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Abstract

Most of existing extractive multi-document
summarization (MDS) methods score each
sentence individually and extract salient sen-
tences one by one to compose a summary,
which have two main drawbacks: (1) neglect-
ing both the intra and cross-document relations
between sentences; (2) neglecting the coher-
ence and conciseness of the whole summary.
In this paper, we propose a novel MDS frame-
work (SgSum) to formulate the MDS task as a
sub-graph selection problem, in which source
documents are regarded as a relation graph of
sentences (e.g., similarity graph or discourse
graph) and the candidate summaries are its sub-
graphs. Instead of selecting salient sentences,
SgSum selects a salient sub-graph from the
relation graph as the summary. Comparing
with traditional methods, our method has two
main advantages: (1) the relations between
sentences are captured by modeling both the
graph structure of the whole document set
and the candidate sub-graphs; (2) directly out-
puts an integrate summary in the form of sub-
graph which is more informative and coher-
ent. Extensive experiments on MultiNews and
DUC datasets show that our proposed method
brings substantial improvements over several
strong baselines. Human evaluation results
also demonstrate that our model can produce
significantly more coherent and informative
summaries compared with traditional MDS
methods. Moreover, the proposed architec-
ture has strong transfer ability from single to
multi-document input, which can reduce the
resource bottleneck in MDS tasks.1

1 Introduction

Currently, most extractive models treat summariza-
tion as a sequence labeling task. They score and
select sentences one by one (Zhong et al., 2020).

∗Equal contribution.
1Our code and results are available at: https:

//github.com/PaddlePaddle/Research/tree/
master/NLP/EMNLP2021-SgSum

These models (called sentence-level extractors) do
not consider summary as a whole but a combina-
tion of independent sentences. This may cause
incoherent and redundant problem, and result in
a poor summary even if the summary consists of
high score sentences. Some works (Wan et al.,
2015; Zhong et al., 2020) treat summary as a whole
unit and try to solve the weakness of sentence-
level extractors by using a summary-level extrac-
tor. However, these models neglect the intra and
cross-document relations between sentences which
also have benefits for extracting salient sentences,
detecting redundancy and generating overall coher-
ent summaries. Relations become more necessary
when input source documents are much longer and
more complex such as multi-document input.

In this paper, we propose a novel MDS frame-
work called SgSum which formulates the MDS task
as a sub-graph selection problem. In our frame-
work, source documents are regarded as a relation
graph of sentences (e.g., similarity graph or dis-
course graph) and the candidate summaries are
its sub-graphs. In this view, how to generate a
good summary becomes how to select a proper sub-
graph. In our framework, the whole graph structure
is modeled to help extract salient information from
source documents and the sub-graph structures are
also modeled to help reflect the quality of candidate
summaries. Moreover, the summary is considered
as a whole unit, so SgSum directly outputs the final
summary in the form of sub-graph. By capturing
relations between sentences and evaluating sum-
mary as a sub-graph, our framework can generate
more informative and coherent summaries com-
pared with traditional extractive MDS methods.

We evaluate SgSum on two MDS datasets with
several types of graphs which all significantly im-
prove the MDS performance. Besides, the hu-
man evaluation results demonstrate that SgSum can
obtain more coherent and informative summaries
compared with traditional MDS methods. More-

https://github.com/PaddlePaddle/Research/tree/master/NLP/EMNLP2021-SgSum
https://github.com/PaddlePaddle/Research/tree/master/NLP/EMNLP2021-SgSum
https://github.com/PaddlePaddle/Research/tree/master/NLP/EMNLP2021-SgSum
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Manchester City and Gareth Bale are the 
latest voices to oppose a biennial World Cup 
amid widespread anger at Fifa’s lack of 
consultation over plans to radically alter the 
football calendar.

The proposals – which have been developed 
by Arsène Wenger, Fifa’s chief of global 
football development – would lead to a 
World Cup or European Championship every 
summer, as well as potentially no club 
football in October while international 
qualifiers are played instead.
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Figure 1: Overview of our sub-graph selection framework. Firstly, well-established graph construction methods are used to
transform input documents into a graph where sentences are nodes and semantic links between sentences are edges. Then its
sub-graphs can be treated as candidate summaries. Finally, we select the best sub-graph as the final summary.

over, the experimental results also indicate that Sg-
Sum has strong power on transfer ability when only
trained on single-document data. It performs much
better than several strong MDS baselines including
supervised and unsupervised models.

The contributions of our work are as follows:

• We propose a novel framework called SgSum
which transforms MDS task into the problem
of sub-graph selection. The framework lever-
ages graph to capture relations between sen-
tences, and generates more informative and
coherent summaries by modeling sub-graph
structures.

• Due to the graph-based multi-document en-
coder, our framework unifies single and multi-
document summarization and has strong trans-
fer ability from SDS to MDS task without any
parallel MDS training data. Thus, it can re-
duce the resource bottleneck in MDS tasks.

• Our model is general to several well-known
graph representations. We experiment with
similarity graph, topic graph and discourse
graph on two benchmark MDS datasets. Re-
sults show that SgSum has achieved superior
performance compared with strong baselines.

