
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4121–4133
November 7–11, 2021. c©2021 Association for Computational Linguistics

4121

A Unified Encoding of Structures in Transition Systems

Tao Ji∗, Yong Jiang, Tao Wang, Zhongqiang Huang,
Fei Huang, Yuanbin Wu, Xiaoling Wang

School of Computer Science and Technology,
East China Normal University

DAMO Academy, Alibaba Group
{taoji@stu,ybwu@cs,xlwang@cs}.ecnu.edu.cn

{yongjiang.jy,leeo.wangt,z.huang,f.huang}@alibaba-inc.com

Abstract

Transition systems usually contain various dy-
namic structures (e.g., stacks, buffers). An
ideal transition-based model should encode
these structures completely and efficiently.
Previous works relying on templates or neu-
ral network structures either only encode par-
tial structure information or suffer from com-
putation efficiency. In this paper, we propose
a novel attention-based encoder unifying rep-
resentation of all structures in a transition sys-
tem. Specifically, we separate two views of
items on structures, namely structure-invariant
view and structure-dependent view. With the
help of parallel-friendly attention network, we
are able to encoding transition states withO(1)
additional complexity (with respect to basic
feature extractors). Experiments on the PTB
and UD show that our proposed method signif-
icantly improves the test speed and achieves
the best transition-based model, and is compa-
rable to state-of-the-art methods. 1

1 Introduction

Transition systems have been successfully applied
in many fields of NLP, especially parsing (depen-
dency parsing (Nivre, 2008), constituent parsing
(Watanabe and Sumita, 2015), and semantic pars-
ing (Yin and Neubig, 2018)). Basically, a transition
system takes a series of actions which attach or de-
tach some items (e.g., sentence words, intermediate
outputs) to or from some structures (e.g., stacks,
buffers, partial trees). Given a set of action series, a
classifier is trained to predict the next action given
a current configuration of structures in the transi-
tion system. The performances of the final system
strongly depend on how well the classifier encodes
those transition system configurations.

Ideally, a good configuration encoder should en-
code transition system structures completely and

∗This work was conducted when Tao Ji was interning at
Alibaba DAMO Academy.

1https://github.com/AntNLP/trans-dep-parser.

update

configuration

stack buffer action

input

output
subtree

s-invariant s-dependent action

classifier

action

Figure 1: An overview of our transition-based parser.

efficiently. However, challenges appear when we
try to have the cake and eat it. For example, tradi-
tional template-based methods (Chen and Manning,
2014) are fast, but only encode partial informa-
tion of structures (e.g., few top items on stacks
and buffers). Structure-based networks (e.g., Stack-
RNN (Dyer et al., 2015)) rely on carefully designed
network architecture to get a full encoding of struc-
tures (actually, they still miss some off-structure
information, see our discussions in Section 4.2), but
they are usually slow (e.g., not easy to batch). Fur-
thermore, different structures have different ways
of update (stacks are first-in-last-serve, buffers are
first-in-first-serve), it also takes efforts to design
different encoders and ways of fusing those en-
coders.

In this work, we aim to provide a unified encoder
for different transition system structures. Instead of
inspecting different structures individually, to unify
the encoding, we turn to inspect items in each struc-
ture, which are ultimate targets for any structure
encoder. One key observation is that every item has
two-views, namely structure-invariant view which
is unchanged when the item is placed on different
structures, and structure-dependent view which re-
flects which part of which structure the item stands.
For example, when a word w (item) is on the buffer
(structure), its structure-invariant view could con-
tain its lexical form and part-of-speech tag, while
its structure-dependent view indicates that w is
now sitting on the buffer and its distance to the
buffer head is p. When w is detached from buffer
and attached to the stack, its structure-dependent
view will switch to “sitting on the stack” while its
structure-invariant view stay unchanged. A unified

https://github.com/AntNLP/trans-dep-parser

4122

structure encoder thus suffices to uniformly encode
both views.

For the structure-invariant view, we share them
among different structures, thus it is automatically
unified. For the structure-dependent view, we pro-
pose a simple yet powerful encoder. It assigns each
structure a set of indicating vectors (structure indi-
cators), each indicator specifies certain part of that
structure. For example, we use indicators (vectors)
to expressing “on top of the stack”, “the second
position of the buffer”, and “index of head words
in partial trees”. To encode an item, we only need
to concatenate its structure-invariant encoding and
corresponding indicators according to its position
in that structure.

Regarding completeness and efficiency, we find
that with structure indicators, it is relatively easy to
encode a structure completely: one only needs to
decompose the structure into identifiable subparts.
In fact, we can use them to track some parts of
structures which are not revealed in previous work
(e.g., words have been popped out from stacks). It
runs in the same manner as templated-based mod-
els, thus the decoding efficiency is guaranteed. We
also note that using structure indicator is different
from existing ways to include structure informa-
tion into neural network models (Shaw et al., 2018;
Wang et al., 2019; Shiv and Quirk, 2019): it en-
codes dynamical structures (changing with transi-
tion system running) rather than static structures
(e.g., fixed parse trees).

We can easily implement the unified structure en-
coding with existing multi-head attention networks
(MHA, (Vaswani et al., 2017)). It is also easy to
fuse encodings of different structures with multi-
layer MHA. We conduct experiments on the En-
glish Penn Treebank 3.0 and Universal Dependen-
cies v2.2, show that the unified structure encoder is
able to help us achieving state-of-the-art transition-
based parser (even competitive to the best graph-
based parser), while retaining a fast training and
testing speed.

