergence between poste-
rior distribution (p(Z|C, Y )) and prior distribution
(p(Z|C)).

4 Experiments

In this work, we crawled 5,447 MWPs of linear
equations from a third-party website, and each
MWP consists of two unknown variables and two
equations. It covers 119 topics and the average
length of an MWP is 62 words. In one CSKG, the
average number of entities is 17.067 and the aver-
age number of edges is 29.102. We randomly select
544 of them as our validation set, and 546 of them
as our gold-standard test (GT) set. Please note that
different from previous work of automatically solv-
ing the MWPs such as MAWPS (Koncel-Kedziorski
et al., 2016b) and MathQA (Amini et al., 2019), we
focus on the generation task of MWPs of more than
one linear equations in students’ real-life scenar-
ios by using topics in our CSKG. Both MAWPS
and MathQA datasets do not contain MWPs that
have two or three equations and variables. Further-
more, there is no explicit topics associated with the
MWPs in these publicly available MWP datasets.

We use following evaluation metrics: (1) BLEU-
4: the 4-gram overlap score against gold-standard
sentences (Papineni et al., 2002); (2) METEOR:
n-gram overlap with paraphrase and language-
specific considerations (Denkowski and Lavie,
2014); (3) ROUGE-L: the overlap of longest com-
mon subsequence between candidate and gold-
standard sentences (Lin, 2004); (4) Self-BLEU: the
diversity measurement of averaging BLEU scores
of four generated MWP pairs given the same input
(Zhu et al., 2018).

Meanwhile, we conduct two human evaluation
studies to comprehensively evaluate the quality of
the generated MWPs. First, we ask three evaluators
to rate from the following aspects ranging from 1 to
3: (1) Equation Relevance: how relevant is MWP
with respect to the input equations? (2) Topic Rel-
evance: how relevant is MWP with respect to the
given topic? and (3) Language Coherence: whether
the MWP is coherent and well-organized. We use
the average scores from three human evaluators as
our final results.

Before training, in order to ensure that each ques-
tion is answerable, we first use sympy’s equation
solver3 to solve all the algebraic equations in the

3https://docs.sympy.org/latest/modules/solvers/solvers.html
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Method BLEU-4 METEOR ROUGE-L Self-BLEU Equation Rel. Topic Rel. Language Coh.

Template 19.836 22.685 36.545 57.309 2.493 (0.377) 2.276 (0.419) 2.256 (0.431)
CVAE 20.971 23.278 37.557 57.560 1.880 (0.514) 2.266 (0.498) 1.819 (0.529)
MAGNET 15.075 20.084 35.695 71.032 1.850 (0.579) 2.633 (0.502) 1.725 (0.502)
UniLM 17.499 20.562 34.934 74.198 2.103 (0.614) 2.546 (0.720) 1.683 (0.605)
Transformer 21.612 24.423 39.250 77.571 2.486 (0.537) 2.580 (0.413) 2.313 (0.476)

MaKE w/o symbolic 19.788 22.386 38.459 63.849 2.016 (0.670) 2.890 (0.317) 2.376 (0.522)
MaKE w/o CSKG 15.441 19.662 33.188 56.683 2.491 (0.682) 2.240 (0.271) 2.092 (0.634)
MaKE w/o planning 21.611 23.782 40.053 62.549 2.575 (0.695) 2.695 (0.528) 2.195 (0.472)
MaKE 23.322 24.537 40.076 60.29 2.668 (0.595) 2.788 (0.273) 2.492 (0.484)

Table 2: Evaluation results (± standard deviation) on GT set. Rel. and Coh. are short for relevance and coherence.

dataset. We tokenize our training data with BPE
method (Kudo and Richardson, 2018) and extend
the subword vocabulary with our pre-defined spe-
cial tokens. More preprocessing details can be
found in Appendix A.3. During training, we initial-
ize the GGNN parameters with normal distribution
N(0, 0.02) and the number of GGNN hops is set
to 3. The dimension of word embedding is 128
with random initialization. We utilize GRU for all
RNNs and the hidden state size is 512. The size
of sampled latent variable is set to 128, and we
apply reparameterization trick during training and
inference. We set the teacher forcing probability
to 0.5 and train our model using Adam optimizer
(Kingma and Ba, 2014) with learning rate schedul-
ing. The batch size is set to 32 and the beam search
width is set to 5. All hyper-parameters are tuned on
the development set. We use linear KL annealing
technique following Fu et al. (2019) to alleviate
the KL collapse problem and apply scheduled sam-
pling to alleviate the exposure bias problem in GRU
training (Bengio et al., 2015).