2 Summarization as Sub-graph Selection

The graph structure is effective to model relations
between sentences which is an essential point to
select interrelated summary-worthy sentences in
extractive summarization. Erkan and Radev (2004)
utilize a similarity graph to construct an unsuper-
vised summarization methods called LexRank. G-
Flow (Christensen et al., 2013) and DISCOBERT
(Xu et al., 2020) both use discourse graphs to gen-
erate concise and informative summaries. Li et al.

(2016) and Li and Zhuge (2019) propose to uti-
lize event relation graph to represent documents for
MDS. However, most existing graph-based summa-
rization methods only consider the graph structure
of source document. They neglect that summary is
also a graph and its graph structure can reflect the
quality of a summary. For example, in a similarity
graph, if selected sentences are lexical similar, the
summary is probably redundant. And in a discourse
graph, if selected sentences have strong discourse
connections, the summary tend to be coherent.

We argue that the graph structure of summary is
equally important as the source document. Docu-
ment graph helps to extract salient sentences, while
summary graph helps to evluate the quality of sum-
mary. Based on this thought, we propose a novel
MDS framework SgSum which transforms sum-
marization into the problem of sub-graph selection.
SgSum captures relation of sentences both in whole
graph structure (source documents) and sub-graph
structures (candidate summaries). Moreover, in our
framework, summary is viewed as a whole unit
in the form of sub-graph. Thus, SgSum can gen-
erate more coherent and informative results than
traditional sentence-level extractors.

Figure 1 shows the overview of our framework.
Firstly, source documents are transformed into a
relation graph by well-known graph construction
methods such as similarity graph and discourse
graph. Sentences are the basic information units
and represented as nodes in the graph. And rela-
tions between sentences are represented as edges.
For example, a similarity graph can be built based
on cosine similarities between tf-idf representations
of sentences. Let G denotes a graph representation
matrix of the input documents, where G[i][j] indi-
cates the tf-idf weights between sentence Si and Sj .
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Figure 2: Model architecture of SgSum. Graph-based multi-
document encoder takes tokenized documents as input and
outputs sentence representations after graph encoding layers.
Candidate summaries are modeled by its sub-graph structure
in the sub-graph encoder, then scored in a ranking layer.

Formally, the task is to generate the summary S of
the document collection given L input sentences
S1, . . . , SL and their graph representation G.

As Figure 1 shows, if we represent the source
documents as a graph, it can be easily observed
that sentences will form plenty of different sub-
graphs. By further modelling the sub-graph struc-
tures, we can distinguish the quality of different
candidate summaries and finally select the best one.
Compared with the whole document graph view,
sub-graph view is more appropriate to generate a
coherent and concise summary. This is also the key
point of our framework. Additionally, important
sentences usually build up crucial sub-graphs. So it
is a simple but efficient way to generate candidate
sub-graphs based on those salient sentences.

3 Methodology

3.1 Graph-based Multi-document Encoder

In this section, we introduce our graph-based multi-
document encoder. It takes a multi-document set as
input and represents all sentences by graph struc-
ture. It has three main components: (1) Hierarchi-
cal Transformer which processes each document
independently and outputs the sentence represen-
tations. (2) Graph encoding layer which updates
sentence representations by modeling the graph
structure of documents. (3) Graph pooling layer
which helps to generate an overall representation of

source documents. Figure 2 illustrates the overall
architecture of SgSum.

Hierarchical Transformer Most previous works
(Cao et al., 2017; Jin et al., 2020; Wang et al.,
2017) did not consider the multi-document struc-
ture. They simply concatenate all documents to-
gether and treat the MDS as a special SDS with
longer input. Wang et al. (2020) preprocess the
multi-document input by truncating lead sentences
averagely from each document, then concatenat-
ing them together as the MDS input. These pre-
processing methods are simple ways to help the
model encode multi-document inputs. But they do
not make full use of the source document struc-
tures. Lead sentences extracted from each docu-
ment might be similar with each other and result
in redundant and incoherent problems. In this pa-
per, we encode source documents by a Hierarchi-
cal Transformer, which consists of several shared-
weight single Transformers (Vaswani et al., 2017)
that process each document independently. Each
Transformer takes a tokenized document as input
and outputs its sentence representations. This archi-
tecture enables our model to process much longer
input.
Graph Encoding To effectively capture the re-
lations between sentences in source documents,
we incorporate explicit graph representations of
documents into the neural encoding process via a
graph-informed attention mechanism similar to Li
et al. (2020). Each sentence can collect informa-
tion from other related sentences to capture global
information from the whole input. The graph-
informed attention mechanism extends the vanilla
self-attention mechanism to consider the pairwise
relations in explicit graph representations as:

αij = Softmax(eij +Rij) (1)

where eij denotes the origin self-attention weights
between sentences Si and Sj , αij denotes the ad-
justed weights by graph structure. The key point
of the graph-based self-attention is the additional
pairwise relation bias Rij , which is computed as a
Gaussian bias of the weights of graph representa-
tion matrix G:

Rij = −
(1−Gij)

2

2σ2
(2)

where σ denotes the standard deviation that repre-
sents the influence intensity of the graph structure.
Then a two-layer feed-forward network with ReLU
activation and a high-way layer normalization are
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applied after the graph-informed attention mech-
anism. These three components form the graph
encoding layers.
Graph Pooling In the MDS task, information is
more massive and relations between sentences are
much more complex. So it is necessary to have an
overview of the central meaning of multi-document
input. Zhong et al. (2020) generate a document rep-
resentation with Siamese-BERT to guide the train-
ing and inference process. In this paper, based on
the graph representation of documents, we apply
a multi-head weighted-pooling operation similar
to Liu and Lapata (2019a) to capture the global
semantic information of source documents. It takes
sentence representations in the source graph as in-
put and outputs an overall representation of them
(denoted as D), which provides global information
of documents for both the sentence and summary
selection processes.