2 Transition Systems

We briefly review transition-based dependency
parsing. Given a sentence x = root0, w1, · · · , wn
(root0 is a synthetic word) and a relation set R, we
denote a dependency tree for x to be {(i, j, r)},
where (i, j, r) represents a dependency relation
r ∈ R between wi (head) and wj (dependent).

A transition system is a sound quadruple S =

root0 He1 has2 good3 control4

root

amod

dobj

nsubj

t a Configuration

([], [1, . . . , 4, 0], ∅)
1 sh ([1], [2, 3, 4, 0],)
2 la ([], [2, 3, 4, 0], ∪(2, 1, nsubj))
3 sh ([2], [3, 4, 0],)
4 sh ([2, 3], [4, 0],)
5 la ([2,], [4, 0], ∪(4, 3, amod))
6 sh ([2, 4], [0],)
7 ra ([2,], [0], ∪(2, 4, dobj))
8 la ([], [0], ∪(0, 2, root))

Figure 2: A running example of the Arc-hybrid
transition-based parsing. The above gold tree is con-
structed after performing 8 correct actions. We will use
the grey row as an example for the structural indicator.

(C,A, cx,Ct), where C is the set of configurations.
A is the set of actions, cx is an initialization func-
tion mapping x to a unique initial configuration,
and Ct ⊆ C is a set of terminal configurations.
Given a configuration c ∈ C, a transition-based
parser aims to predict a correct action a ∈ A
and move to a new configuration. We specifi-
cally describe the arc-hybrid system (Kuhlmann
et al., 2011). In this system, each configuration
c = (σ|i, j|β,T) aggregates information from
three structures, namely a stack (σ, where σ|i de-
notes the stack top is wi), a buffer (β, where j|β
denotes the buffer front is wj) and a partial tree
(T). The actions of arc-hybrid are formalized as (a
running example is shown in Figure 2):

(σ, i|β, T) ` (σ|i, β, T) (sh)
(σ|i, j|β, T) ` (σ, j|β, T ∪ (j, i, r)) (lar)
(σ|i|j, β, T) ` (σ|i, β, T ∪ (i, j, r)) (rar)

There are three actions, sh moves the front item
of the buffer (wi) to the top item of the stack. lar
removes the top item the stack wi, attaches it as a
dependent to wj with label r, and adds a left-arc
(j, i, r) to the partial tree. rar removes the top of
the stack wj attaches it as a dependent to wi with
label r, and adds a right-arc (i, j, r) to the partial
tree. We note that all actions are actually attaching
or detaching item to or from structures, where an
item could be a word (in stack and buffer) or an
edge (in the partial tree).

Note that besides structures in the configurations,
we can also incorporate other structures to help
learning action predictors. For example, we can
consider the history action list which contain all

4123

previous actions in a sequential manner. In this
case, an item in this action list is an action label.

3 Two Views of an Item

We can see that, while its “content” remains the
same, an item may appear in different structures
in a transition system’s configurations. To uni-
formly encode an item (and thus structures con-
taining them), we can decouple the encoding of
contents and structures, then combine them in a
unified way. This simple method also suggests us
to design unified structure encoders which make
the whole transition system model concise and effi-
cient.

The structure-invariant view typically captures
the lexical (shallow) form of an item. For exam-
ple, in the arc-hybrid system, items in stacks and
buffers have words as their structure-invariant view,
items in action list have actions as their structure-
invariant view. This view is shared when the item
moving from one structure to another, and we only
need to encode it once (e.g., no matter the stack
or the buffer a word appears, its structure-invariant
representation is identical). We describe how to
encode this view in Section 4.3.

The more interesting problem is how to charac-
terize the structure-dependent view. We would like
to have a unified strategy to represent those struc-
tures. Our major tool is structure indicators, which
are basically a set of vectors bounded to each struc-
ture. Taking the stack for example. We use vectors
to indicate “the top of stack” (we name the vector
with “1σ”), “the second to the stack top” (naming
with “2σ”). Vector “0σ” indicates the parts haven’t
been in the stack. Different with previous work, we
could also represent “the previous stack top which
has been popped” (a vector naming by “−1σ”), and
“the previous previous stack top” (a vector naming
by “−2σ”). That is, for different parts of the struc-
ture, we employ vectors to indicate them.

Similarly, for the buffer we have another set
of structure indicators {1β,−1β, 2β,−2β · · · },
where a positive number indicates the position in
the buffer, a negative number indicates the time
step passed since the item has been removed from
the buffer. For the partial tree with dependency re-
lation, we decompose it into two structures, the tree
arc (Tarc) and the dependency relation (Trel). A set
of Tarc indicators {0Tarc , 1Tarc ,−1Tarc · · · } indi-
cates the position from item to its head word. A set
of Trel indicators {0Trel , 1Trel , 2Trel , · · · , |R|Trel}

root0 He1 has2 good3 control4
σ 0 −1 2 1 0

β 2 −4 −2 −1 1

Tarc 0 1 0 0 0

Trel 0 1 0 0 0

sh lansubj sh sh
α 4 3 2 1

Figure 3: An instance of structure indicators after the
4th step in Figure 2. Grey rows indicate structure-
invariant parts (σ, β,Tarc and Trel are shared), and
other rows indicate structure-dependent parts. To sim-
plify, we express the relation nsubj by vector 1Trel

.

indicates the IDs of dependency relations. Vec-
tors “0Tarc” and “0Trel” indicate that this depen-
dency edge is not in partial tree. For the action list
we have a set of structure indicators {1a, 2a, · · · }
where a vector incicates the position in the list.