We compare our MaKE against several strong
baselines: (1) the template based method, i.e., Tem-
plate; (2) conditional VAE that captures the di-
versity in the encoder and uses latent variables
to learn a distribution over potential intents, i.e.,
CVAE (Zhao et al., 2017); (3) an RNN-based
seq2seq model with equation-topic fusion mech-
anism and entity-enforced loss, i.e., MAGNET
(Zhou and Huang, 2019); (4) the SOTA pre-trained
language model with a shared Transformer net-
work and self-attention masks, i.e., UniLM (Dong
et al., 2019); and (5) a standard Transformer-based
seq2seq model, i.e., Transformer (Vaswani et al.,
2017). More details are provided in Appendix A.4.

Please note that we do not select rewriting based
approaches as the baselines in this work. This is
because rewriting based approaches require a very

large pre-stored question bank and it only works
when the input equations are matched in the ques-
tion bank.

4.1 Results and Analysis

Evaluation Results on GT Set. Results on the
GT set are listed in Table 2, which shows that our
MaKE outperforms all baseline methods in terms
of both automatic and human evaluation metrics.
Specifically, from Table 2, we find: (1) comparing
MaKE and Template, Template doesn’t perform
well in language coherence and topic relevance.
This is because the MWP templates are stereotyped.
Mismatches between the template context and the
re-filled words lead to incoherent texts; and (2)
comparing MaKE and seq2seq baselines, with rich
representations of equations and CSKG, MaKE is
able to better capture mathematical relations and
improve MWP quality with real-life plots under the
given topic.
Turing Test Results on GT Set. For each existing
MWP in the GT set, we generate a new MWP of the
same equations but with a different topic. We show
such pairs to the human evaluators and ask them
to distinguish which one is the generated MWP.
We measure the results of this artificial “Turing
Test” via Fool Ratio, i.e., the fraction of instances
in which a model is capable of fooling the evalu-
ators. Ideally, perfect MWP generation will lead
to random guesses and the ideal Fool Ratio would
be 50%. Finally, we get an averaged Fool Ratio of
39.38% (36.08%, 42.49% and 39.56% from three
annotators respectively). This demonstrates that the
generation quality is 78.76% (39.38/50) as good as
the quality from human teachers.
Ablation Study. We compare MaKE with three
different ablation methods, namely MaKE w/o sym-
bolic, MaKE w/o CSKG and MaKE w/o planning.
Specifically, for MaKE w/o symbolic, we only in-
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Equations: y-x=6; 8y-4x=64; Topic: Rowing boat; Entities: x: Small boat; y: Big boat;

CVAE There are 6 in ChangLong Park. <unk> 4 small boats, 8 big boats, small boat can carry 64 people. There
are 64 more people picking in big boats than in small boats. How many people are there on the big boat?

MAGNET Reward, small boat, each can sit 4. Big boat, each can sit 8. Small boat more than 6, more than 64.
Please tell the number of small boat?

UniLM There are small boats and big boats in the competition. There are 6 sitting in big boats, 8 big boats. On
the scene, one is more than the big boat with 8 people, there are sitting in small boat, 64 people for total.

Transformer In order to reward the students who did well in this test, Teacher Fang decided to take 4 and 6 with a
total of 64 people to go boating on the weekend! A small boat can seat 4 people, and a big boat can seat
8 people. Teacher Fang rents 6 more small boats than the big boats. How many small boats does Teacher
Fang rent?

