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Abstract

Most of the existing Knowledge-based Ques-
tion Answering (KBQA) methods first learn to
map the given question to a query graph, and
then convert the graph to an executable query
to find the answer. The query graph is typ-
ically expanded progressively from the topic
entity based on a sequence prediction model.
In this paper, we propose a new solution to
query graph generation that works in the op-
posite manner: we start with the entire knowl-
edge base and gradually shrink it to the desired
query graph. This approach improves both
the efficiency and the accuracy of query graph
generation, especially for complex multi-hop
questions. Experimental results show that our
method achieves state-of-the-art performance
on ComplexWebQuestion (CWQ) dataset.

1 Introduction

Knowledge-based question answering (KBQA) is
the task of finding answers to questions by process-
ing a structured knowledge base KB. A KB graph
consists of general facts which are organized as
entity-relation-entity triplets, with entities as ver-
tices and relations as edges. To answer a simple
question such as: “Who is the president of the
United States?”, a typical KBQA system first iden-
tifies the entity (i.e., “United States”) and the rela-
tion (i.e., “president”) asked in the question, and
then searches for the answer entity by matching the
triplet fact query <United States, president, ?> over
KB (Bordes et al., 2015; Yin et al., 2016; Yu et al.,
2017; Zhang et al., 2018; Zhao et al., 2019). To
answer a multi-hop question, multiple facts are ex-
tracted to form a structured representation, namely,
a query graph (Yih et al., 2015). For example, the
question “What was the name of the publisher for
Disney Channel Magazine’s first cartoon?” cor-
responds to a query graph that consists of 3 facts
with grounded (i.e., topic entity) and ungrounded
entities (i.e., “?”): <?, publisher, Disney Channel

Magazine>, <?, cartoon, ?>, <?, published date, ?>,
and a constraint: order by. The query graph can
be converted to an executable query to find the an-
swer in KB. Generating the query graph accurately
and efficiently is the key challenge in KBQA.

While single-hop questions are easy to answer
by searching for a single fact in KB, multi-hop
questions are much harder to answer because the
search space grows exponentially as the number of
hops increases. The most common way to solve
a multi-hop question is to first generate candidate
query graphs and then validate and rank them down
to one. Previous works construct candidate query
graphs by starting with the topic entity and progres-
sively expanding the graph (Bao et al., 2016; Liang
et al., 2017; Zhou et al., 2018; Luo et al., 2018;
Chen et al., 2019). They greedily determine what
relation best fits the current incomplete query graph
at each step, but fail to capture global properties
of the complete query graph. At each step as the
query graph grows, these step-wise models need
to query the KB, measure semantic relevance, and
update the model, which inevitably leads to high
computational cost. For example, it takes more
than two weeks to train the state-of-the-art model
QGG (Lan and Jiang, 2020) on ComplexWebQues-
tion dataset (Talmor and Berant, 2018). To reduce
the computation, these methods limit the maximum
length of the search path to a small number, and use
beam search to maintain only the top candidates at
each step; thus causing some good candidates to be
missed.

We instead propose a novel query graph gen-
eration method that works in quite the opposite
manner: we start with the entire KB and gradually
shrink it to the desired query graph. In the candi-
date query graph generation stage, in contrast to ex-
isting works that use expensive semantic relevance
features, we only rely on cheap global features that
capture syntactic matches with the query or struc-
ture matches with KB. This allows us to quickly
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Figure 1: Different stages of the proposed method on an example question with topic entity “Swiss Psalm”.
Rectangles represent relations and circles represent entities. The graph transformation can be summarized as:
KB 1a−→ RG 1a−→ (RGq ⊂ RG)

1b−→ (RGqi ⊂ RG
q)

1b−→ (Gqj ⊂ KB)
1c−→ (Gqbest ⊂ KB)

1c−→ answer. The index
above the arrow denotes in which subfigure (stage) the transformation happens.

filter out a large number of low-quality candidate
graphs, and run the computation-intensive ranking
stage on a relatively-small number of promising
graphs. Compared to previous approaches, ours
is computationally efficient and could explore, in
early stages, candidates graphs missed by previ-
ous methods. Experimental results show that our
method delivers consistent performance on two
KBQA datasets: it improves the state-of-the-art
results by an absolute 5.8% in F1 on the multi-hop
KBQA task CWQ and produces competitive result
on the single-hop / two-hop KBQA task WQSP.
In contrast, while some baseline methods work
somewhat better on simple single-hop / two-hop
questions, their performance drops dramatically on
complex multi-hop questions.