In Figure 3, we show the two-views of an in-
stance from the 4th step in Figure 2. We can ob-
serve that the five different structures mentioned
above have a unified form now.

4 The Unified Structure Encoder

4.1 Encoding with USE

When a transition system is running at moment t,
the parser needs to capture as much information as
possible about the current configuration to deter-
mine which is the correct action. The key is to en-
code the configuration containing many structures
concisely and efficiently. We propose a unified
structure encoder (USE) by using multi-head self-
attention networks (Vaswani et al., 2017). Each
head extracts a feature vector of one structure (e.g.,
oσ for the stack).

A common USE function maps a query and a set
of key-value pairs to an output. The query vector q
represents the current time step and data structure.
The key-value pairs both represent two-views of
the structure. The output vector o is calculated
as a weighted sum of values, where the weight
assigned to each value is calculated by a scaled
(1√

dk
) dot-product function of the query with the

corresponding key. In practice, we pack the keys
and values into matrices K and V , then compute
the output as:

o=USE(q,K,V)=softmax

(
q ·K>√
dk

)
·V (1)

It is universal for different structures. Take the
stack σ for example, we calculate the feature vector

4124

oσ,t by assigning the qσ,t, Kσ,t, and Vσ,t:

qσ,t = WQ
σ · (mt ⊕mσ)

Kσ,t = WK
σ · (X + SKσ,t) (2)

Vσ,t = W V
σ · (X + SVσ,t).

Where mt and mσ are the marker embeddings
of time step t and data structure σ; WQ

σ , WK
σ ,

W V
σ are parameter matrices for linear transfor-

mation; X is the word embedding matrix 2. We
describe X and A in detail later. The SKσ,t and
SVσ,t are the embedding matrices of the struc-
tural indicator. Take σ in Figure 3 for exam-
ple, SKσ,t = [0σ,−1σ, 2σ, 1σ, 0σ]K and SVσ,t =

[0σ,−1σ, 2σ, 1σ, 0σ]V . Following Shaw et al.
(2018), we use this two sets of structural embed-
dings for key-value pairs and add them to X to
combine the information.

When the system comes to the next moment t+1,
we use the mt+1, SKσ,t+1 and SVσ,t+1 for an updated
configuration. For the other four structures, we
calculate their feature vectors oβ,t, oα,t, oTarc,t,
and oTrel,t by assigning the corresponding q, K,
and V , respectively 3.

4.2 Fusion of Structure Encodings
After obtaining feature vector of each structure, the
encoder incorporates all of them into configuration
representation ct. Here, we simply use a multi-
layer perceptron (MLP):

ct = MLP(oσ,t ⊕ oβ,t ⊕ oα,t ⊕ oTarc,t ⊕ oTrel,t).

Besides that, to enhance more interaction among
structures, we stack L USE layers and add the pre-
vious layer’s configuration vector c(l−1)t (1<l≤L)
when computing the query vector q(l)∗,t (∗ for any
structures).

q
(l)
∗,t = W

Q(l)
∗ ·

(
m

(l)
t ⊕m

(l)
∗ ⊕ c

(l−1)
t

)
Since c

(l−1)
t contains the complete structural infor-

mation, the lth layer’s USE module can interact
with other structures and output a more informative
representation o

(l)
∗ = USE(q(l)∗ ,K

(l)
∗ , V

(l)
∗). Then,

we obtain a high layer configuration representation
by combining these output vectors:

c
(l)
t =MLP(o(l)

σ,t ⊕ o
(l)
β,t ⊕ o

(l)
α,t ⊕ o

(l)
Tarc,t ⊕ o

(l)
Trel,t).

2Note that we use action embedding matrix A instead of
X when encoding action list α.

3Similar to Equation 2, we give the formulation for the
other data structures in Appendix B.

σ β a T GPU
in out in out

Top-k N - N - - N
σ−LSTM F - F - F -
Binary N N N N - -

USE F F F F F F

Figure 4: Structural information coverage and GPU-
friendliness of different feature extractors. F indicates
complete extraction, N indicates partial extraction,
indicates GPU parallel friendly, and indicates un-
friendly.

We set different layers with different parameters
(preliminary experiments suggest shared parame-
ter performs worse). To support deeper networks,
the residual connection and layer normalization
(Ba et al., 2016) are employed on MLP and USE
modules. Finally, we use c

(L)
t of the last layer to

classify action.
Basically, we need at least 5 attention heads to

extract full structures (each head corresponds to
one structure). Vaswani et al. (2017) noted that a
multi-head attention layer has a constant number
(O(1)) of sequentially executed operations, which
means that efficient GPU-based computing is pos-
sible. In training, the USE calculations at different
moments are independent of each other, so we can
pack them into the batch dimension to obtain an
O(1) training complexity. Hence, USE can uni-
formly extract full structure features efficiently.

Comparing to Previous Encoders We divide
previous work into three encoding methods: top-k,
stack-LSTM, and binary vector. Top-k methods
(Chen and Manning, 2014; Weiss et al., 2015) cap-
ture the conjunction of only few 1∼3 in-structure
items. It extracts only partial structural informa-
tion. Since the feature template is fixed, it is easy
to batchify. Stack-LSTM methods (Dyer et al.,
2015; Ballesteros et al., 2016) can efficiently rep-
resent all in-structure items, via the PUSH(·) and
POP(·) functions. But it loses the information of
outside parts and subtree which cannot be treated
as a stack. Besides, Che et al. (2019) point out that
its batch computation is very inefficient. Binary
Vector methods (Zhang et al., 2017) use two binary
vectors to model whether each element is in a σ or
a β. It can efficiently encode some outside parts of
stack and buffer but loss the information of inside
position.