MaKE A company has two types of boats, and the number of big boats is 6 more than that of small boats. Each
small boat can accommodate 4 people and each big boat can accommodate 8 people. When all boats are
filled up, the number of people in the small boats is 64 less than that in the big boats. How many big
boats are there?

Table 3: Illustrative examples of the MWP generation comparison with unseen equations. There is no results from
Template because it doesn’t work on unseen equations. The incorrect part is highlighted in red color.

put the CSKG to the model, get rid of the equation-
based symbolic graph and leave the other compo-
nents unchanged. For MaKE w/o CSKG, we retain
symbolic graph in the input and discard CSKG. For
MaKE w/o planning, the input remains unchanged,
but the decoder becomes a normal GRU and the at-
tention score is computed for all nodes in symbolic
graph and CSKG simultaneously.

Table 2 shows the results of ablation study. With-
out the self-planning module, we observe that the
model’s self-BLEU performance has decreased,
which empirically supports our assumption that
the design of self-planning module can capture the
flexibility in the language. Meanwhile, the per-
formance of our model drops by 1.71% in BLEU-
4, 0.75% in METEOR, 0.02% in ROUGE-L and
2.259% in Self-BLEU, which also proves the ef-
fectiveness of self-planning module. The MaKE
w/o CSKG approach achieves the best Self-BLEU
score but the worst human evaluation scores, which
indicates that the representations of CSKG help
form valid MWPs in real-life scenarios. This is
because we utilize CSKG as a commonsense con-
straint on the generated MWPs, which results in
a limited number of words that can be generated
by the MaKE method under that condition. When
we remove such constraint in MaKE w/o CSKG,
the model only needs to satisfy the symbolic equa-
tion conditions, regardless of what the topic is or
which entity the unknown variable corresponds
to. Hence the search space for words will become
larger, which will directly increase the Self-BLEU
score. However, it has the drawback that may cause
the generated texts to violate the commonsense
knowledge. The MaKE w/o symbolic shows a sig-

nificant decrease on all the automatic evaluation
metrics except for the topic relevance score, which
is reasonable since understanding of the mathe-
matical variables, numerical quantities, operations,
and their relations is essential in generating logical
coherent MWPs.

Equations: x=y; 2x+4y=48; Topic: Livestock

Entities: x: Chicken; y: Rabbit;

1. Rabbits and chicken are in one cage. The number of
rabbits is 0 less than that of chickens. They have 48 legs in
total. How many rabbits and chickens in cage?

2. There are the same number of chickens and rabbits in the
yard, and the total number of legs is 48. How many rabbits
and chickens are in the yard?

3. Chicken and rabbits are in the same cage. Xiaoming
counted the number of heads of the two animals and found
that the number of chicken heads was 0 more than the num-
ber of rabbit heads. There are 48 legs in total. May I ask
how many chickens are there?

4. Xiaojun is very good at math, but today there is a difficult
problem for him: A chicken has 1 head and 2 legs, and a
rabbit has 1 head and 4 legs. There are chickens and rabbits
in the same cage, and the number of chickens is equal to the
number of rabbits. There are 48 feet in total, so how many
chickens and how many rabbits are there?

Table 4: An illustrative example of the diverse MWP
generation made by MaKE.

Qualitative Case Study. Because of the GGNN
encodings of equations, our MaKE model is able
to handle a wide range of mathematical relations,
including both addition and subtraction, i.e., a, b,
m, c, d and n may be either positive or negative
in ax+ by = m; cx+ dy = n. We quantitatively
compare the generation quality of MaKE with other
baselines and the results are shown in Table 3. Fur-
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thermore, we show the diverse results of MaKE
qualitatively in Table 4. Additional examples can
be found in Appendices A.5 - A.6. As we can
see, (1) CVAE and Transformer cannot interpret
the equations correctly and fail to generate desired
MWPs; (2) our MaKE approach is able to generate
diverse enough MWPs in real-life scenarios.
Large-scale Human Evaluation Results. Besides
evaluations on the GT set, which is usually limited
in educational scenarios (Xu et al., 2019; Wang
et al., 2020), we conduct evaluations on the large-
scale generated results. We randomly create 100
valid linear equations and ensure that none of them
appears in our training set. Meanwhile, we select
top 30 common real-life topics. For each pair of
equation and topic, we generate 5 MWPs accord-
ingly and therefore, we obtain 15,000 MWPs. We
conduct a human evaluation to assess the quality of
these generated MWPs and the results are shown in
Table 5. We can see that our method outperforms
baseline models by a large margin.