Let xi denotes the graph representation of sen-
tence Si. For each head z ∈ {1, ..., nhead}, we first
transform xi into attention scores azi and value vec-
tors bzi , then we calculate an attention distribution
âzi over all sentences in the source graph based on
attention scores:

azi =W z
axi (3)

bzi =W z
b xi (4)

âzi = exp(azi )/

n∑
i=1

exp(azi ) (5)

We next apply a weighted summation with another
linear transformation and layer normalization to
obtain vector headz for the source graph. Finally,
we concatenate all heads and apply a linear trans-
formation to ontain the global representation D:

headz = LayerNorm(W z
c

n∑
i=1

âzi b
z
i ) (6)

D =Wd[head1||...||headz] (7)

where W z
a , W z

b , W z
c and Wd are weight matrices,

and || denotes the concatenating operator.
Based on the graph-based multi-document en-

coder, our model can process much longer input
than traditional summarization models. Further-
more, our model can treat SDS and MDS as similar
tasks in the unified sub-graph selection framework.

3.2 Select from Graph
Sub-graph Encoder As we mentioned in Section
2, sub-graph structure can reflect the quality of can-
didate summaries. A sub-graph with similar nodes

means a redundant summary. And a sub-graph
with unconnected nodes represents an incoherent
summary. So we apply a sub-graph encoder which
has the same architecture with the graph encoder
to model each sub-graph. Then we score each sub-
graph in a sub-graph ranking layer to select the best
sub-graph as the final summary.
Sub-graph Ranking Layer In the training pro-
cess, we first calculate ROUGE scores of each sen-
tence with the gold summary. Then we select top-K
scoring sentences and make a combination of them
to form candidate summaries. The sentences in
each candidate summary form a subgraph of the
source document graph.

There are two principles to optimize our frame-
work. Firstly, a good summary can represent the
central meaning of source documents which indi-
cates that a good sub-graph should also represent
the whole graph. Specifically, the global docu-
ment representation D which reflects the overall
meaning of source documents should be semantic
similar with the gold summary. We use a greedy
method (Nallapati et al., 2017) to extract an or-
acle summary (composed by source sentences)
with the largest ROUGE score corresponding to
the abstractive reference summary. Then, sen-
tences in the oracle summary are considered as
gold summary sentences, which also form a sub-
graph. Let C∗ denotes the gold summary and the
similarity score between C∗ and D is measured
by f(D,C∗) = cosine(D,C∗), which form the
following summary-level loss:

Lsum1 = 1− f(D,C∗) (8)

Furthermore, we also design a pairwise margin
loss for all the candidate summaries similar with
Zhong et al. (2020). We sort all candidate sum-
maries in descending order of ROUGE scores with
the gold summary. All candidate summaries are
also represented in the form of sub-graph by using
sub-graph encoder. Naturally, the candidate pair
with a larger ranking gap should have a larger mar-
gin, which is the second principle to design our
loss function:

Lsum2 = max(0, f(Cj , C
∗)− f(Ci, C

∗) + γ)(i < j)
(9)

where Ci represents the candidate summary ranked
i and γ is a hyperparameter used to distinguish be-
tween good and bad candidate summaries. Lsum1

and Lsum2 compose a summary-level loss function:
Lsum = Lsum1 + Lsum2 (10)
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Additionally, we adopt a traditional binary cross-
entropy loss between candidate sentences and ora-
cles to learn more accurate sentence and summary
representations.

Lsent = −
n∑

i=1

(y∗i log(ŷi) + (1− y∗i ) log(1− ŷi))

(11)
where a label yi ∈ {0, 1} indicates whether the
sentence Si should be a summary sentence. Finally,
our loss can be formulated as:

L = Lsent + Lsum (12)

During inference, there are hundreds of sen-
tences in a multi-document set which means there
are thousands of sub-graphs need to be considered.
In order to overcome this difficulty, we adopt a
greedy strategy by first selecting several salient
sentences as candidate nodes and then making a
combination of them to generate candidate sub-
graphs. As the important sentences usually build
up crucial sub-graphs, it is a simple way to gen-
erate candidate sub-graphs based on those salient
sentences. Then we calculate cosine similarities
between all sub-graphs with the global document
representation D in the sub-graph ranking layer,
and select the sub-graph with the highest score as
the final summary. Thus, our model can be viewed
as a sub-graph selection framework which means
selecting a proper sub-graph from a whole graph.

Furthermore, the graph structure can help to re-
order the sentences in the summary to obtain a
more coherent summary (Christensen et al., 2013).
We order the summary by placing sentences with
discourse relations next to each other.