4125

We compare existing work with our USE en-
coder in terms of the coverage of structure features
and GPU computing friendly (in Figure 4). Over-
all, USE does not lose any structural information
and more efficient than previous feature extraction
schemes.

4.3 Encoding the Structure-invariant View
Given a sentence s = ω0, . . . , ωn, we learn a lex-
ical vector xi for each word ωi, and pack them
into matrix X for Equation 1. The vector xi is
composed of three parts: the word embedding
e(ωi), the part-of-speech (POS) tag embedding
e(gi), and the character-level representation vector
CharCNN(ωi).

xi = e(ωi)⊕ e(gi)⊕ CharCNN(ωi). (3)

We simply initialize all embedding matrices in a
random way. The CharCNN(ωi) vector is obtained
by feeding ωi into a character convolutional neural
network (Zhang et al., 2015). To encode more
sentence context, e(ωi) is obtained by trainable
bidirectional long short-term memory, Transformer
encoder networks or pre-trained networks like Bert.

Given an action list α = a0, . . . , am, we learn a
structure-invariant vector ai for each action ai. Be-
cause the action space is only 2|R|+1(< 102), we
directly obtain ai = e(ai) by action embedding.

Since all decoding steps share the same structure-
invariant representations, they are just computed
only once. In the experiments, we will discuss all
mentioned encoding ways.

5 The Action Classifier

The action set A is first divided into three main
types: sh, la and ra, then divided into |R| de-
pendency labels only for la and ra actions. Thus
we perform a two-stage process with 3-class and
|R|-class classifications. It effectively reduces the
classification space compared with one-stage pro-
cess. For example, the space of a sh action is
3-class in two-stage process while 2|R|+1 class in
one-stage process.

For the action type classification, based on c
(L)
t ,

we follow Kiperwasser and Goldberg (2016) which
scores the three actions by an MLP,

Score
(
t,
[
sh
la
ra

])
= MLP

(
c
(L)
t

) [
sh
la
ra

]
. (4)

To classify the dependency label r between word i
and j, based on the lexical representations xi, xj
and c

(L)
t , we follow Dozat and Manning (2017)

which uses a biaffine score function to predict the
label’s probability,

z = x>i W1xj +
(
xi ⊕ xj ⊕ c

(L)
t

)>
W2 + b

P (r|i, j) = Softmax(z)[r]. (5)

Where W1 is a 3-dimensional parameter tensor,
W2 is a parameter matrix, and b is a parameter
vector 4. A slight difference is that we induce c

(L)
t

to model the prior probability of each label under
the current configuration.

5.1 Training Details

We have two training objectives, one is scoring the
correct action higher than the incorrect action, and
the second one is maximizing the probability of the
correct dependency label. For correct action α∗,
aiming to maximize the margin between its score
and the highest incorrect action (α̂) score, we use
the hinge loss:

Lα =
1

2n

2n∑
t=1

max
(
0, 1− Score(t, α∗)

+ max
α̂ 6=α∗

Score(t, α̂)
)
.

For correct dependency label r∗, aiming to maxi-
mize its probability, we use the cross-entropy loss:

Lr =
1

n

∑
(i,j,r∗)∈T

− logP (r∗|i, j).

The final objective is to minimize a weighted com-
bination of them: L = λ1Lα + λ2Lr.

We follow Kiperwasser and Goldberg (2016)
which use error exploration training with dynamic-
oracle and aggressive strategies. A parser that
always takes the correct action during training
will suffer from error propagation during testing.
To take wrong actions, the dynamic-oracle well-
defines the “correct” actions even if the current
configuration cannot lead to the gold tree. The ag-
gressive exploration forces taking a wrong action
with probability pagg = 0.1.

6 Interprete the Features

Since a transition system contains various struc-
tures, a natural question is which part of structures

4Note that in cases of Bert representation, we reduce the
dimension of xi and xj by linear transformation before com-
puting Equation 5.

4126

are important for the parser? To show the impor-
tance of a variable, one standard approach is us-
ing partial derivatives multiplied by the variable’s
value (Denil et al., 2015). Hence, the importance
score (4) of a structural indicator is a dot product
between objective function gradient and indicator
embedding:

4(σ, i) =
(
∇sKσ,i

L
)>
·sKσ,i +

(
∇sVσ,i

L
)>
· sVσ,i

Concretely,4(σ, i) shows the relevance between
the stack indicator i and the decision of our parser.
The importance at indicator i of any structure can
be derived similarly. We can further accumulate
multiple items’ relevance. For example, stack in-
side relevance4in(σ) =

∑
i>04(σ, i), stack out-

side relevance 4out(σ) =
∑

i≤04(σ, i), etc. In
the experiments, we explain the importance of each
structure part by4 score.

7 Experiments

Data We conduct experiments and analysis on
two main datasets including 12 languages: the En-
glish Penn Treebank (PTB 3.0) with Stanford de-
pendencies, and the Universal Dependencies (UD
2.2) (Nivre et al., 2018) treebanks used in CoNLL
2018 shared task (Zeman et al., 2018). The statis-
tics of datasets are in Appendix C. For PTB, we use
the standard train/dev/test splits and the external
POS tags obtained by the Stanford tagger (accuracy
≈ 97.3%). Following Ji et al. (2019), we select 12
languages from UD, and use CoNLL shared task’s
official train/dev/test splits, where the POS tags
were assigned by the UDPipe (Straka et al., 2016).

