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Abstract

Web search is an essential way for humans
to obtain information, but it’s still a great
challenge for machines to understand the con-
tents of web pages. In this paper, we intro-
duce the task of structural reading compre-
hension (SRC) on web. Given a web page
and a question about it, the task is to find
the answer from the web page. This task re-
quires a system not only to understand the
semantics of texts but also the structure of
the web page. Moreover, we proposed Web-
SRC, a novel Web-based Structural Reading
Comprehension dataset. WebSRC consists of
400K question-answer pairs, which are col-
lected from 6.4K web pages. Along with the
QA pairs, corresponding HTML source code,
screenshots, and metadata are also provided
in our dataset. Each question in WebSRC re-
quires a certain structural understanding of a
web page to answer, and the answer is either a
text span on the web page or yes/no. We eval-
uate various baselines on our dataset to show
the difficulty of our task. We also investigate
the usefulness of structural information and vi-
sual features. Our dataset and baselines have
been publicly available1.

1 Introduction

Web pages are the most common source of human
knowledge and daily information. With the help
of modern search engines, people can easily locate
web pages and find information by simply typing
some keywords. However, traditional search en-
gines only retrieve web pages related to the query
and highlight the possible answers (Chen, 2018),
they can’t understand the web pages and answer the
query based on contents. The rapid development of
question answering systems and knowledge graphs
enables search engines to answer simple questions
directly (Chakraborty et al., 2019), but they still

∗The corresponding authors are Lu Chen and Kai Yu.
1https://x-lance.github.io/WebSRC/

Figure 1: Examples for a web page. (a) is the original
web page. (b) is the HTML code for the content in the
red box. Each HTML tag begins with a starting tag
and ends with a closing tag (with a slash in tag). <td>
stands for a table cell and <span> stands for a content
span. (c) shows the text extracted from the web page.
(d) contains some sample questions for the web page.

fail to perform question answering on arbitrary web
pages. The difficulty lies in the variety of web
pages and the complexity of the web layouts, which
requires a system not only to consider the text but
also the structures of web pages.

There are two kinds of structures for each web
page: spatial structure and logical structure. The
spatial structure is how the information is visually
organized, and the logical structure is how the in-
formation is organized by semantics. Figure 1(a)
shows the spatial structure of the web page, e.g.,
how the texts are arranged and what are their rela-
tive positions. The logical structure can be deduced
by the spatial structure and the semantics of the
texts. For example, this image introduces the infor-
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Datasets #domain #website Task #Query With Image
WEIR(Bronzi et al., 2013) 4 40 ClosedIE 32 No
SWDE(Hao et al., 2011) 8 80 ClosedIE 32 No

Expanded SWDE(Lockard et al., 2019) 3 21 OpenIE 748 No
WebSRC(Ours) 11 70 QA 2735 Yes

Table 1: The comparison with datasets with HTML. The query in ClosedIE is the attributes needed to be extracted,
in OpenIE is predicates, and in WebSRC is the questions before data augmentation.

mation about two cars, with car names at the top
followed by the detailed specifications. A human
can easily answer the questions in Figure 1(d) by
referring to the relevant section in the logical struc-
ture. But for computers, it’s hard to understand the
logical structure by just taking the spatial structure
(the image) as input due to the lack of common
sense. Computers need to infer the answers from
the font size, the color and the spatial relations
between texts, let alone they need to extract texts
from the image and understand them.

An alternative way is to utilize the text from web
page. Figure 1(c) shows the texts extracted from
Figure 1(a). As we can see, the layout structure is
lost in the plain text, and the text is just a concatena-
tion of short phrases without a meaningful context.
It would be difficult to answer questions only based
on such texts. Besides texts, we can also parse the
HTML (Hypertext Markup Language) document,
i.e. the source code of the web page. It describes
the structure of the webs page and uses HTML ele-
ments (tags) to display the contents. We will use the
term tag and element in this paper interchangeably.
Figure 1(b) shows the HTML code corresponding
to the part of the web page highlighted in the red
box. HTML is a kind of semi-structured document
(Buneman, 1997), where tags with different struc-
tural semantics serve as separators. It’s also called
the “self-describing” structure. An HTML docu-
ment can be parsed into a tree-like structure called
DOM2 (Document Object Model), where the tree
nodes are elements in the HTML, and texts are
all leaf nodes in the tree. An HTML DOM tree
can serve as a structural representation of the web
page, where visually similar items on the web page
would be sub-trees with similar structures. For ex-
ample in Figure 1, the HTML structure is identical
for the segment in the blue and red boxes. They
are only different in the text. However, due to the
complexity of rendering HTML code into a web
page, a single HTML would not be enough to rep-

2https://en.wikipedia.org/wiki/Document_Object_Model

resent the full logic structure of the web page. For
example, in Figure 1(b), the four <span> are in the
same spatial level of the DOM tree, but they play
different semantic roles in the web page, i.e. the
first span indicates an attribute and the second con-
tains the corresponding value. We need to leverage
both the visual and structural information to gain a
comprehensive understanding.