4 Experiments

4.1 Experimental Setup

Graph types We experiment with three well-
established graph representations: similarity graph,
topic graph and discourse graph. (1) The similar-
ity graph is built based on tf-idf cosine similarities
between sentences to capture lexical relations. (2)
The topic graph is built based on LDA topic model
(Blei et al., 2003) to capture topic relations. The
edge weights are cosine similarities between the
topic distributions of sentences. (3) The discourse
graph is built to capture discourse relations based
on discourse markers (e.g. however, moreover),
co-reference and entity links as in Christensen et al.
(2013). Other types of graphs can also be used in
our model. In our experiments, if not explicitly

stated, we use the similarity graph by default as it
is the most widely used in previous work.
MultiNews Dataset The MultiNews dataset is a
large-scale multi-document summarization dataset
introduced by (Fabbri et al., 2019). It contains
56,216 articles-summary pairs and each example
consists of 2-10 source documents and a human-
written summary. Following their experimental set-
tings, we split the dataset into 44,972/5,622/5,622
for training, validation and testing and truncate
each document to 768 tokens.
DUC Dataset We use the benchmark datasets
from the Document Understanding Conferences
(DUC) containing clusters of English news articles
and human reference summaries. We use DUC
2002, 2003 and 2004 datesets which contain 60, 30
and 50 clusters of nearly 10 documents respectively.
Four human reference summaries have been cre-
ated for each document cluster by NIST assessors.
Our model is trained on DUC 2002, validated on
DUC 2003, and tested on DUC 2004. We apply the
similar preprocessing method with previous work
(Cho et al., 2019) and truncate each document to
768 tokens
Training Configuration We use the base version
of RoBERTa (Liu et al., 2019b) to initialize our
models in all experiments. The optimizer is Adam
(Kingma and Ba, 2014) with β1=0.9 and β2=0.999,
and the learning rate is 0.03 for MultiNews and
0.015 for DUC. We apply learning rate warmup
over the first 10000 steps and decay as in (Kingma
and Ba, 2014). Gradient clipping with maximum
gradient norm 2.0 is also utilized during training.
All models are trained on 4 GPUs (Tesla V100) for
about 10 epochs. We apply dropout with proba-
bility 0.1 before all linear layers. The number of
hidden units in our models is set as 256, the feed-
forward hidden size is 1,024, and the number of
heads is 8. The number of transformer encoding
layers and graph encoding layers are set as 6 and
2, respectively. As we mentioned in Section 3.2,
during inference we select several salient candidate
nodes to build up sub-graphs. And the number of
nodes in a sub-graph is determined by the average
number of sentences in the gold summary. For
MultiNews and DUC, we set the number of candi-
date nodes and sub-graph nodes as 10/9 and 7/5,
respectively.

4.2 Evaluation Results
We evaluate our models on both the MultiNews and
DUC datasets to validate their effectiveness on dif-
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Models R-1 R-2 R-L
LexRank 40.27 12.63 37.50
MMR 44.72 14.92 40.07
MatchSum 46.20 16.51 41.89
HeterGraph 46.05 16.35 42.08
PG 43.77 15.38 39.72
Hi-MAP 44.17 16.05 40.35
FT 44.32 15.11 -
GraphSum 46.07 17.42 42.22
SgSum 47.36 18.61 43.13
SgSum(extra) 47.53 18.75 43.31

Table 1: Evaluation results on the MultiNews test set using
ROUGE F12. R-1, R-2 and R-L are abbreviations for ROUGE-
1, ROUGE-2 and ROUGE-L, respectively.

ferent types of corpora. The summarization quality
is evaluated using ROUGE F1 (Lin, 2004). We
report unigram and bigram overlap (ROUGE-1 and
ROUGE-2) between system summaries and gold
references as a means of assessing informativeness,
and the longest common subsequence (ROUGE-
L2) as a means of accessing fluency.
Results on MultiNews Table 1 summarizes the
evaluation results on the MultiNews. Several strong
extractive and abstractive baselines are evaluated
and compared with our models. The first block
in the table shows results of extractive methods:
LexRank (Erkan and Radev, 2004), MMR (Car-
bonell and Goldstein, 1998), HeterGraph (Wang
et al., 2020) and MatchSum (Zhong et al., 2020)
which is the previous extractive SOTA model on
the MultiNews dataset. The second block shows
results of abstractive methods: PG (Lebanoff et al.,
2018), Hi-MAP (Fabbri et al., 2019), FT(Flat Trans-
former) and GraphSum (Li et al., 2020) which is
the previous abstractive SOTA model. We report
their results following Zhong et al. (2020); Wang
et al. (2020); Li et al. (2020). The last block shows
the results of SgSum. Compared with both previous
extractive and abstractive SOTA models, SgSum
achieves more than 1.1/1.2/0.9 improvements on
R-1, R-2 and R-L which demonstrates the effec-
tiveness of our sub-graph selection framework.

Furthermore, due to our graph representation and
graph-based multi-document encoder, our model
has the ability to unify single and multi-document
summarization task. In our framework, a single
document can also be viewed the same as multi-
document input. So our model can be enhanced by
feeding extra single-document training data. In the
last block, extra means we leverage CNN/DM data

2-n 2 -m -w 1.2 -c 95 -r 1000 -l 250

Models R-1 R-2 R-L
KLSumm 31.04 6.03 -
LexRank 34.44 7.11 30.95
DPP 38.10 9.14 -
SubModular 38.39 9.58 -
PG 31.43 6.03 -
Sim-DPP 39.35 10.14 -
StructSVM 39.37 9.65 34.52
SgSum 38.66 9.73 34.02
SgSum(extra) 39.41 10.42 35.41