Method Equation Rel. Topic Rel. Language Coh.

CVAE 1.583 (0.493) 2.550 (0.487) 1.366 (0.605)
MAGNET 1.603 (0.430) 2.467 (0.222) 1.517 (0.508)
UniLM 1.451 (0.530) 2.416 (0.690) 1.150 (0.441)
Transformer 1.699 (0.395) 2.351 (0.391) 2.416 (0.460)

MaKE 2.308 (0.507) 2.558 (0.228) 2.505 (0.461)

Table 5: Evaluation results (± standard deviation) on
the large-scale generated MWP data. There is no results
from Template because it doesn’t work on unseen equa-
tions.

Error Analysis. To better understand the limita-
tion of our approach, we manually review 150 equa-
tions and the corresponding generated MWPs. The
two major problems are: missing information and
language disfluency. We show two representative
examples in Table 6. In the example of missing
information, the information that the small boat
can accommodate 2 people and big boat can ac-
commodate 4 people are ignored because some
MWPs in the training set often ignore this “pre-
leaned” knowledge like chickens have two legs.
Language disfluency problem is introduced due to
the limit size of training data under certain specific
topic. This can be alleviated or addressed by ei-
ther collecting more MWP training data or provide
more information in CSKG to explicitly control the
context of the generated text, such as the fact that
livestock often live on farms and marine animals
are found in the ocean, etc.

Equations: x-y=6; 2x-4y=10; Topic: Rowing boat

Entities: x: Small boat; y: Big boat;

Missing information Teacher Mr.Huang and his 35 stu-
dents come to row the boat. They
find 6 more small boats than big
boats. There are 10 more students in
the small boat than in the big boat.
How many big boats are there?

Equations: x-y=1; 6x-8y=0; Topic: Insects

Entities: x: Cockroaches; y: Ants;

Language disfluency There are two types of heads: cock-
roaches and ants. Cockroaches have
1 more head than ants, and cock-
roaches have 0 more than ant legs.
How many cockroaches and ants re-
spectively?

Table 6: Illustrative examples that demonstrate the typi-
cal problems of the current system.

5 Conclusion

In this paper, we presented a neural encoding-
decoding architecture for MWP generation. Com-
paring with the existing NQG algorithms, the ad-
vantages of our MaKE are: (1) it extracts intrinsic
representations of both the equation based sym-
bolic graph and the CSKG; (2) it automatically se-
lects and incorporates information from equations
and knowledge graphs during the decoding process;
and (3) it is able to generate relevant, coherent and
diverse MWPs in students’ real-life scenarios. Ex-
perimental results on real-world educational MWP
data sets demonstrate that MaKE outperforms other
SOTA NQG approaches in terms of both automatic
evaluation metrics and human evaluation metrics.
In the future, we plan to explore the MWP genera-
tion problems for more mathematical variables with
high-order operations, and explore the method to in-
corporate commonsense knowledge from publicly
available CSKG like ConceptNet or Wikipedia.
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A Appendix

A.1 Equation Variants
In our scenario, the general expression formula can
be formed as follows:

η0ϕ0xη1ϕ1y = ϕ2η2ϕ3 (1)

η3ϕ4xη4ϕ5y = ϕ6η5ϕ7 (2)

where η∗ ∈ {+,−,×,÷} are operators in equa-
tions, and ϕ∗ are numeric numbers. To be noticed,
only one of the operators between η0 (η3) and η1
(η4) may be a minus operator, or neither. The equa-
tion variants are derived from different configura-
tions of operators η∗.