To promote researches in question answering on
web pages, we introduce WebSRC, a dataset for
reading comprehension on structural web pages.
The task is to answer questions about web pages,
which requires a system to have a comprehensive
understanding of the spatial structure and logical
structure. WebSRC consists of 6.4K web pages
and 400K question-answer pairs about web pages.
For each web page, we manually chose one seg-
ment from it and saved the corresponding HTML
code, screenshot, and metadata like positions and
sizes. Questions in WebSRC were created for each
segment. Answers are either text spans from web
pages or yes/no. Taking the HTML code, screen-
shot, metadata as well as question as input, a model
is to predict the answer from the web page. The
comparison of WebSRC with other datasets with
HTML documents is illustrated in Table 1. Our
dataset is the only one that provides HTML docu-
ments and images, and is larger in the number of
domains and queries.

To summarize, our contributions are as follows:

• We proposed the task of structural reading
comprehension (SRC) on web, which is a
multi-modal machine reading comprehension
task that focuses on understanding texts and
screenshots on web pages.

• We created a large dataset for web-based
structural reading comprehension consisting
of 400K QAs and 6.4K web page segments,
where HTML code and additional visual fea-
tures are also provided.

• We evaluated several baselines on WebSRC
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and the results showed that WebSRC is highly
different from the existing textual QA datasets
and is challenging even for the leading pre-
trained language model.

2 Related Work

Machine reading comprehension (MRC) models
have achieved excellent performance on plain text
corpus (Zeng et al., 2020) in recent years. Tra-
ditional datasets for machine reading comprehen-
sion (Talmor et al., 2019; Yang et al., 2018; Ra-
jpurkar et al., 2016, 2018; Choi et al., 2018; Reddy
et al., 2019; Lai et al., 2017) contain plain text
passages and QAs about them. However, HTML
code in the form of semi-structured documents is
different from the ordinary textual corpus. Re-
cently, multi-modal MRC has gained the inter-
est of researchers. Multi-modal MRC datasets
with both images and texts are proposed, such as
MovieQA (Tapaswi et al., 2016), TQA (Kembhavi
et al., 2017), COMICS (Iyyer et al., 2017) and
RecipeQA (Yagcioglu et al., 2018). Images in these
datasets provide different information from texts,
and texts are supplementary descriptions for im-
ages. Text VQA (Mishra et al., 2019; Singh et al.,
2019; Mathew et al., 2021) is a kind of VQA (vi-
sual question answering) task (Antol et al., 2015),
whose task is to answer questions about a real-
world image, and questions in this task are about
the texts in the image. However, there is no existing
text or layout description available in the image,
but we can access them easily on web pages.

Information extraction for web pages has been
investigated intensively (Chang et al., 2006). Pre-
vious studies mainly focus on building templates
for HTML DOM tree, called Wrapper Induction
(Kushmerick, 2000; Flesca et al., 2004; Kushmer-
ick et al., 1997; Muslea et al., 1999), or using well
designed visual features like font sizes, element
sizes, and positions (Zhu et al., 2005, 2006). These
methods require abundant human labor to label tem-
plates and analyze features, which makes it hard to
generalize to unseen websites. Chen et al. (2021)
proposed a program synthesis based technique to
extract web information. Some studies focused on
recognizing tables from web pages (Zanibbi et al.,
2004) and tried to model the physical and logical
structure of tables in HTML, Zhang et al. (2020)
proposed to use a graph to represent the table struc-
ture. Some web QA datasets are proposed (Dunn
et al., 2017; Joshi et al., 2017; Dhingra et al., 2017;

Li et al., 2016), but they only contain text snippets
extracted from web pages. Bronzi et al. (2013)
proposed a dataset called WEIR, consisting of 40
websites from 4 domains. Hao et al. (2011) pro-
posed SWDE, which contains 124,291 web pages
from 80 websites, and Lockard et al. (2019) ex-
panded SWDE for openIE. All these datasets only
contain HTML code for extraction, and the task is
to extract pre-defined attributes of entities in web
pages, e.g. the author of a book. Layout analysis
(Binmakhashen and Mahmoud, 2019) is the task to
analyze document images like contracts, bills, and
business emails. IIT-CDIP (Lewis et al., 2006) and
RVL-CDIP (Harley et al., 2015) are two datasets
collected for document classification. Jaume et al.
(2019) proposed FUNSD for form understanding
and Huang et al. (2019) organized SROIE competi-
tion for receipt understanding. PubLayNet (Zhong
et al., 2019) and DocBank (Li et al., 2020) are
proposed to benchmark the task of layout recog-
nition in academic papers. However, compared to
the images in the layout analysis task, web pages
are much more complex in organizing information.
The terms to be recognized are relatively stable
in layout analysis, while web pages may contain
various information that is hard to be pre-defined.