Table 2: Evaluation results on the DUC2004 test set. We
report R-1, R-2 and R-L scores, and follow the ROUGE setting
of Cho et al. (2019).3

as an extra training resource to improve our model.
The results show that single-document data boost
the performance of our unified model a further step
and achieve a new SOTA result on Multinews.
Results on DUC Table 2 summarizes the eval-
uation results on the DUC2004 dataset. The
first block shows four popular unsupervised base-
lines, and the second block shows several strong
supervised baselines. We report the results of
KSLSumm (Haghighi and Vanderwende, 2009),
LexRank (Erkan and Radev, 2004), DPP (Kulesza
and Taskar, 2011), Sim-DPP (Cho et al., 2019) fol-
lowing Cho et al. (2019). Besides, we also report
the results of SubModular (Lin and Bilmes, 2010),
StructSVM (Sipos et al., 2012) and PG (See et al.,
2017) as strong baselines. The last block shows the
results of our models. The results indicate that our
model SgSum consistently outperforms most base-
lines, which further demonstrate the effectiveness
of our model on different types of corpora.

Additionally, we also test the performance of
SgSum-extra which add CNN/DM data as a supple-
ment. It is comparable to Sim-DPP baseline which
also uses extra CNN/DM data to train a similarity
model. And the results again show that single-
document data greatly improves the performance
of our model.
4.3 Transfer Performances
It is commonly known that deep neural networks
achieved great improvement on SDS task recently
(Liu and Lapata, 2019b; Zhong et al., 2020; Li et al.,
2018a,b). However, such supervised models can
not work well on MDS task because parallel data
for mulit-document are scarce and costly to obtain.
For example, the DUC dataset only contains tens
of parallel MDS data. There is a pressing need

3-n 2 -m -w 1.2 -c 95 -r 1000 -l 100
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Models R-1 R-2 R-L
Lead 40.21 12.13 37.13
LexRank 40.27 12.63 37.50
BERTSUMEXT 41.28 12.05 37.18
SgSum 43.61 14.07 39.50
Table 3: Transfer performance on MultiNews dataset

Models R-1 R-2 R-L
KLSumm 31.04 6.03 -
LexRank 34.44 7.11 30.95
Extract+Rewrite 28.90 5.33 -
BERTSUMEXT 35.13 8.09 31.28
PG-MMR 36.42 9.36 -
SgSum 38.18 9.46 33.81

Table 4: Transfer performance on DUC2004 dataset

to propose an end-to-end model which is trained
on single-document data but can work well with
multiple-document input. In this section we do
further experiments to verify the transfer ability of
our model from single to multi-document task.

We follow the experiment setups of Lebanoff
et al. (2018), and compare with several strong base-
line models: (1) BERTSUMEXT (Liu and Lapata,
2019b), an extractive method with pre-trained LM
model; (2) PG-MMR (Lebanoff et al., 2018), an
encoder-decoder model which exploits the maxi-
mal marginal relevance method to select represen-
tative sentences; (3) Extract+Rewrite (Song et al.,
2018), is a recent approach that scores sentences us-
ing LexRank and generates a title-like summary for
each sentence using an encoder-decoder model. We
follow the results of Lebanoff et al. (2018). Table 3
and Table 4 demonstrate the results on MultiNews
and DUC2004 respectively.

As shown in Tables 3 and 4, the second
blocks are transfer models which are only trained
on SDS data and tested on MDS data directly.
BERTSUMEXT, PG-MMR, SgSum are trained on
CNN/DM, while Extract+Rewrite is trained on Gi-
gaword. The results show that our model achieves
better performance than several strong unsuper-
vised models. Furthermore, when trained only on
the SDS data, SgSum performs much better on
transfer ability compared with the three baselines
in the second block of Table 4. The above evalua-
tion results on MultiNews and DUC datasets both
validate the effectiveness of our model. The sub-
graph selection framework greatly improves the
performance of MDS and shows a powerful trans-

Figure 3: Results on different graph types.

Models R-1 R-2 R-L
SgSum 47.36 18.61 43.13
w/o s.g. enc 46.87 17.93 42.67
w/o s.g. rank 46.91 17.97 42.80
w/o s.g. enc&rank 46.69 17.64 42.48
w/o graph enc 46.21 17.12 42.11
w/o all 45.43 16.62 41.32

Table 5: Ablation study on the MultiNews test set. s.g. is the
abbreviation for sub-graph.

fer ability which can reduce the resource bottleneck
in MDS.

4.4 Analysis

We further analyze the effects of graph types on our
model and validate the effectiveness of different
components of our model by ablation studies.

Effects of Graph types We compare the results of
similarity graph, topic graph and discourse graph
on the MultiNews test set. The comparison results
in Figure 3 show that the discourse graph achieves
the best performance on all metrics, which demon-
strate that graphs with richer relations are more
helpful for MDS.