Evaluation We mainly report unlabeled (UAS)
and labeled attachment scores (LAS). For evalu-
ations on PTB, five punctuation symbols (“ ” : ,
.) are excluded, while on UD, we use the official
evaluation script.

Hyper-parameters For structure-invariant part,
we directly adopt most parameter settings of Ji
et al. (2019) and Zhang et al. (2020), including
pretrained embeddings, BiLSTM, and CharCNN.
For structure-dependent part, we use a total of 8
structural heads, allocating two each for the stack,
buffer and action list, one for the subtree’s edges
and one for the edges’ labels. Our pre-experiments
show that stacking 6 layers of USE yields the best
results. The weight λ of the objective function is
assigned to 0.5. We trained our parser for up to 1k

Type
Test

Parser UAS LAS

Chen and Manning (2014)

T

91.8 89.6
Weiss et al. (2015) 94.26 91.42
Andor et al. (2016) 94.61 92.79
Dyer et al. (2015) 93.1 90.9
Ballesteros et al. (2016) 93.56 92.41
Kiperwasser and Goldberg (2016) 93.1 91.0
Zhang et al. (2017) 93.71 91.60
Mohammadshahi and Henderson (2020) 93.07 91.08
Ma et al. (2018) 95.87 94.19
Yuan et al. (2019) 94.60 94.02

Dozat and Manning (2017) 95.74 94.08
Li et al. (2019) G 95.93 94.19
Ji et al. (2019) 95.97 94.31
Zhang et al. (2020) 96.14 94.49

Our USE Parser

T
arc-hybrid 95.99 94.28
arc-standard 95.95 94.26
arc-eager 95.93 94.23

Table 1: Results on the English PTB dataset. “T”
represents transition-based parsers, and “G” represents
graph-based parsers. We report the average over 5 runs.

iterations, stopping early if peak performance on
dev did not increase over 100 epochs. The details
of the chosen hyper-parameters in default settings
are summarized in Appendix D.

7.1 Main Results

Firstly, we compare our method with previous work
(Table 1). The first part contains transition-based
models. We particularly compare with the two
strong baselines in the blue cell, where Ma et al.
(2018) decode parse trees in a depth-first manner
with a stack-pointer network, and Yuan et al. (2019)
decode transition sequences in both the forward
and backward directions by multi-task learning.
In a fair comparison, our three unified structure
encoding (USE) parsers all achieve significant im-
provements on PTB. This demonstrates the benefit
of complete structural information by our unified
encoding.

Secondly, we compare with strong graph-based
parsers. The second part of Table 1 contains two
first-order parsers and two high-order parsers (in
the red cell). Our USE parsers beat the first-order
methods, but underperform the high-order meth-
ods which capture high-order features by graph
neural networks and TreeCRF. However, speed ex-
periments show that USE is about 2 times faster
than them, It’s our future work to bridge the per-
formance gap by using the bi-directional transition
system (Yuan et al., 2019) and stronger decoding

4127

90

91

92

93

94

95
T

es
t L

A
S

Head

94.0

94.1

94.2

94.3

94.4

T
es

t L
A

S

+Head

stack
buffer
action
subtree_arc
subtree_rel

Figure 5: Analysis of the allocation of structural heads.
The red line is the performance of basic setup.

methods (Andor et al., 2016).
Thirdly, we compare the results of three USE

parsers with different transition systems (third part
of Table 1). We can see that the arc-hybrid system
is more expressive than the arc-eager and the arc-
standard. Shi et al. (2017) demonstrate that the arc-
eager is more expressive on a minimal feature set,
but our results do not support them on a full feature
set. The reason may be that, when the feature
set is full, arc-eager system has one more action
(REDUCE) than arc-standard in the first stage of
classification.

Head Allocation Here we discuss the allocation
of structural heads. Our basic idea is assigning one
head to one structure, which means five heads in to-
tal. We performe two sets of ablation experiments
based on the basic setup: decreasing or increasing
one head for each structure respectively (Figure 5).
Decreasing one head means that the corresponding
structure is not visible to the parser. Losing the
information of stack or buffer severely hurts the
performance. Comparatively, losing the informa-
tion of action list or subtree slightly hurts the per-
formance. This suggests that the stack and buffer
are more important in arc-hybrid transition system,
and we should pay more attention to them. Increas-
ing one head shows the improved performance of
giving the corresponding structure double atten-
tion. We observe obvious performance gains on
the stack, buffer, and action list, which means that
augmenting their information is helpful. Consider-
ing the performance gain and computational cost of
adding heads, we finally use a total of 8 structural
heads. The parser double attent to the stack, buffer
and action list.

Lexical Representation We analyze different
lexical word representation from Section 4.3 (Ta-
ble 2). The first part reports the use of context-

Lexical Dev Test
Encoder UAS LAS UAS LAS

Glove 95.72 93.79 95.71 94.05
+ BiLSTM 95.81 93.87 95.93 94.21
+ Xformer 95.84 93.93 95.99 94.28

Bert 95.90 93.97 96.21 94.56
+ finetune 95.97 94.02 96.28 94.60

M&H20 95.78 93.74 96.11 94.33

Table 2: Lexical encoder comparison on PTB. M&H20:
Mohammadshahi and Henderson (2020).