We go into detail for eq.(1) discussing all its
possible variants, eq.(2) keeps the same behavior
as eq.(1), and different combinations of eq.(1) and
eq.(2) will lead to different system of linear equa-
tion in two unknowns. According to the presence
or absence of the operator η2 and numeric number
ϕ3, we show two different possible symbolic graph
structures in Figure 3. In Figure 3 (a), ϕ2 is equal
to “m”, η2 and ϕ3 are empty. Thus we connect
node a and node m with relation “Minuend to res”;
connect node b and node m with relation “Subtra-
hend to res”; representing ax and by are minuend
and subtrahend element in “ax-by=m” respectively.
In Figure 3 (b), ϕ2, η2 and ϕ3 are equal to “c”,
“+” and “d” respectively. In order to be consistent
with the graph structure described in Figure 3 (a),
we first add a dummy node dum in our symbolic
graph, then connect node c and node dum with
relation “Add to dummy”, and connect node d and
node dum with relation “Add to dummy”. In this
way, the dummy node can represent the expression
“c+d”.

(a)

x y

a b

m

Mul Mul

Minuend  
to res

Subtrahend  
to res

(b)

x y

a b

dum

Mul Mul

Dividend  
to res

Divider  
to res

c d

Add  
to dummy

Add  
to dummy

Figure 3: (a) a symbolic graph of equation “ax-by=m”;
(b) a symbolic graph of equation “ax/by=c+d”; dum
denotes the dummy node in the symbolic graph.

A.2 Levi Graph Transformation
Let G = {V, E ,R} be a directed symbolic graph
with nodes vi ∈ V and labeled edges (vi, r, vj) ∈ E .
As shown in Figure 2 (a), where r ∈ R is a re-
lation type, i.e., Add to res, Mul, etc. Let |V|
and |E| denote the number of nodes and edges,
respectively. We convert the graph G into an unla-
beled and directed bipartite graph Gt = {Vt, E t}
with levi transformation by converting each la-
beled edge (vi, r, vj) ∈ E into two unlabeled edges
(vi, r), (r, vj) ∈ E t, where |Vt| = |V| + |E|. In-
tuitively, transforming a graph into its Levi graph
form turns original edges into additional nodes,
which allows us to directly encode edge label infor-
mation with word embeddings and guarantee the
relation message passing with multi-hop reasoning.

A.3 Training and Testing
We obtain non-lexical text by replacing the num-
bers in the question text with the pre-defined spe-
cial tokens in our symbolic equation graph and
CSKG. The procedures are similar to the example
in Table 8 with the following differences:

• Matching words for unknown variables are
first extracted from the gold MWP, and query
our private database with the given topic word
to construct our commonsense knowledge
graph.

• MaKE transforms operators η∗ into equation
graph edge labels (relations), and numeric
number ϕ∗ into equation graph nodes v.

• More words in MWP texts are replaced with
special tokens in CSKG. Take the sentence in
Table 8 as an example, wheels are replaced by
one node (counting entity) in the correspond-
ing commonsense graph.

During training MaKE, the input is CSKG and
the equation based symbolic graph, and the out-
put target is the delexicalized words sequence. We
apply the same word refilling post-processing pro-
cedure to obtain the final MWP.

A.4 Baseline Methods Details
Template In addition to neural baselines, we use a
problem-specific, template-based generator. The
template-based method first finds MWP problems
with the same type of input equations in the ques-
tion bank given the input topic words. For instance,
the query equation is x+ y = 6; 2x− 4y = 6 and
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Equation templates: x+y=α; bx-cy=d Topic: vehicle
Query text: There are α x_entity and y_entity in the parking lot. Each x_entity has b wheels
and each y_entity has c wheels. x_entity has d more total wheels than y_entity. How many
x_entity are there?
Query variables: x_entity: motorcycles, y_entity: cars
Generated MWP There are 6 motorcycles and cars in the parking lot. Each motorcycles has
2 wheels and each cars has 4 wheels. Motorcycles has 6 more total wheels than cars. How m-
-any motorcycles are there?

Table 7: Query process in our template-based-method.