Ablation Study Table 5 summarizes the results
of ablation studies, which aim to validate the ef-
fectiveness of each individual component of our
model. “w/o graph enc” denotes removing the
graph-based multi-document encoder, encoding the
source input by concatenating all documents as a
sequence. “w/o subgraph enc” and “w/o subgraph
rank” denontes removing the subgraph encoder and
the subgraph ranking layer, respectively. “w/o all”
denotes removing all graph components, which is
actually the BERTSUMEXT baseline model. The
experimental results confirmed that our framework
which transforms MDS task into sub-graph selec-
tion is effective (see w/o subgraph enc and sub-
graph rank). Besides, incorporating explicit graph
structure (see w/o graph enc) also help to process
long input source and result in better performances
for MDS.
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Models Informativeness Coherence
1st 2nd 3rd 4th rating 1st 2nd 3rd 4th rating

LexRank 0.13 0.14 0.17 0.56 -0.89∗ 0.09 0.15 0.11 0.65 -1.08∗

Submodular 0.29 0.27 0.30 0.14 0.27∗ 0.31 0.32 0.26 0.11 0.46∗

BERTSUMEXT 0.24 0.30 0.29 0.17 0.15∗ 0.23 0.22 0.41 0.14 -0.01∗

SgSum 0.34 0.29 0.24 0.13 0.47 0.37 0.31 0.22 0.10 0.63
Table 6: Human evaluation of system summaries on DUC-04. 1st is the best and 4th is the worst. The larger rating denotes better
summary quality. ∗ indicates the overall ratings of the corresponding model are significantly (by Welch’s t-test with p < 0.05)
outperformed by our model. The inter-annotator agreement score (Cohen Kappa) is 0.67, which indicates substantial agreement
between annotators.

4.5 Human Evaluation
In addition to the automatic evaluation, we also
assess system performance by human evaluation.
We use the DUC2004 as human evaluation set, and
invite 2 annotators to assess the outputs of different
models independently. We use Cohen Kappa (Co-
hen, 1960) to calculate the inter-annotator agree-
ment between annotators. Annotators assess the
overall quality of summaries by ranking them con-
sidering the following criteria: (1) Informative-
ness: is the main meaning expressed in the source
documents preserved in the summary? (2) Coher-
ence: is the summary coherent between sentences
and well-formed? Annotators were asked to rank-
ing all systems from 1 (best) to 4 (worst). All
systems get score 2, 1, -1, -2 for ranking 1, 2, 3, 4
respectively. The rating of each system is computed
by averaging the scores on all test instances.

Four system summaries are presented in Table
6. The results demonstrate that SgSum is rated as
the best on both informativeness and coherence.
Regarding the overall ratings, the summaries gen-
erated by SgSum are frequently ranked as the best,
which significantly outperforms other models. The
human evaluation results further validate the ef-
fectiveness of our proposed sub-graph selection
framework.

5 Related Work

5.1 Graph-based Summarization
Most previous graph extractive MDS approaches
aim to extract salient textual units from docu-
ments based on graph structure representations
of sentences. Erkan and Radev (2004) introduce
LexRank to compute sentence importance based
on the eigenvector centrality in the connectivity
graph of inter-sentence cosine similarity. Chris-
tensen et al. (2013) build multi-document graphs
to identify pairwise ordering constraints over the
sentences by accounting for discourse relation-
ships between sentences. More recently, Yasunaga

et al. (2017) build on the approximate discourse
graph model and account for macro-level features
in sentences to improve sentence salience predic-
tion. Yin et al. (2019) also propose a graph-based
neural sentence ordering model, which utilizes an
entity linking graph to capture the global depen-
dencies between sentences. Li et al. (2020) incor-
porate explicit graph representations to the neural
architecture based on a novel graph-informed self-
attention mechanism. It is the first work to effec-
tively combine graph structures with abstractive
MDS model. Wu et al. (2021) present BASS, a
novel framework for Boosting Abstractive Summa-
rization based on a unified Semantic graph, which
aggregates co-referent phrases distributing across
a long range of context and conveys rich relations
between phrases. However, these works only con-
sider the graph structure of source documents, but
neglect the graph structures of summaries which
are also important to generate coherent and infor-
mative summaries.

5.2 Sentence or Summary-level Extraction
Extractive summarization methods usually produce
a summary by selecting some original sentences
in the document set by a sentence-level extractor.
Early models employ rule-based methods to score
and select sentenecs (Lin and Hovy, 2002; Lin
and Bilmes, 2011; Takamura and Okumura, 2009;
Schilder and Kondadadi, 2008). Recently, SUM-
MARUNNER (Nallapati et al., 2017) adopt an en-
coder based on Recurrent Neural Networks which
is the earliest neural summarization model. SUMO
(Liu et al., 2019a) capitalizes on the notion of struc-
tured attention to induce a multi-root dependency
tree representation of the document. However, all
these models belong to sentence-level extractors
which select high score sentences individually and
might raise redundancy (Narayan et al., 2018).

Different from above studies, some work focus
on the summary-level selection. Wan et al. (2015)
optimize the summarization performance directly
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based on the characteristics of summaries and rank
summaries directly during inference. Bae et al.
(2019), Paulus et al. (2017) and Celikyilmaz et al.
(2018) use reinforcement learning to globally opti-
mize summary-level performance. Recent studies
(Alyguliyev, 2009; Galanis and Androutsopoulos,
2010; Zhang et al., 2019) have attempted to a build
two-stage document summarization. The first stage
is usually to extract some fragments of the original
text, and the second stage is to select or modify on
the basis of these fragments. Mendes et al. (2019)
follow the extract-then-compress paradigm to train
an extractor for content selection. Zhong et al.
(2020) propose a novel extract-then-match frame-
work which employs a sentence extractor to prune
unnecessary information, then outputs a summary
by matching models. These methods consider sum-
mary as a whole rather than individual sentences.
However, they neglect the relations between sen-
tences during both scoring and selecting.