2 Methodology

First we introduce some definitions and notations.
For a given knowledge base KB, its associated re-
lation graph RG is the undirected graph whose
vertices correspond to the edges in KB, and whose
edges correspond to the edge adjacencies in KB
(two nodes inRG are connected if the correspond-
ing two edges in KB share a common entity node).
A query graph Gq is a subgraph of KB, which
reveals the semantic structure and the topic enti-
ties of the input question q. One can translate a
query graph into an executable SPARQL query
and execute it against the KB to obtain the answer
entities. A typical query graph consists of four
types of nodes (Yih et al., 2015): the grounded en-
tity corresponding to etopic; existential variables
eung, which are ungrounded entities; the lambda
variable eans, which is an ungrounded entity rep-

resenting the answer. It is also a common practice
to define some aggregation functions nodes for
Gq, which represent set operations (e.g., argmax
and order by) on eung or eans.

To find the answer to a question q, our method
shrinks KB down to Gq in three stages: rela-
tion subgraph extractor predicts a relation sub-
graph RGq ⊂ RG for an input question q; query
graph generator generates a set of candidate
query graphs Gqj ⊂ KB, j = 1, 2, · · · ; query
graph ranker ranks Gqj and selects the top one
as the answer.

Relation Subgraph Extractor: we first extract
a relation subgraphRGq ⊂ RG for an input ques-
tion q. RGq only captures relations relevant to q
(see a running example in Figure 1a). The reason
of considering a relation graph (with relations as
nodes) instead of an entity graph (with entities as
nodes) is that we want the graph size to be small,
and in typical KB the number of relations is much
smaller than the number of entities. We identify
the relations inRGq for the given question with a
multi-label classifier. Specifically, we consider all
annotated relations in the training data as potential
labels and train binary relevance (Tsoumakas and
Katakis, 2007; Wang et al., 2018) with logistic re-
gression to determine the relevance of each relation.
Unigrams from the questions are used as features.
Because the given questions are very short, both ex-
tracting unigrams and running logistic regressions
on sparse features are very fast. Next we extract
a subgraph RGq ⊂ RG whose nodes correspond
to the predicted relevant relations. In effect, we
narrow down the search space from the entire KB
(38M entities) to a small relation graph of about
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10-20 relations.
Query Graph Generator: we aim to get a set

of candidate query graphs Gqj ⊂ KB, j = 1, 2, · · · .
We start with the relation subgraph RGq ⊂ RG
from previous stage, and further narrow down the
search space by selecting some of its high-quality
subgraphsRGqi ⊂ RG

q, i = 1, 2, · · · , which repre-
sent relevant relation query structures. We propose
to find suchRGqi that leads to answers with high F1
scores using a logistic regression model. In prac-
tice, we consider all subgraphs ofRGq with up to 5
nodes as candidates (see examples of the top three
RGqi in Figure 1b). Four types of features are used
to characterize each candidate subgraphRGqi : (1)
Shape of the graph (categorical): two graphs have
the same shape if they are isomorphic; 15 different
shapes are identified. (2) Relation relevance score
(numeric): for relations inRGqi , we use their rele-
vance scores generated in the previous stage. For
relations not inRGqi , the scores are set to 0. (3) Re-
lation pairs: the presence of each adjacent relation
pair is used as a binary feature. (4) (Relation, entity
type, relation) triplets (binary): for each adjacent
relation pair, we further combine it with the most
common entity type of the connected node.