Input equation: x+y=6; 2x-4y=6 Topic: vehicle
General expression formula: η0ϕ0xη1ϕ1y = ϕ2η2ϕ3

η3ϕ4xη4ϕ5y = ϕ6η5ϕ7

Input sequence expression: [η0, ϕ0, η1, ϕ1, ϕ2, η2, ϕ3, η3, ϕ4, η4, ϕ5, ϕ6, η5, ϕ7, Topic]
Input sequence for given example: [pad, ϕ0, +, ϕ1, ϕ2, pad, pad, pad, ϕ4, -, ϕ5, ϕ6,

pad, pad, x_entity, y_entity,vehicle]
Output MWP: There are ϕ2 x_entity and y_entity in the parking lot. Each x_entity has ϕ4

wheels and each y_entity has ϕ5 wheels. x_entity has ϕ6 more total wheels than y_entity. How
many x_entity are there?

Table 8: Input sequence for seq2seq method, ϕ∗ are numeric number in equations, and η∗ are operators. If there is
no valid operator or number for a given special token, we fill it with a pad token.

the query topic is vehicle. As shown in Table 7,
we first delexicalize the input equation pairs with
special tokens and save them for post-processing.
After query our question bank with the delexical-
ized equation pairs and the topic word, we obtain
the pre-stored MWP template and matching words
for unknown variables. Finally we fill the MWP
template with the previously saved delexicalized
words and obtain the generated MWP.

CVAE (Zhao et al., 2017) Similar to previous
work, we apply a seq2seq model and adopt a la-
tent variable to capture the diversity of MWPs. We
replace the hierarchical encoder with a one-layer
GRU, and the initial state of the decoder is the com-
bination of a latent variable and the final state of
the encoder. As shown in Table 8, we apply the
delexicalization process and sequence transforma-
tion operations for all the training data. The input
sequence includes special tokens, operators and the
topic word. After refilling the special tokens with
corresponding matching words, we obtain the final
MWP.

MAGNET (Zhou and Huang, 2019) MAGNET
is a previously proposed seq2seq MWP generation
framework. Following the original implementation,
we utilize a bidirectional RNN to encode equation
sequence and encode topic word with a word rep-

resentation lookup table. The decoder is a single
directional RNN with equation-topic fusion mech-
anism to leverage both equation and topic infor-
mation. We follow the same input sequence as de-
scribed in Table 8, but split the equation sequence
and the topic words as separate inputs.

UniLM (Dong et al., 2019) A pre-trained nat-
ural language generation model with transformer
encoder and decoder blocks. We fine-tune UNILM
on MWP generation task with the same input and
output token sequence described in CVAE method.

Transformer (Vaswani et al., 2017) We included
a Transformer-based seq2seq model which has
proved its success in machine translation tasks.
The same input sequence as described in previous
method.

A.5 Additional MWP Generation
Comparison

We provide additional illustrative examples of the
MWP generation comparison with unseen equa-
tions in Table 9.

A.6 Additional Diverse MWP Results
We provide additional diverse MWP results in Ta-
ble 10.
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Equations: x=2y; 4x+6y=56; Topic: Vehicle

Entities: x: Small car; y: Large car;

CVAE There are many small cars and big cars in the parking lot. There are 6 people in these cars
and 56 people in big cars. How many small cars and big cars are there?

MAGNET We need to clean up a total of large cars and small cars. We know that small car can transport
6, and the number of large cars is the number of times. Please tell the number of small cars?

UniLM Doctors have produced a lot of small cars and large cars. There are 0 cars in total. These two
types of cars have 56 people. How many of these two cars have a total of 56 people, small
cars?

Transformer There are 56 people in the class to go rowing, and there are 0 cars in total. Among them, the
small cars have 4 people each, and the big cars have 6 people each. The small cars have (),
and the big cars have ().

MaKE A company needs to transport 56 wheels in one transportation task. We know that each large
car can carry 6 wheels and each small car can carry 4 wheels. The company has completed
the task with only one time transportation, and the number of used small car is twice the
number of large car. Q: They used () small car.

Equations: -x+y=20; 2x-4y=10; Topic: Livestock

Entities: x: Chicken; y: Rabbit;

CVAE Chickens and rabbits in the same cage. The number of chickens is twice the number of
chickens. The number of rabbits and rabbits is twice the number of chickens, and the total
number of legs is 10. How many chickens and rabbits are there each?