5.3 From Single to Multi-document

Recent neural network summarization models fo-
cus on SDS due to the large parallel datasets au-
tomatically harvested from online news websites
including Gigaword (Rush et al., 2017), CNN/DM
(Hermann et al., 2015), NYT (Sandhaus, 2018) and
Newsroom (Grusky et al., 2018). However, MDS
has not yet fully benefited from the development
of neural network models, because parallel data for
MDS are scarce and costly to obtain.

A promising route to generating summary from
a multi-document input is to apply a model trained
for SDS to a “mega-document” (Lebanoff et al.,
2018) created by concatenating all documents to-
gether. Nonetheless, such a model may not suit
well for two reasons. First, identifying important
text pieces from a mega-document can be chal-
lenging for the model, which is trained on single-
document data where the summary-worthy content
is often contained in the first few sentences. This is
not the case for a mega-document. Second, redun-
dant text pieces in a mega-document can be repeat-
edly used for summary generation under the current
framework. Lebanoff et al. (2018) present a novel
adaptation model, named PG-MMR, to generate
summary from multi-document inputs. However, it
still considers MDS data as a meta-document. In
contrast, our model unifies SDS and MDS by graph
representations, and achieves great performance on
transferring from SDS to MDS.

Conclusion

We propose a novel framework SgSum which trans-
forms the MDS task into the problem of sub-graph
selection. SgSum captures the relations between
sentences by modelling both the graph structure
of the whole document set and the candidate sub-
graphs, then directly output an integrate summary
in the form of sub-graph which is more informa-
tive and coherent. Experimental results on two
MDS datasets show that SgSum brings substantial
improvements over several strong baselines. More-
over, the proposed architecture has strong transfer
ability from single to multi-document, which can
reduce the resource bottleneck in MDS tasks.

Acknowledgments

This work was supported in part by the Na-
tional Key R&D Program of China under Grant
2020YFB1406701.

References

RM Alyguliyev. 2009. The two-stage unsupervised ap-
proach to multidocument summarization. Automatic
Control and Computer Sciences, 43(5):276–284.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20, Hong Kong, China. Asso-
ciation for Computational Linguistics.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. 2017.
Improving multi-document summarization via text
classification. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1662–1675, New Orleans, Louisiana.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-5402
https://doi.org/10.18653/v1/D19-5402
https://doi.org/10.18653/v1/N18-1150
https://doi.org/10.18653/v1/N18-1150


4072

Sangwoo Cho, Logan Lebanoff, Hassan Foroosh, and
Fei Liu. 2019. Improving the similarity measure of
determinantal point processes for extractive multi-
document summarization. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1027–1038, Florence,
Italy. Association for Computational Linguistics.

Janara Christensen, Stephen Soderland, Oren Etzioni,
et al. 2013. Towards coherent multi-document sum-
marization. In Proceedings of the 2013 conference
of the North American chapter of the association for
computational linguistics: Human language tech-
nologies, pages 1163–1173.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20, 37–46.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1074–1084, Florence, Italy.
Association for Computational Linguistics.

Dimitrios Galanis and Ion Androutsopoulos. 2010. An
extractive supervised two-stage method for sentence
compression. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 885–893.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 708–719, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing content models for multi-document summariza-
tion. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 362–370, Boulder, Col-
orado. Association for Computational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28:1693–1701.

Hanqi Jin, Tianming Wang, and Xiaojun Wan. 2020.
Multi-granularity interaction network for extractive
and abstractive multi-document summarization. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6244–
6254.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alex Kulesza and Ben Taskar. 2011. Learning determi-
nantal point processes.

Logan Lebanoff, Kaiqiang Song, and Fei Liu. 2018.
Adapting the neural encoder-decoder framework
from single to multi-document summarization. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
4131–4141, Brussels, Belgium. Association for
Computational Linguistics.

Wei Li, Lei He, and Hai Zhuge. 2016. Abstractive
news summarization based on event semantic link
network. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 236–246. The COL-
ING 2016 Organizing Committee.

Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng
Wang, and Junping Du. 2020. Leveraging graph to
improve abstractive multi-document summarization.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
6232–6243. Association for Computational Linguis-
tics.

Wei Li, Xinyan Xiao, Yajuan Lyu, and Yuanzhuo Wang.
2018a. Improving neural abstractive document sum-
marization with explicit information selection mod-
eling. In Proceedings of the 2018 conference on
empirical methods in natural language processing,
pages 1787–1796.

Wei Li, Xinyan Xiao, Yajuan Lyu, and Yuanzhuo Wang.
2018b. Improving neural abstractive document sum-
marization with structural regularization. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4078–
4087.

Wei Li and Hai Zhuge. 2019. Abstractive multi-
document summarization based on semantic link net-
work. IEEE Transactions on Knowledge and Data
Engineering.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Chin-Yew Lin and Eduard Hovy. 2002. From single to
multi-document summarization. In Proceedings of
the 40th annual meeting of the association for com-
putational linguistics, pages 457–464.