In training, we integrateRGqi with labeled topic
entities to build a query graph, and execute it to
get the answer and measure answer F1 score. We
generate training data for logistic regression by in-
cluding all positive subgraphs with high F1 scores
and randomly sample 30 negative subgraphs. We
turn F1 scores into binary training labels based
on a threshold 0.9. Once the logistic regression
model is trained using the extracted features, we
can use it to score and rank RGqi . After select-
ing the top 50 RGqi , we couple them with topic
entities etopic to build query graph candidates Gqj .
Each RGqi can be mapped to multiple Gqj by in-
serting different topic entities at different positions
and assigning different relation directions (see an
example of Gqj in Figure 1c). After this step, the
generated Gqj only contains one topic entity. To
build a query graph for a question with multi-
ple topic entities, we merge the generated query
graphs with similar relation structures but differ-
ent entities. For example, eung0

r1−→ eung1
r2−→ etopic1

and etopic2
r1−→ eung1

r2−→ eung2 will be merged into

etopic1
r1−→ eung1

r2−→ etopic2 , where r1 and r2 corre-
spond to two different relations.

Query Graph Ranker: we rank the candidate
query graphs Gqj , j = 1, 2, · · · , and use the top

Keywords SPAQRL constraints
prior, before, FILTER ( var1 <"var2"^^xsd:dateTime)

after FILTER ( var1 >"var2"^^xsd:dateTime)
less FILTER (xsd:integer(var1) <var2)

greater, more FILTER (xsd:integer(var1) >var2)
earliest, smallest, first ORDER BY var1 LIMIT 1

largest, most, last ORDER BY DESC var1 LIMIT 1

Table 1: Mapping rules that translate keywords into
SPAQRL constraints.

one Gqbest to produce the final answer to the input
question q. Since there are only a small number of
generated candidate query graphs, we can afford to
evaluate them with a powerful and expensive model.
We use the Albert (Lan et al., 2020) to compute
the matching score between Gqj and q. To repre-
sent Gqj as a sequence of tokens and concatenate it
with q, we locate the source node1 and concatenate
all paths starting from the source node to make a
sequence. The example in Figure 1c has source
node e0 and two paths that point to etopic and e2
separately. We represent the ungrounded entities
as their entity types. Then the concatenation is sent
to the Albert model to get a matching score.

Following previous work (Luo et al., 2018), we
further augment Gqbest with constraints based on a
set of predefined rules. This is necessary for de-
tecting time and number constraints in superlative
and comparative questions. The rules consist of
mappings from keywords to SPARQL constraints
as shown in Table 1. Take as an example the input
question “Who were the presidents of the United
States before 2020?” and the predicted query graph
“SELECT distinct * from <cwq> WHERE { <US>
<president> ?e . }”. The model first detects the key-
word “before” from the question, and then learns
“var1” and “var2” to be “?e” and “2020” based on
question and the predicted graph. At the end, it
couples the generated SPARQL constraints with
the predicted query to generate the final query.

Then, we execute the query against the KB to
obtain the answer. Because all nodes in Gqbest ex-
cept the grounded entities and CVT nodes2 can
potentially be the answer node, in the last step we
resolve the answer node using a simple heuristic:
we compare Gqbest with all annotated query graphs
in the training set to select graphs which are isomor-
phic to Gqbest. From the selected graphs, we choose

1Source node is a node without incoming edges.
2Compound value type (CVT) is a special entity category

in Freebase, which does not represent real-world entity, but
helps with connecting other nodes.
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CWQ WQSP
HR-BiLSTM (Yu et al., 2017) 31.2 † 62.3 †
GRAFT-Net (Sun et al., 2018) 26.0 † 62.8
KBQA-GST (Lan et al., 2019) 36.5 67.9
TEXTRAY (Bhutani et al., 2019) 33.9 60.3
UHop (Chen et al., 2019) 29.8 † 68.5 †
QGG (Lan and Jiang, 2020) 40.4 74.0
Our Method 46.2 66.0

(a)