3 Data Collection

The construction of our dataset consists of five
stages: § 3.3 web page selection, § 3.4 web page
collection, § 3.5 question labeling, § 3.6 data aug-
mentation and § 3.7 final review. We will describe
each stage in detail below.

3.1 Task Definition

The task of structural machine reading comprehen-
sion on web can be described as given the context C
and a question q, predict the answer a. In our task,
the context can be HTML code, screenshots, and
the corresponding metadata. Denote the machine
reading comprehension model as F , our task can
be formulated as:

F(C, q) = a (1)

3.2 Locating text in HTML

To precisely locate the text in HTML, we first de-
fine the text of an HTML node: the text of an
HTML node is the concatenation of texts in its de-
scendant nodes in the DOM tree, where the order
of texts is derived by the depth-first search. With
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Figure 2: Examples for three types of web pages. (a) and (b) are web pages of type KV, (c) is a web page of type
comparison, (d) is a web page of type table.

this definition, a text can be located by the tag con-
taining the text, and the beginning position in the
text of the node.

3.3 Web page selection

In this phase, we choose websites for further data
collecting. We are interested in the structure of the
web page, so in the web page selection phase, we
only focused on websites with a relatively complex
structure and that have abundant information for
question answering. We didn’t choose websites
with long textual paragraphs like Wikipedia, where
the structure has little influence on understanding
the content. We started from the website list of the
SWDE (Hao et al., 2011) dataset, which contains
80 websites from 8 domains. Websites on the list
that are no longer available are dropped. We also
expanded our website list by searching the domain
keywords and selected the most relevant websites.
In total, we obtained 70 websites from 11 domains.

We didn’t use the whole web page but only chose
some segments to build our dataset, because a com-
plete web page may contain ads or additional struc-
tures like navigation tabs, which brings too much
noise into the web page and makes the task much
harder. We admit that in the real-world scenario
we have to deal with the full web page, but we
consider the problem of question-answering in full
web pages can be modeled as a two-stage process:
first, find the relevant segment in the web page and
then answer the question based on the segment. In
this work, we will focus on learning the structure
of a given web page segment and leave the segment
locating problem as future work.

The choice of the segment is based on the type
of web page. We category web pages into three
types, KV, comparison, and table, according to
the different ways to display information. We will

discuss different types of websites in detail below.
KV Information in this type of web page is pre-

sented in the form of “key: value”, where the key is
an attribute name and the value is the corresponding
value. See Figure 2(a) and Figure 2(b) for illustra-
tion. This kind of web page can be found from the
detail page of an entity, e.g. a car or a book. We
choose the section that describes attributes about
the entity from the web page.

Comparison This type is similar to type KV
but with a major difference: web pages of type
comparison contain several entities with the same
attributes. For instance, in Figure 2(c), there are
two cars with same attributes in the image and they
form a comparison. We chose the segment that at
least contains a comparison between two objects.

Table Web pages of this type use a table to
present information. A table contains the com-
parison between rows naturally but unlike the type
comparison, it uses a unified header to represent
attributes and each row in the table only contains
values. Figure 2(d) shows the statistics table of
a basketball player. The segment we chose is the
table area on the web page.

3.4 Web page collection
We recruited six computer science students with
web crawling experience to collect the web pages.
We first rendered the website in the headless
Chrome browser, then for each segment, we man-
ually wrote extracting code to crawl it. We saved
the corresponding HTML and the screenshot of the
segment, as well as additional metadata (including
the location and size of each tag, the color and font
of texts). We used Selenium3 to collect all the data.

For segments of type comparison or type ta-
ble, we would drop some objects in comparison

3https://www.seleniumhq.org/
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Figure 3: The pipeline for labeling questions and augmenting data.

or delete some rows in the table if the size of the
segment is too large. We crawled homogeneous
segments from 100 web pages under each website,
each of them shares a common HTML structure
but with different content. We obtained 6447 web
pages after dropping some invalid web pages. We
removed all non-ascii characters and extra spaces
in HTML. Tags that have little influence on HTML
structure are removed, including the <script> and
the <style>. Properties of HTML tags are also re-
moved except for class, id, title and aria-label, for
these properties often serve as descriptions of a tag.
We added an additional attribute called tid to all
tags, which was used in locating tags with answers.

3.5 Question Labeling
We recruited three annotators to label questions
and answers for each crawled segment. We showed
screenshots to annotators and asked them to create
questions about the content on the image. All ques-
tions should be answerable by the screenshot, and
the answer should be a text shown in the image or
yes/no. We asked annotators to create questions in
the following style:

• Ask questions about certain key-value pair.
For example in Figure 2 (a), what’s the engine
specification of this car?