Hui Lin and Jeff Bilmes. 2010. Multi-document sum-
marization via budgeted maximization of submod-
ular functions. In Human Language Technologies:

https://doi.org/10.18653/v1/P19-1098
https://doi.org/10.18653/v1/P19-1098
https://doi.org/10.18653/v1/P19-1098
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/N18-1065
https://doi.org/10.18653/v1/N18-1065
https://www.aclweb.org/anthology/N09-1041
https://www.aclweb.org/anthology/N09-1041
https://www.aclweb.org/anthology/N09-1041
https://doi.org/10.18653/v1/D18-1446
https://doi.org/10.18653/v1/D18-1446
https://aclanthology.org/C16-1023
https://aclanthology.org/C16-1023
https://aclanthology.org/C16-1023
https://aclanthology.org/2020.acl-main.555
https://aclanthology.org/2020.acl-main.555
https://aclanthology.org/D18-1205
https://aclanthology.org/D18-1205
https://aclanthology.org/D18-1205
https://aclanthology.org/D18-1441
https://aclanthology.org/D18-1441
https://ieeexplore.ieee.org/document/8736808
https://ieeexplore.ieee.org/document/8736808
https://ieeexplore.ieee.org/document/8736808
https://aclanthology.org/N10-1134
https://aclanthology.org/N10-1134
https://aclanthology.org/N10-1134


4073

The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 912–920, Los Angeles, California.
Association for Computational Linguistics.

Hui Lin and Jeff Bilmes. 2011. A class of submodu-
lar functions for document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 510–520.

Yang Liu and Mirella Lapata. 2019a. Hierarchical
transformers for multi-document summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5070–5081, Florence, Italy. Association for Compu-
tational Linguistics.

Yang Liu and Mirella Lapata. 2019b. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Yang Liu, Ivan Titov, and Mirella Lapata. 2019a. Sin-
gle document summarization as tree induction. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1745–
1755.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Afonso Mendes, Shashi Narayan, Sebastião Miranda,
Zita Marinho, André F. T. Martins, and Shay B. Co-
hen. 2019. Jointly extracting and compressing doc-
uments with summary state representations. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3955–3966,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.
Association for Computational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Alexander M Rush, SEAS Harvard, Sumit Chopra, and
Jason Weston. 2017. A neural attention model for
sentence summarization. In ACLWeb. Proceedings
of the 2015 conference on empirical methods in nat-
ural language processing.

Evan Sandhaus. 2018. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12).

Frank Schilder and Ravikumar Kondadadi. 2008.
FastSum: Fast and accurate query-based multi-
document summarization. In Proceedings of ACL-
08: HLT, Short Papers, pages 205–208, Columbus,
Ohio. Association for Computational Linguistics.

Abigail See, Peter Liu, and Christopher Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Association for Computa-
tional Linguistics.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten
Joachims. 2012. Large-margin learning of submod-
ular summarization models. In Proceedings of the
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 224–
233, Avignon, France. Association for Computa-
tional Linguistics.

Kaiqiang Song, Lin Zhao, and Fei Liu. 2018. Structure-
infused copy mechanisms for abstractive summariza-
tion. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1717–
1729.

Hiroya Takamura and Manabu Okumura. 2009. Text
summarization model based on the budgeted median
problem. In Proceedings of the 18th ACM confer-
ence on Information and knowledge management,
pages 1589–1592.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Xiaojun Wan, Ziqiang Cao, Furu Wei, Sujian Li, and
Ming Zhou. 2015. Multi-document summariza-
tion via discriminative summary reranking. arXiv
preprint arXiv:1507.02062.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng
Qiu, and Xuanjing Huang. 2020. Heterogeneous
graph neural networks for extractive document sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6209–6219, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/N19-1397
https://doi.org/10.18653/v1/N19-1397
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/N18-1158
https://aclanthology.org/P08-2052
https://aclanthology.org/P08-2052
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://aclanthology.org/E12-1023
https://aclanthology.org/E12-1023
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553


4074

Kexiang Wang, Tianyu Liu, Zhifang Sui, and Baobao
Chang. 2017. Affinity-preserving random walk for
multi-document summarization. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 210–220, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu,
Ziqiang Cao, Sujian Li, Hua Wu, and Haifeng Wang.
2021. BASS: Boosting abstractive summarization
with unified semantic graph. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6052–6067, Online. As-
sociation for Computational Linguistics.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2020. Discourse-aware neural extractive text sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5021–5031, Online. Association for Computa-
tional Linguistics.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu,
Ayush Pareek, Krishnan Srinivasan, and Dragomir
Radev. 2017. Graph-based neural multi-document
summarization. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 452–462, Vancouver, Canada.
Association for Computational Linguistics.

Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng,
Chulun Zhou, and Jiebo Luo. 2019. Graph-
based neural sentence ordering. arXiv preprint
arXiv:1912.07225.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Pretraining-based natural language genera-
tion for text summarization. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 789–797, Hong
Kong, China. Association for Computational Lin-
guistics.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extrac-
tive summarization as text matching. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6197–6208, On-
line. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D17-1020
https://doi.org/10.18653/v1/D17-1020
https://doi.org/10.18653/v1/2021.acl-long.472
https://doi.org/10.18653/v1/2021.acl-long.472
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/K17-1045
https://doi.org/10.18653/v1/K17-1045
https://doi.org/10.18653/v1/K19-1074
https://doi.org/10.18653/v1/K19-1074
https://doi.org/10.18653/v1/2020.acl-main.552
https://doi.org/10.18653/v1/2020.acl-main.552