Query graph generator ∆ Coverage
w/o shape of the graph −2.4%
w/o relation relevance score −1.3%
w/o relation pairs −0.4%
w/o (relation, entity type, relation) triplets −4.5%

Query graph ranker ∆ F1
w/o query graph merge −3.5%
w/o path encoding −1.4%
w/o entity type encoding −4.5%
w/o constraints modeling −1.3%
w/ top 5 prediction +14.5%

(b)
CWQ WQSP

Coverage Upper bound F1 Cardinality Coverage Upper bound F1 Cardinality
Entity Linking 0.732 - 25.7 (#entities) 0.961 - 2.3 (#entities)
Relation Subgraph Extractor - 0.859 13.1 (#relations) - 0.855 16.2 (#relations)
Query Graph Generator - 0.741 83.6 (#query graphs) - 0.771 20.6 (#query graphs)
Query Graph Ranker - 0.462 1(#query graphs) - 0.660 1(#query graphs)

(c)

Table 2: (a): F1 scores (%) on WQSP and CWQ test sets. † denotes re-implementation. (b): Ablation study results
on CWQ development set. We report changes of query graph coverage rate for query graph generator and F1 score
for query graph ranker. (c): Result of each stage.

the node (e.g., the top left node) which has most
often been the answer node in the dataset. This
heuristic achieves over 90% accuracy in practice.

3 Results and Analysis

We conduct experiments on two popular multi-hop
KBQA datasets, COMPLEXWEBQUESTION-1.1
(CWQ) (Talmor and Berant, 2018) and WEBQUES-
TIONSP (WQSP) (Yih et al., 2015). CWQ dataset
has 34,689 complex questions (2-5 hops), while
WQSP dataset contains 4,737 simple questions (1
or 2 hops). In this work, we use CWQ for the
main evaluation because our method is designed
for complex questions. Both datasets use Freebase
(Google, 2013) as the supporting knowledge base.

We implement our model using NETWORKX
(Hagberg et al., 2008), PYTORCH-1.6.0 (Paszke
et al., 2019), and Huggingface (Wolf et al., 2019).
For entity linking, we take a union of AllenNLP
(Gardner et al., 2017) and Stanford NER (Finkel
et al., 2005) outputs in CWQ experiments and
use S-MART (Yang and Chang, 2016) in WQSP
experiments. We further build an uppercase
detector to add uppercase words to the ensem-
bling results. For entity type linking, we search
for entity types from the Freebase via two rela-
tions, ns:common.topic.notable_types
and ns:type.object.name. For Albert train-
ing, we initialize the model with pre-trained
weights and fine-tune it on the corresponding
KBQA dataset for 5 epochs. The model has 12

layers, 4096 hidden dimensions, and 64 attention
heads. We set learning rate to 1e−5 and limit the
maximum length of input sequence to 128 tokens.

3.1 Experimental Results

Table 2a compares our method with state-of-the-
art models. We adopt the F1 score between the
predicted answer set and the ground truth answer
set as our main evaluation metric. Experimental
results show that our method outperforms existing
methods on CWQ, while staying competitive on
WQSP. We can see that most previous methods
perform very well on WQSP but poorly on CWQ.
This is because the “step-wise growing” methods
have to restrict search space in order to be tractable
on complex question datasets, and that causes good
query graph candidates to be missed, ultimately
hurting the performance on CWQ. In the query
graph generation stage during training, the search
space of previous methods is Θ(nt) without beam
search or Θ(