• Ask questions about certain object in the com-
parison. For example in Figure 2 (c), what’s
the price of Audi A5?

• Ask questions about a cell value in the table.
For the table example in Figure 2 (d), what’s

the GP score in 2017-18?

• Ask questions with condition. For example
in Figure 2 (c), what’s the price of the white
car? with a condition "white".

• Ask yes/no questions for confusing terms. For
example in Figure 2 (b), Is the storage 32GB?
asks about the storage size which is similar to
the RAM.

We also asked annotators to label the answer
in the HTML, including the answer text, the tag
containing the answer (represented using tid) and
the beginning position of the answer in the text
of the answer tag. When creating questions, we
also encourage annotators to ask questions that are
meaningful from an actual end user’s perspective.

We asked a different annotator to check if the
question is followed one of the styles above and if
the answer is a valid text in the segment or yes/no.
We collected 460 unique questions for all segments,
and we called these questions meta-questions.

To enhance the diversity of question expression,
we published a question rewriting task on Amazon
Mechanical Turk (AMT) to polish meta-questions.
Workers on AMT were shown a screenshot and
a meta-question with the answer, and their task
is to rewrite the given question without changing
the meaning. We encouraged the worker to use
more complex expressions and use synonyms for
attributes if possible. Each worker should create
three different versions of meta-questions. 191
workers participated in the rewriting task, and
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we asked another four annotators to filter ques-
tions with obvious grammar errors and inconsistent
meaning. About 10% questions are dropped after
review. Examples of rewritten questions are shown
in Figure 3. As we can see, annotators may change
the way of asking, introduce subjunctive mood or
change the question to an imperative sentence. We
collected 2735 questions at this stage.

3.6 Data Augmentation

Although the structure of different websites varies
a lot, web pages under the same website have a
similar structure. In this phase, we automatically
applied collected questions to all homogeneous
web pages. For each question, we manually created
extracting rules to identify answers on different
web pages. We generate new QA pairs for all web
pages by replacing the original answer with the
answer extracted from the homogeneous web page.
If a question contains a specific entity name, e.g. a
car name in the comparison, we also replace it with
the actual entity on the corresponding web page.

After data augmentation, we obtained 400498
question-answer pairs in total. The whole process
of question labeling and data augmentation is illus-
trated in Figure 3.

3.7 Final review

We wrote tests for the dataset to check the correct-
ness of the label, the completeness of saved files
and the format of dataset. We also sample 100
QA pairs from each website and asked four experi-
enced annotators to double-check the correctness
of semantics, e.g. whether the answer matches the
question, whether the question is suitable for the
web page. Cases with errors would send back to
annotators for a new round of labeling.

4 Dataset Analysis

In this section, we conduct throughout analysis of
WebSRC. We only show some major results here
and for more statistics please refer to Appendix A.

4.1 Dataset statistics

Type #website #webpage #QA
KV 34 3207 168606

Comparison 15 1339 68578
Table 21 1901 163314

Table 2: Statistics of different types of websites.

The statistics of different types of websites are
shown in Table 2. The most common type of web-
site is type KV, which accounts for about a half.
The least type of website is type comparison with
only 17% of the total websites. For we can generate
questions for each value in a table, the proportion
of QA pairs of type table is much bigger than its
proportion of websites, which is about 40%.

4.2 QAs in WebSRC

WebSRC consists of two kinds of questions: wh-
questions and yes-no questions. Questions starting
with “what” are the most common questions, and
questions starting with “what is the” account for
29.3% of the whole dataset. As for yes-no ques-
tions, words like Is, Can and Does are strong indi-
cators. The average length of questions is 8.26.

Answers in WebSRC are relatively short,
86.78% of which are within 3 words and 55.21%
answers have only one word. However, a text that
is visually a whole may be scattered in multiple
HTML tags. The example shown in Figure 1 illus-
trates this phenomenon. The line “21 / 26 mpg”
is separated by “<span>” tags. Besides, a tag
may contain additional texts except for the answer.
For example, the answer to the second question
in Figure 1 is a sub-span of whole tag text 2L
184hp@4800 In-Line 4. About 2.35% answers are
distributed in multiple tags and 13.21% answers
are sub-spans of the text of HTML nodes.

5 Baseline Models

We propose three baseline models for WebSRC.
They take different kinds of context into considera-
tion. We describe these models in detail below.