Parser Type Speed

Ma et al. (2018) T 183
Dozat and Manning (2017) G 496
Ji et al. (2019) G‡ 403
Zhang et al. (2020) G‡ 466

Our arc-hybrid parser T 918

Table 3: Parsing speed comparison on PTB test set.
The ‡ indicates high-order graph-based parsers.

independent Glove embeddings (Pennington et al.,
2014) in the arc-hybrid system. We learn the con-
text via BiLSTM or Transformer encoder. The
results show that encoding context can further im-
prove performance and the Transformer encoder
is better than BiLSTM. The second part reports
the use of contextual Bert networks (Devlin et al.,
2019). The introduction of Bert networks and in
particular fine-tuning usage can significantly in-
crease the performance. Compared with Moham-
madshahi and Henderson (2020), our parser per-
forms better because it encodes the full structure
rather than only top-k in-structure items.

Parsing Speed Table 3 compares the parsing
speed of different parsers on PTB test set. For a
fair comparison, we run all parsers with python im-
plementation on the same machine with Intel Xeon
E5-2650v4 CPU and GeForce GTX1080Ti GPU.
The USE parser can parse about 918 sentences
per second, over 5 times faster than the strongest
transition-based parser (Ma et al., 2018). This re-
sult shows the efficiency of the attention mecha-
nism. Compared to three graph-based parsers, our
parser is nearly 2 times faster than theirs. It’s be-
cause the transition-based parser decodes linearly
and does not require complex decoding algorithms
like minimum spanning tree or TreeCRF. Consider-
ing the parsing performance and speed together, our
proposed parser is able to meet the requirements of
a real-time system.

4128

bg ca cs de en es fr it nl no ro ru Avg.

Ma18 89.31 90.55 89.62 77.75 82.32 90.28 85.83 90.75 87.57 89.82 85.34 92.06 87.60
Zhang20 89.72 91.27 90.94 78.26 82.88 90.79 86.33 91.02 87.92 90.17 85.71 92.49 88.13

arc-hybrid 89.81 90.91 90.68 78.48 82.52 90.27 85.98 90.83 87.96 89.91 85.88 92.36 87.97

Table 4: LAS on UD2.2 test datasets. Ma18: Ma et al. (2018); Zhang20: Zhang et al. (2020). We report the
average over 3 runs.

in() out() in() out() () (arc) (rel)
0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

Figure 6: Analysis of the importance score (4) for dif-
ferent structure part.

Interpretability Figure 6 visualizes the impor-
tance score (4) of each structure part in arc-hybrid
transition system. Consistent with the findings in
Figure 5, the stack and buffer achieve higher im-
portance scores. However, in reaching the same
conclusion, the interpretable method does not re-
quire retraining of the parser. Furthermore, we
observe that the outside information of the stack
and buffer is more important than the subtree struc-
ture. It suggests that the transition parser should
encode them.

UD Treebanks Table 4 compares our USE
parser with two baselines on UD datasets. We
adopt the non-projective arc-hybrid system for
handling the ubiquitous non-projective trees
(de Lhoneux et al., 2017). As the transition-based
baseline, the parser proposed by Ma et al. (2018)
was re-runned under the same hyper-parameter set-
tings as ours. Our USE parser outperforms the
baseline on all of the 12 languages, the averaged im-
provement is 0.37 LAS, again showing the power of
the complete transition system encoder. Compared
with the strongest graph-based baseline (Zhang20),
our parser performs better on 4 treebanks, includ-
ing bg, de, nl, and ro. These four treebanks are
relatively smaller than other treebanks, probably
indicating that our parser is more suitable for low
resource languages. Overall, there is still a 0.15
averaged LAS gap with the graph-based baseline,
and it is our future work to further improve the
USE transition-based parser.

8 Related Work

We have already surveyed related transition system
encoder in Section 4.2. Here we present several
powerful transition-based parsers. Ma et al. (2018)
decode a parse tree step-by-step based on a depth-
first traversal order. A stack is usually used to main-
tain the depth-first search. Thus they use a stack-
pointer network for decoding. Note that their work
is not based on any transition systems. Yuan et al.
(2019) propose a bidirectional decoding method for
a stack-LSTMs transition-based parser. They per-
form joint decoding with a left-to-right parser and
a right-to-left parser. Mohammadshahi and Hen-
derson (2020) propose a Graph2Graph framework
for enhancing expression by treating multiple struc-
tures as multiple sentences and using a Transformer
encoder (Bert) to encode top-k words. These works
focus on improving the decoding approach or rep-
resentation learning of structure-invariant parts, but
still follow the traditional encoders. Our work fo-
cuses on proposing a new encoder with both infor-
mation completeness and computational effective-
ness.

There have been several attempts to combine at-
tention networks with structures: to represent the
sequential structure better, Shaw et al. (2018) intro-
duce relative position between words in attention
networks instead of concatenating absolute posi-
tion in input. Wang et al. (2019) define the relative
positions on parse trees to encode each word pair’s
tree distance. They feed these positional embed-
dings to attention networks too. These two works
encode a static structure, while we encode a dy-
namically changing transition system. Shiv and
Quirk (2019) extend the Transformer’s sinusoidal
position function to the tree structure. Similar to
us, their decoder dynamically computes the new
position encoding when generating a tree structure.
But their structural embeddings are computed by
fixed sinusoidal function, while ours are learnable.
These works encode only one structure, while we
encode multiple structures from a transition sys-

4129

tem.

9 Conclusion

We presented a comprehensive and efficient en-
coder for transition system. We separate each struc-
ture to the structure-invariant part and structure-
dependent part. It allows us to dynamically en-
code the complete structure and also retains the ef-
ficiency of training and testing. Experiments show
that the proposed parser achieves new state-of-the-
art transition-based results.