∑
t bn) with beam search, while ours

is Θ(
(
k
t

)
), where t is the maximum number of hops,

n is the average number of degrees in KB, b is the
beam size, and k is the number of nodes in RGq.
In practice, we have roughly n = 70, 3 ≤ b ≤ 8,
k = 15, and t = 5 on CWQ and t = 2 on WQSP.
Our search space is not as restricted as the previous
methods using beam search but is still tractable.
On CWQ our model only took 1 day to train while
the second best model QGG (Lan and Jiang, 2020)
took 2 weeks.
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To further disentangle the contributions of differ-
ent factors in our method, we present an ablation
test on CWQ in Table 2b. Among four features
used in query graph generator, the (relation, entity
type, relation) triplet feature has the biggest impact
on the performance. Features such as shape and en-
tity type are global features that capture important
priors about the graph. Without them, performance
drops in both query generation and ranking stages.
It is also necessary to extract paths to make a se-
quential input to Albert. If instead, we simply con-
catenate triplet facts into a sequence, even though
this saves time to detect source nodes and paths,
the performance drops by 1.4%. We also observe a
significant performance boost by predicting top 5
predictions instead of just the top 1, implying that
correct answers are still ranked high when they are
not at rank 1.

Table 2c shows separate performance of each
component and how overall F1 score changes
through the three stages. We show the cardinal-
ity of the output (# of predictions) in each stage.
On CWQ, the entity linking models do not work
well, as almost half of the questions in CWQ have
multiple topic entities which makes the linking task
difficult. On WQSP, the bottleneck is extracting re-
lation graphRGq, likely due to overfitting on small
training data. By adding gold relations toRGq and
using the same setup as the current WQSP experi-
ment, we got 84.1% upper bound F1 in query graph
generator and 73.3% F1 in the final output. This
score is comparable to the state-of-the-art model.

3.2 Error Analysis

As shown in Table 2c, the entity linking model does
not perform very well on CWQ dataset. We note
that most of the questions in CWQ contain multiple
topic entities, which makes the prediction job more
challenging than it is on WQSP. This is the main
reason why there is a big performance gap between
CWQ and WQSP. In addition to that, we notice
several difficulties of doing entity linking on CWQ.
(1) Typo in the dataset: “Bill Clinton” is mistakenly
spelled as “Bill Clnton”. (2) Name is not unique:
there are more than one “Michael Jordan” in the
knowledge graph. There is no automatic way to
determine which “Michael Jordan” the question
refers to. (3) Topic entity can be a generic word: in
question “What art movement do the artists who
study perspective belong to?”, the topic entity is
“perspective”. It is difficult to detect it with a regular

entity linking tool. (4) Disambiguation: similar to
(2), the model needs to map the extracted words
to corresponding entities in the knowledge graph.
Even if the entity is unique in KB, it is not always
easy to perfectly perform the mapping.

We see a significant F1 score drop on CWQ
dataset in the last stage (from 0.741 to 0.462).
We take a closer look at failure cases and observe
that the model has difficulty in distinguishing very
similar relations. For example, for the question

“Where did the subject of the movie ‘I’m Not There
live’?”, the model predicts a graph with the relation
“place_of_birth”, while the graph with the correct
relation “places_lived” is ranked second. This is
because, in training set, a similar question “In the
film ‘Lydia Bailey’, where did the subject live?”
is linked with relation “place_of_birth”, whereas
the better relation “places_lived” is not annotated.
This kind of issue could be alleviated by annotating
more positive samples or encouraging the model
to explore unlabeled data in training (Qin et al.,
2020). A rather tricky issue is that the relation
“ns:location.country.languages_spoken” is usually
mistakenly predicted as “ns:location.country.offi-
cial_language”, or the other way around. These
two relations are represented by similar features
in the embedding space and thus easily confuse
the model. Specifically, they appear 1,707 and 825
times in the training set, and in more than half
of the cases they are perfectly interchangeable or
generate very close answers. To distinguish such
similar relations, the model needs a large number
of samples to learn the subtle difference between
the two.

4 Conclusion

We propose a novel query graph generation method
by gradually shrinking a KB to a desired query
graph. Compared to previous approaches, our ap-
proach is more computationally efficient. Experi-
ments show that our method delivers consistent per-
formance on two KBQA datasets: it improves the
state-of-the-art results by an absolute 5.8% in F1 on
the multi-hop KBQA task CWQ and produce com-
petitive result on the single-hop / two-hop KBQA
task WQSP. In contrast, while some baseline meth-
ods work somewhat better on simple single-hop
/ two-hop questions, their performance drops dra-
matically on complex multi-hop questions.
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