5.1 Pre-trained Language Model with Text
(T-PLM)

In the first baseline, we convert the HTML code
into non-structural pure text by simply deleting
all HTML tags, and utilize Pre-trained Language
Models (PLM), e.g. BERT (Devlin et al., 2019),
to predict answer spans. We regard it as an extrac-
tive QA task. We add two additional words yes
and no to the end of context for yes-no questions
prediction. Here the context C in Eq. (1) is the
resulting plain text. The resulting plain text and the
corresponding question are concatenated to form
the input sequence x. Then the probability distri-
butions for each token to be the start token and the
end token of the answer span can be obtained as
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follows:

Z = PLM (x) , (2)

ps,pe ∝ SoftMax (Linear (Z)) , (3)

where Z is the resulting sequence representation
calculated by PLM; ps and pe are start and end
distributions. We use cross-entropy as our objective
function.

In addition, after obtaining the predicted answer
spans, we go over the HTML code again to find
the tightest tag that contains the whole answer and
take it as the predicted answer tag.

5.2 Pre-trained Language Model with HTML
(H-PLM)

In the second baseline, we incorporate HTML tags
into PLM. We called this baseline H-PLM. The
model architecture of H-PLM is identical to T-
PLM, the only difference is we use HTML doc-
uments with HTML tags as our context C. To deal
with the HTML tags, we remove all attributes, leav-
ing the angle brackets, tag names, and the possible
slashes unchanged. The resulting tag sequence
looks like <div>, <img/>, </p>, etc. We treat
these HTML tags as new special tokens in the se-
quence and randomly initialize their embedding for
training.

5.3 Visual Information Enhanced
Pre-trained Language Model (V-PLM)

As introduced in Section 1, HTML is not enough to
represent the whole web structure. In the third base-
line, we take the visual information from web pages
into consideration. We call this model V-PLM. It
consists of three parts: PLM, visual information
enhanced self-attention blocks, and a classification
layer.

For each tag in HTML, we can use the bound-
ing box provided in meta data to locate the tag in
screenshot and obtain the visual embedding using
the Faster R-CNN (Ren et al., 2016). We concate-
nate output hidden state Z from H-PLM with the
corresponding visual embeddings, where tokens
within the same tag share the same visual embed-
ding. For the example in Figure 1, the visual em-
beddings of <span>, Fuel, Economy, </span> are
all the same. For other special tokens and tokens
in the question, their visual embeddings are zero
vectors.

The concatenated embedding is then fed into a
self-attention block (Vaswani et al., 2017), which

is repeated N times. We repeat the concatenation
procedure between each self-attention block. The
final representation is then sent to the classification
layer to produce the starting and ending probability
distribution, which is the same as H-PLM.

6 Experiments

6.1 Dataset Splits

We manually divide our dataset into train/dev/test
sets at the website level, where the training set con-
tains 50 websites, dev and test contain 10 websites
respectively. Both the dev set and the test set have
all three types of websites and have a similar distri-
bution of website types. The detailed statistics of
each set are shown in Table 3.

Split #website #webpage #QA
Train 50 4549 307315
Dev 10 913 52826
Test 10 985 40357

Table 3: Statistics of dataset splits.

6.2 Evaluate Metrics

We use three kinds of metrics for evaluation.
Exact match (EM) This metric is used to eval-

uate whether a predicted answer is completely the
same as the ground truth. It will be challenging for
those answers that are only part of the tag text.

F1 score (F1) This metric measures the overlap
of the predicted answer and the ground truth. We
split the answer and ground truth into tokens and
compute the F1 score on them.

Path overlap score (POS) When the model pre-
dicts an answer from a wrong tag but the text of
the answer is identical to the ground truth, the ex-
act match and F1 score will fail. Therefore we
introduce path overlap score, a tag level metric
that evaluates the accuracy in structure. An HTML
document is a DOM tree, so for every tag, there
exists a unique path from the root <HTML> el-
ement to the tag. We compute the path overlap
score (POS) between path p1 and p2 as following:
POS = |P1∩P2|

|P1∪P2| , where P1 and P2 are the sets of
elements in the path p1 and p2 respectively. | · |
denotes the size of a set.

6.3 Experiment Setup

We train our baselines on the training set and se-
lect the best models on the dev set based on the
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Models w/ text w/ tag w/ screenshot DEV TEST
EM F1 POS EM F1 POS

T-PLM (BERT)
√

52.12 61.57 79.74 39.28 49.49 67.68
H-PLM (BERT)

√ √
61.51 67.04 82.97 52.61 59.88 76.13

V-PLM (BERT)
√ √ √

62.07 66.66 83.64 52.84 60.80 76.39
T-PLM (ELECTRA)

√
61.67 69.85 84.15 56.32 72.35 79.18

H-PLM (ELECTRA)
√ √

70.12 74.14 86.33 66.29 72.21 83.17
V-PLM (ELECTRA)

√ √ √
73.22 76.16 87.06 68.07 75.25 84.96

Table 4: Experimental results of various baselines on dev and test sets. EM stands for exact match score, and POS
stands for path overlap score.

exact match score. We use uncased BERT-Base
and ELECTRA-Large (Clark et al., 2020) as our
backbone PLM models. The learning rate is 1e-
5. The batch size is 32. We use Adam optimizer
with a linear scheduler. For V-PLM, the number of
self-attention blocks is 3.