Acknowledgments

The authors wish to thank the reviewers for their
helpful comments and suggestions, thank Peng Li
and Zhengyi Lei for their comments on writing.
This research is funded by the NSFC (62076097)
and the 2020 East China Normal University Fu-
ture Scientists and Outstanding Scholars Incuba-
tion Programme (WLKXJ2020). The correspond-
ing authors are Tao Ji, Yuanbin Wu and Xiaoling
Wang.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-
12, 2016, Berlin, Germany, Volume 1: Long Papers.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack LSTM parser. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2005–2010.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
CoNLL 2019, Hong Kong, Novemer 3, 2019, pages
76–85. Association for Computational Linguistics.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,

EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the
ACL, pages 740–750.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017. Arc-hybrid non-projective dependency pars-
ing with a static-dynamic oracle. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 99–104, Pisa, Italy. Association for
Computational Linguistics.

Misha Denil, Alban Demiraj, and Nando de Freitas.
2015. Extraction of salient sentences from labelled
documents. CoRR, abs/1412.6815v2.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Fed-
eration of Natural Language Processing, ACL 2015,
July 26-31, 2015, Beijing, China, Volume 1: Long
Papers, pages 334–343.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2475–2485, Florence, Italy. Association
for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. TACL, 4:313–
327.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 673–682, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

http://aclweb.org/anthology/P/P16/P16-1231.pdf
http://aclweb.org/anthology/P/P16/P16-1231.pdf
http://arxiv.org/abs/1607.06450
http://aclweb.org/anthology/D/D16/D16-1211.pdf
http://aclweb.org/anthology/D/D16/D16-1211.pdf
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
http://aclweb.org/anthology/D/D14/D14-1082.pdf
http://aclweb.org/anthology/D/D14/D14-1082.pdf
http://aclweb.org/anthology/D/D14/D14-1082.pdf
https://www.aclweb.org/anthology/W17-6314
https://www.aclweb.org/anthology/W17-6314
http://arxiv.org/abs/1412.6815v2
http://arxiv.org/abs/1412.6815v2
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/P11-1068

4130

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng
Li, and Luo Si. 2019. Self-attentive biaffine depen-
dency parsing. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 5067–5073. ijcai.org.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Alireza Mohammadshahi and James Henderson. 2020.
Graph-to-graph transformer for transition-based de-
pendency parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: Findings, EMNLP 2020, Online Event,
16-20 November 2020, pages 3278–3289. Associa-
tion for Computational Linguistics.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149–160, Nancy, France.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop
on Incremental Parsing: Bringing Engineering and
Cognition Together, pages 50–57, Barcelona, Spain.
Association for Computational Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Comput. Linguistics,
34(4):513–553.

Joakim Nivre et al. 2018. Universal Dependencies 2.2.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles Univer-
sity, Prague, http://hdl.handle.net/11234/
1-1983xxx.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tianze Shi, Liang Huang, and Lillian Lee. 2017.
Fast(er) exact decoding and global training for
transition-based dependency parsing via a minimal
feature set. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12–23, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Vighnesh Leonardo Shiv and Chris Quirk. 2019. Novel
positional encodings to enable tree-based transform-
ers. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
12058–12068.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
Slovenia. European Language Resources Associa-
tion.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019. Self-attention with structural position
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7,
2019, pages 1403–1409. Association for Computa-
tional Linguistics.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1169–1179, Beijing,
China. Association for Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
1: Long Papers, pages 323–333.

Pengcheng Yin and Graham Neubig. 2018. TRANX: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2018: Sys-
tem Demonstrations, Brussels, Belgium, October 31
- November 4, 2018, pages 7–12. Association for
Computational Linguistics.

Yunzhe Yuan, Yong Jiang, and Kewei Tu. 2019. Bidi-
rectional transition-based dependency parsing. In

https://doi.org/10.24963/ijcai.2019/704
https://doi.org/10.24963/ijcai.2019/704
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/2020.findings-emnlp.294
https://doi.org/10.18653/v1/2020.findings-emnlp.294
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W04-0308
https://www.aclweb.org/anthology/W04-0308
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
http://papers.nips.cc/paper/9376-novel-positional-encodings-to-enable-tree-based-transformers
http://papers.nips.cc/paper/9376-novel-positional-encodings-to-enable-tree-based-transformers
http://papers.nips.cc/paper/9376-novel-positional-encodings-to-enable-tree-based-transformers
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.18653/v1/D19-1145
https://doi.org/10.18653/v1/D19-1145
https://doi.org/10.3115/v1/P15-1113
https://doi.org/10.3115/v1/P15-1113
http://aclweb.org/anthology/P/P15/P15-1032.pdf
http://aclweb.org/anthology/P/P15/P15-1032.pdf
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.1609/aaai.v33i01.33017434
https://doi.org/10.1609/aaai.v33i01.33017434

4131

The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pages 7434–7441. AAAI Press.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–20, Brussels, Belgium.
Association for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and
Enhong Chen. 2017. Stack-based multi-layer at-
tention for transition-based dependency parsing.
In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9-
11, 2017, pages 1677–1682. Association for Compu-
tational Linguistics.

https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/d17-1175
https://doi.org/10.18653/v1/d17-1175

4132

Supplementary Material for
A Unified Encoding of Structures in Transition Systems

A Other Transition Systems

Similar to Section 2, the arc-standard system from
Nivre (2004) is formally defined as:

([root0], [1, . . . , n], ∅) (cx)