MAGNET Chickens and rabbits in the same cage. The number of chickens is 20 more than that, and
there are 10 rabbit legs. How many rabbits are there?

UniLM How many chickens and rabbits are there in the 10-legged training centre?

Transformer There were 20 chickens and rabbits. The total number of legs of the chickens was 10 more
than the rabbits, and the chickens had () only.

MaKE The number of chickens is 20 less than the number of rabbits, and the number of feet for
chickens is 10 more than that of rabbits. How many chickens and rabbits are there?

Equations: x+y=192/16; 22x+14y=192; Topic: Dormitory

Entities: x: Large dormitory; y: Small dormitory;

CVAE In the average daily None dormitory of the fifth grade, Teacher Chen gave four students, two
small dormitories can accommodate 22 students. Two groups can accommodate 22 students,
and the residence is just so big that the dormitory can accommodate 192 students. There are
() rooms in the dormitory group. There are 14 students in the small dormitory, which just
happened to be full.

MAGNET There are 16 people in HongKong. The large dormitory can accommodate 22 people, and
the small dormitory can accommodate 14 people. A total of 192 people, how many large
dormitory?

UniLM The school arranges accommodation for students. The big dormitory can accommodate 22
students in the dormitory, and the small dormitory can accommodate students. A total of
192 students can live in the dormitory. On average, how many rooms are there in each small
dormitory?

Transformer 192 students from grade 1 to grade 6 go to the spring trip. There are 16 teachers in total.
Students have two kinds of dormitories to choose. The large dormitory can live in 22 people,
and the small dormitory can live in 14 people. In total, 192 dormitories are booked. What is
the number for the booked small dormitory and large dormitory separately?

MaKE The Youth Hostel is designed to accommodate 22 people in the large dormitory and 14
people in the small dormitory. One day, there were 192 travelers and the hostel was just
about full with an average of 16 people per dormitory. How many large dormitories are there
in the youth hostel?

Table 9: Illustrative examples of the MWP generation comparison with unseen equations. () represents the question
that the student needs to solve.
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Equations: x+y=100; 20x+30y=2600; Topic: Buy ticket

Entities: x: front row ticket; y: back row ticket

1. The company organized staff to go to the Shanghai Circus to see the show. Tickets purchased on the
official website would receive discounts, 20 yuan off for each front row ticket and 30 yuan off for each
back row ticket. They bought 100 tickets on official website and saved 2,600 yuan, how many front row
tickets did they buy?

Entities: x: child ticket; y: adult ticket

2. There are adult and child tickets available at the acrobatic ticket office in Linjiang Park. The price of
the adult ticket is 30 yuan and the price of the child ticket is 20 yuan. A total of 100 acrobatic tickets
were sold today, and the revenue was 2,600 yuan. How many adult tickets were sold?

Entities: x: one-way ticket; y: round-trip ticket

3. The bus station sold 100 tickets today and received 2,600 yuan. There were two kinds of tickets on
their website, a round-trip ticket for ¥30 and a one-way ticket for ¥20. How many round-trip tickets were
sold today?

Equations: -y+x=20; 2y+4x=66; Topic: Livestock

Entities: x: cow; y: duck

1. When Sun Wukong returned to Mount Huaguo, he showed a magic spell to the monkeys. A group of
cows and a group of ducks emerged. After counting, they found that there were 66 legs. If we know that
the number of cows is 20 more than that of ducks. Then how many cows and ducks for each?

Entities: x: cow; y: duck

2. Xiaohong’s farm has ducks and cows. The number of ducks is 20 less than the number of cows. There
are 66 legs in total, Xiaohong have () cows and () ducks.

Entities: x: cow; y: duck

3. In a pasture, there are cows and ducks. There are 20 more cows than ducks, and the total number of
legs of the cows and ducks is 66. There are () ducks?

Table 10: Additional illustrative example of the diverse MWP generation made by MaKE. () represents the question
that the student needs to solve.