6.4 Results & Discussion

Figure 4: The performance (EM score) comparison
of three baselines on 10 different websites on dev set.
These websites fall into three categories: KV, Table,
and Comparison.

The experimental results are shown in Table 4.
We can find that no matter which PLM is used, the
more context information (i.e. text, HTML tag,
screenshot) yields better performance. Specifically,
comparing H-PLM with T-PLM, we find that H-
PLM outperforms T-PLM by a large margin. The
tag information in H-PLM can implicitly model
the visual structure of web pages to some degree.
Comparing V-PLM with H-PLM, we find that V-
PLM can outperform H-PLM in almost all metrics,
which means explicit visual features can provide
additional structural information. However, we can
also find that the improvement of performance is
not very large. This is because the Faster-RCNN
toolkit used here is pre-trained on nature images.
It may not well apply to screenshots of web pages.
In the future, there is a lot of room for exploration
of how to make good use of visual information.

From Table 4, we can also find that ELECTRA-
based models consistently outperform BERT-based
models. ELECTRA is the best single pre-trained

model on text-based MRC tasks, e.g. SQuAD2.0
(Rajpurkar et al., 2018). However, ELECTRA can
achieve about 80 EM score on SQuAD2.0, while it
can only achieve about 60 EM score on WebSRC.
It indicates that WebSRC is still challenging for the
current pre-trained language models.

In Figure 4, we further compare the performance
of three baseline models on different websites. We
find that on three websites, i.e. game10, sport09,
and auto08, H-PLM and V-PLM outperform T-
PLM with a large margin. Both game10 and
sport09 fall into the category of table, and auto08
falls into the category of comparison. We consider
in comparison and table websites, plain text is not
enough to answer questions and more structural
information is needed. Generally, to gain good
performance on table and comparison web pages,
models should have a good understanding of the
global structure of web pages as well as the seman-
tic of contents. From Figure 4, we can also find
that among three types of web pages, these models
perform worst on table.

Method/Metric #EM #F1 #POS
T-PLM-SQuAD 29.68 42.91 62.75

T-PLM 54.55 65.28 76.44
H-PLM 61.83 68.24 78.38
V-PLM 64.71 69.26 82.81

Table 5: Results for SQuAD model.

Though the result has shown the difficulty of our
dataset, we also wonder about the performance on
our dataset of the model that does well on large-
scale QA datasets. We fine-tuned a pre-trained
BERT-Base model on SQuAD 2.0 dataset, and then
use the parameters to initialize our baselines. For
H-PLM and V-PLM we still randomly initialize the
tag embedding and visual information enhanced
self-attention blocks. The SQuAD model we used
can achieve an exact match score of 71 in SQuAD.
The result is shown in table 5. In the first row,
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Figure 5: Case Study. The true answers are marked by green boxes, and the answers predicted by the model are
marked by red boxes.

we report the result of the SQuAD model on our
dataset without fine-tuning. The exact match score
is only 29.68, which means the texts from HTML
are highly different from the normal textual pas-
sages. Though the fine-tuned models almost outper-
form the version without pretraining in all metrics,
there is still a large gap between their performance
in the textual QA dataset, which means we need
more advanced technology to model the HTML
structure.

6.5 Case Study
To further analyze the behaviors of our models,
we select two images from our dataset and list the
predictions made by baselines with a BERT back-
bone. The result is shown in Figure 5. The image
on the left shows information about two univer-
sities. The question asked the tuition of the first
university but none of the three baselines made the
right prediction. T-PLM predicted a longer string
other than a raw price because there is no clear
boundary of contents in the plain text, while in
HTML the tags are natural separators for contents.
H-PLM and V-PLM successfully fetched the en-
tire field of Net Price, but they failed to model the
correspondence between attributes and schools and
chose the wrong tuition. The right screenshot is
from a movie website, and the question is about
the length of the movie. There is no leading text
indicating which part would be the length, so the
models need to infer the answer from structural
information. Both T-PLM and H-PLM predicted

the name of the movie, which means they failed
to recognize the time information from plain text
or HTML. V-PLM can leverage the visual hints
and located the right answer. These two examples
show that in order to make a comprehensive under-
standing of web page, a model should be able to
understand the visual layout, and group the infor-
mation correctly according to the spatial structure.

7 Conclusion

In this paper, we introduce WebSRC, a multi-modal
dataset for web-based structural reading compre-
hension with both HTML documents and screen-
shots. The task is to answer questions about the
web pages. We evaluate several baselines on our
dataset, and the results showed that incorporating
layout features with textual contents is crucial to
web understanding, but how to utilize such struc-
tural information requires further investigation. We
hope this work can push the research on web-based
structural reading comprehension forward. In the
future, we will go beyond web pages to explore
more structural reading comprehension tasks.