([root0], [], Tt) (Ct)
(σ, i|β, T) ` (σ|i, β, T) (sh)

(σ|i|j, β, T) ` (σ|j, β, T ∪ (j, i, r)) (lar)
(σ|i|j, β, T) ` (σ|i, β, T ∪ (i, j, r)) (rar)

The arc-eager system from Nivre (2003) is for-
mally defined as:

([], [1, . . . , n], ∅) (cx)

(σ, [], Tt) (Ct)
(σ, i|β, T) ` (σ|i, β, T) (sh)
(σ|i, β, T) ` (σ, β, T) (rd)

(σ|i, j|β, T) ` (σ, j|β, T ∪ (j, i, r)) (lar)
(σ|i, j|β, T) ` (σ|i|j, β, T ∪ (i, j, r)) (rar)

The non-projective arc-hybrid from de Lhoneux
et al. (2017) for UD treebanks is formally defined
as:

([], [1, . . . , n, root0], ∅) (cx)

([], [root0], Tt) (Ct)
(σ, i|β, T) ` (σ|i, β, T) (sh)

(σ|i, j|β, T) ` (σ, j|i|β, T) (swap)
(σ|i, j|β, T) ` (σ, j|β, T ∪ (j, i, r)) (lar)
(σ|i|j, β, T) ` (σ|i, β, T ∪ (i, j, r)) (rar)

B USE for Other Structures

Here we give the formal definitions (q∗,t, K∗,t, V∗,t
in Equation 1) of buffer β, action list α, subtree’s
arcs T(arc), and subtree’s relations T(rel), which
are omitted in the main text.

qβ,t = WQ
β · (mt ⊕mβ)

Kβ,t = WK
β · (X + SKβ,t) (6)

Vβ,t = W V
β · (X + SVβ,t).

qα,t = WQ
α · (mt ⊕mα)

Kα,t = WK
α · (A+ SKα,t) (7)

Vα,t = W V
α · (A+ SVα,t).

qT(arc),t = WQ
T(arc)

· (mt ⊕mT(arc)
)

KT(arc),t = WK
T(arc)

· (X + SKT(arc),t
) (8)

VT(arc),t = W V
T(arc)

· (X + SVT(arc),t
).

qT(rel),t = WQ
T(rel)

· (mt ⊕mT(rel)
)

KT(rel),t = WK
T(rel)

· (X + SKT(rel),t
) (9)

VT(rel),t = W V
T(rel)

· (X + SVT(rel),t
).

C Details of Datasets

The statistics (number of sentences) of the English
Penn Treebank (PTB) and Universal Dependency
(UD) treebanks are summarized in Table 5 and
Table 6 respectively.

#train #dev #test

PTB 39832 1700 2416

Table 5: Statistics of the PTB dataset we used.

Treebanks #train #dev #test

Bulgarian 8907 1115 1116
Catalan 13123 1709 1846
Czech 102993 11311 12203
Dutch 18310 1518 1396
English 12543 2002 2077
French 14554 1478 416
German 13841 799 977
Italian 12838 564 482
Norwegian 29870 4300 3450
Romanian 8043 752 729
Russian 48814 6584 6491
Spanish 28492 4300 2174

Table 6: Statistics of the UD dataset we used.

D Hyper-parameters

The hyper-parameters we used in default settings
(Table 7).

4133

Stack Buffer Subtree [arc] Subtree [rel] Action

t root He has good con
trol root He has good con

trol root He has good con
trol root He has good con

trol <s> sh la_n
subj sh sh la_a

mod sh ra_d
boj

la_r
oot

0 0 0 0 0 0 5 1 2 3 4 0 0 0 0 0 0 0 0 0 0 1

1 0 1 0 0 0 4 -1 1 2 3 0 0 0 0 0 0 0 0 0 0 2 1

2 0 -1 0 0 0 4 -2 1 2 3 0 1 0 0 0 0 1 0 0 0 3 2 1

3 0 -2 1 0 0 3 -3 -1 1 2 0 1 0 0 0 0 1 0 0 0 4 3 2 1

4 0 -3 2 1 0 2 -4 -2 -1 1 0 0 0 0 0 0 1 0 0 0 5 4 3 2 1

5 0 -4 1 -1 0 2 -5 -3 -2 1 0 1 0 1 0 0 1 0 2 0 6 5 4 3 2 1

6 0 -5 2 -2 1 1 -6 -4 -3 -1 0 1 0 1 0 0 1 0 2 0 7 6 5 4 3 2 1

7 0 -6 1 -3 -1 1 -7 -5 -4 -2 0 1 0 1 -2 0 1 0 2 3 8 7 6 5 4 3 2 1

Figure 7: The structured-dependent information for all steps on the example. For simplicity, we use the number
0,1,2,3 to denote the none,nsubj,amod,dobj relations in the “subtree[rel]”, respectively.

Layer Hyper-parameter Value

Input
word, POS tag, Glove 100

BERT 768
dropout 0.33

CharCNN
kernel [1,2,3,5]

hidden size 25
dropout 0.33

BiLSTM
#layer 6

hidden size 400
dropout 0.33

Xformer
#layer 6

model size 200
#head 8

FeedForward size 800
dropout 0.2

USE
#layer 6

output size 256
#head 8

MLP size 800
dropout 0.2

Trainer
optimizer Adam

learning rate 0.002
(β1, β2) (0.9, 0.9)

Table 7: Hyper-parameters for experiments.

E Structured-Dependent for All Steps

In Figure 7, we list the structured-dependent infor-
mation for all steps on the example.