Acknowledgments

We sincerely thank the anonymous reviewers
for their valuable comments. This work has
been supported by the China NSFC Projects (No.
62120106006 and No. 62106142), CCF-Tencent
Open Fund and Startup Fund for Youngman Re-
search at SJTU (SFYR at SJTU).



4182

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In International Conference on Computer
Vision (ICCV).

Galal M Binmakhashen and Sabri A Mahmoud. 2019.
Document layout analysis: A comprehensive survey.
ACM Computing Surveys (CSUR), 52(6):1–36.

Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and
Paolo Papotti. 2013. Extraction and integration of
partially overlapping web sources. Proceedings of
the VLDB Endowment, 6(10):805–816.

Peter Buneman. 1997. Semistructured data. In Pro-
ceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database sys-
tems, pages 117–121.

Nilesh Chakraborty, Denis Lukovnikov, Gaurav Ma-
heshwari, Priyansh Trivedi, Jens Lehmann, and Asja
Fischer. 2019. Introduction to neural network based
approaches for question answering over knowledge
graphs. arXiv preprint arXiv:1907.09361.

Chia-Hui Chang, Mohammed Kayed, Moheb R Gir-
gis, and Khaled F Shaalan. 2006. A survey of web
information extraction systems. IEEE transactions
on knowledge and data engineering, 18(10):1411–
1428.

Danqi Chen. 2018. Neural reading comprehension and
beyond. Stanford University.

Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg
Durrett, Osbert Bastani, and Isil Dillig. 2021. Web
Question Answering with Neurosymbolic Program
Synthesis, page 328–343. Association for Comput-
ing Machinery, New York, NY, USA.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2174–2184.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Bhuwan Dhingra, Kathryn Mazaitis, and William W
Cohen. 2017. Quasar: Datasets for question an-
swering by search and reading. arXiv preprint
arXiv:1707.03904.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Sergio Flesca, Giuseppe Manco, Elio Masciari, Euge-
nio Rende, and Andrea Tagarelli. 2004. Web wrap-
per induction: a brief survey. AI communications,
17(2):57–61.

Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang.
2011. From one tree to a forest: a unified solution
for structured web data extraction. In Proceedings
of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 775–784.

Adam W. Harley, Alex Ufkes, and Konstantinos G. Der-
panis. 2015. Evaluation of deep convolutional nets
for document image classification and retrieval. In
13th International Conference on Document Analy-
sis and Recognition, ICDAR 2015, Nancy, France,
August 23-26, 2015, pages 991–995. IEEE Com-
puter Society.

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Di-
mosthenis Karatzas, Shijian Lu, and C. V. Jawahar.
2019. ICDAR2019 competition on scanned receipt
OCR and information extraction. In 2019 Interna-
tional Conference on Document Analysis and Recog-
nition, ICDAR 2019, Sydney, Australia, September
20-25, 2019, pages 1516–1520. IEEE.

Mohit Iyyer, Varun Manjunatha, Anupam Guha, Yog-
arshi Vyas, Jordan Boyd-Graber, Hal Daume, and
Larry S Davis. 2017. The amazing mysteries of the
gutter: Drawing inferences between panels in comic
book narratives. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 7186–7195.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019. FUNSD: A dataset for form
understanding in noisy scanned documents. In 2nd
International Workshop on Open Services and Tools
for Document Analysis, OST@ICDAR 2019, Sydney,
Australia, September 22-25, 2019, pages 1–6. IEEE.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601–1611, Van-
couver, Canada. Association for Computational Lin-
guistics.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?

https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.1109/ICDAR.2015.7333910
https://doi.org/10.1109/ICDAR.2015.7333910
https://doi.org/10.1109/ICDAR.2019.00244
https://doi.org/10.1109/ICDAR.2019.00244
https://doi.org/10.1109/ICDARW.2019.10029
https://doi.org/10.1109/ICDARW.2019.10029
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147


4183

textbook question answering for multimodal ma-
chine comprehension. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 4999–5007.

Nicholas Kushmerick. 2000. Wrapper induction: Ef-
ficiency and expressiveness. Artificial intelligence,
118(1-2):15–68.

Nicholas Kushmerick, Daniel S Weld, and Robert
Doorenbos. 1997. Wrapper induction for informa-
tion extraction. University of Washington Washing-
ton.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 785–
794.

David D. Lewis, Gady Agam, Shlomo Argamon, Ophir
Frieder, David A. Grossman, and Jefferson Heard.
2006. Building a test collection for complex docu-
ment information processing. In SIGIR 2006: Pro-
ceedings of the 29th Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, Seattle, Washington, USA, Au-
gust 6-11, 2006, pages 665–666. ACM.

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang,
Furu Wei, Zhoujun Li, and Ming Zhou. 2020.
Docbank: A benchmark dataset for document lay-
out analysis. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 949–960.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying
Cao, Jie Zhou, and Wei Xu. 2016. Dataset and
neural recurrent sequence labeling model for open-
domain factoid question answering. arXiv preprint
arXiv:1607.06275.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong.
2019. Openceres: When open information extrac-
tion meets the semi-structured web. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3047–3056.

Minesh Mathew, Dimosthenis Karatzas, and C.V. Jawa-
har. 2021. Docvqa: A dataset for vqa on document
images. In WACV, pages 2200–2209.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,
and Anirban Chakraborty. 2019. Ocr-vqa: Visual
question answering by reading text in images. In
ICDAR.

Ion Muslea, Steve Minton, and Craig Knoblock. 1999.
A hierarchical approach to wrapper induction. In
Proceedings of the third annual conference on Au-
tonomous Agents, pages 190–197.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2016. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. IEEE
transactions on pattern analysis and machine intelli-
gence, 39(6):1137–1149.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 8317–8326.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. Movieqa: Understanding stories in movies
through question-answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 4631–4640.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Na-
zli Ikizler-Cinbis. 2018. Recipeqa: A challenge
dataset for multimodal comprehension of cooking
recipes. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1358–1368.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

https://doi.org/10.1145/1148170.1148307
https://doi.org/10.1145/1148170.1148307


4184

Richard Zanibbi, Dorothea Blostein, and James R
Cordy. 2004. A survey of table recognition. Doc-
ument Analysis and Recognition, 7(1):1–16.

Changchang Zeng, Shaobo Li, Qin Li, Jie Hu, and Jian-
jun Hu. 2020. A survey on machine reading compre-
hension—tasks, evaluation metrics and benchmark
datasets. Applied Sciences, 10(21):7640.

Xingyao Zhang, Linjun Shou, Jian Pei, Ming Gong, Li-
jie Wen, and Daxin Jiang. 2020. A graph representa-
tion of semi-structured data for web question answer-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 51–61,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes.
2019. Publaynet: Largest dataset ever for document
layout analysis. In 2019 International Conference
on Document Analysis and Recognition, ICDAR
2019, Sydney, Australia, September 20-25, 2019,
pages 1015–1022. IEEE.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and
Wei-Ying Ma. 2005. 2d conditional random fields
for web information extraction. In Proceedings of
the 22nd international conference on Machine learn-
ing, pages 1044–1051.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and
Wei-Ying Ma. 2006. Simultaneous record detection
and attribute labeling in web data extraction. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 494–503.

https://doi.org/10.18653/v1/2020.coling-main.5
https://doi.org/10.18653/v1/2020.coling-main.5
https://doi.org/10.18653/v1/2020.coling-main.5
https://doi.org/10.1109/ICDAR.2019.00166
https://doi.org/10.1109/ICDAR.2019.00166


4185

A Appendix

A.1 Dataset distribution
The distribution of different website types in var-
ious domains is shown in Figure 6. As the figure
illustrated, not all domains contain three website
types while type KV almost exists in all domains.
Websites of type comparison are concentrated in
the domain of goods, i.e. auto, book, in the form
of item comparison. Most web pages with type
table belong to the domain sports, which contain
the score data of players.

Figure 6: Distribution of different type of websites in
different domains.

Figure 7 shows the data distribution in differ-
ent domains. Domains auto, university and sports
account for more than half of the data, and hotel,
camera and restaurant are the domains that with
least data. This distribution can attribute to the
amount of information carried by websites and the
amount of information in different domains that are
interested by people.

A.2 HTML statistics
We explored the distribution of HTML tags in Web-
SRC. Figure 8 shows the relative proportion of top
10 frequent HTML tags and top 10 frequent HTML
tags containing an answer. Three most common
tags are <div>, <td> and <span> on all pages,
which are also most frequent tags containing an-
swers. <div> and <span> are used for separating
an area, while <td> represents a table cell. This
observation indicates that the type of tag may im-
ply the semantics of the content. Though <div> is
the most frequent tag, <td> is much more likely
to contain an answer, for the reason that <div> is
often used in framing the web page while <td> is
commonly used for presenting a value. The aver-
age number of HTML tags in web pages is 177.

Figure 7: Data distribution in different domains.

Figure 8: Distribution of HTML tags. The blue is the
top 10 HTML tags in all HTML code, and the red is the
top 10 HTML tags containing an answer.

The mean depth of HTML DOM trees is 9.8 and
the mean depth of tags containing answers is 7.1,
which means the upper nodes in the DOM tree
would provide more structural information and the
lower nodes would contain more specific informa-
tion.


