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Abstract
Existing approaches for audio-language task-
specific prediction focus on building compli-
cated late-fusion mechanisms. However, these
models face challenges of overfitting with lim-
ited labels and poor generalization. In this pa-
per, we present a Cross-modal Transformer
for Audio-and-Language, i.e., CTAL, which
aims to learn the intra- and inter- modali-
ties connections between audio and language
through two proxy tasks from a large num-
ber of audio-and-language pairs: masked
language modeling and masked cross-modal
acoustic modeling. After fine-tuning our
CTAL model on multiple downstream audio-
and-language tasks, we observe significant
improvements on different tasks, including
emotion classification, sentiment analysis, and
speaker verification. Furthermore, we design
a fusion mechanism in the fine-tuning phase,
which allows CTAL to achieve better perfor-
mance. Lastly, we conduct detailed ablation
studies to demonstrate that both our novel
cross-modality fusion component and audio-
language pre-training methods contribute to
the promising results. The code and pre-
trained models are available at https://

github.com/tal-ai/CTAL_EMNLP2021.

1 Introduction

Speech processing (SP) requires the understanding
of a set of acoustic and language content, includ-
ing phonemes, tones, words and semantic mean-
ings. Different from human, who benefit from self-
learning through real-world experiences, current
SP methods are more like narrow experts relying
heavily on a large number of task-specific human
annotations and a small change may cause the learn-
ing process to start all over again. In recent years,
pre-training for single modality, such as language
and audio signals, is widely explored due to its
ease-of-use and competent generalization to vari-
ous downstream tasks.

∗ The corresponding author: Zitao Liu.

In the field of NLP, pre-trained models, such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019) and GPT2
(Radford et al., 2019), share the same idea of first
leveraging large-scale unlabeled corpus to perform
contextualized language model pre-training then
fine-tuning the model to adapt to downstream tasks,
such as machine reading comprehension (Lai et al.,
2017), question answering (Rajpurkar et al., 2016)
and natural language inference (Bowman et al.,
2015), etc. Following the success of pre-trained
models in NLP, BERT-like models are also applied
to SP community (Schneider et al., 2019; Baevski
et al., 2020a,b), where robust audio representations
are learned through an audio-style self-supervised
context prediction task.

Despite these influential unimodal methods, for
tasks at the intersection of audio and language, such
as speech emotion classification (Livingstone and
Russo, 2018; Busso et al., 2008), speaker verifica-
tion (Panayotov et al., 2015) and sentiment analy-
sis (Zadeh et al., 2018), large-scale pre-training for
the modality-pair of audio and language is barely
explored. The previous attempt is to train task-
specific experts upon the concatenation of language
representations and audio representations in a late
fusion manner (Ramirez et al., 2011; Glodek et al.,
2011; Zadeh et al., 2017; Yoon et al., 2019, 2018;
Xu et al., 2019; Li et al., 2020b, 2021), without any
generic audio-and-language pre-training. These
task-specific experts will suffer from the overfitting
problem when trained with limited data. Mean-
while, due to the heterogeneity across language
and audio modalities, late fusion of high-level rep-
resentations lacks surface-level cross-modal align-
ment and complementation during the pre-training
phase.

Therefore, we propose CTAL, a pre-training
cross-modal Transformer for audio-and-language
representations, and has shown its strong perfor-
mance on three established audio-and-language
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tasks: emotion classification (Busso et al., 2008),
sentiment analysis (Zadeh et al., 2018) and speaker
verification (Panayotov et al., 2015). We propose
multimodal Transformer as our backbone model,
which consists of two modules, a language stream
encoding module which adapts word as input el-
ement, and a text-referred audio stream encod-
ing module which accepts both frame-level Mel-
spectrograms and token-level output embeddings
from the language stream encoding module as in-
put elements. In order to learn both intra- and
inter- modalities connections, we pre-train our
model with two tasks: (1) masked language mod-
eling (MLM); and (2) masked cross-modal acous-
tic modeling (MCAM). Different from unimodal
pre-training, e.g., masked acoustic modeling in
MOCKINGJAY (Liu et al., 2020), our cross-modal
pre-training is able to reconstruct masked audio
features from both intra- and inter-modalities infor-
mation. On the basis of our pre-trained model, a
regularization term based on feature orthogonality
is introduced during the model fine-tuning stage,
which is designed to ensure that features of differ-
ent modalities provide information from different
perspectives. Please notice that this orthogonal reg-
ularization mechanism is general and not limited
to audio-language tasks.

The main contributions of our paper are listed as
follows:

• We present CTAL, a pre-training framework
for learning audio-and-language representa-
tions with Transformer, which considers both
intra- and inter- modalities connections. To
the best of our knowledge, we are the first
to introduce the pre-training cross audio-and-
language modalities.

• We propose a novel cross-modality fusion
mechanism at the fine-tuning stage, which
forces our pre-trained model learn compos-
ite features from different views.

• Comprehensive empirical results demonstrate
that our CTAL achieves the state-of-the-art
results on various downstream SP tasks, such
as emotion classification, sentiment analysis,
and speaker verification. We conduct detailed
ablation studies and analysis to show the ef-
fectiveness of our model components and our
pre-training strategies. To encourage repro-
ducible results, we put our code publicly avail-
able at https://github.com/tal-ai/CTAL_

EMNLP2021.

2 Related Work

2.1 Unimodal Pre-training

There has been a long interest around self-
supervised representation learning. Previous works
have explored alternative approaches to improve
word embedding (Mikolov et al., 2013; Le and
Mikolov, 2014; Pennington et al., 2014), which
is a low-level linguistic representation. After
that, pre-trained NLP models based on multi-layer
Transformers, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019) and GPT2 (Radford et al., 2019), benefit
from context-sensitive representation learning on
large-scale corpus, showing significant improve-
ments in various downstream language understand-
ing tasks. Self-supervised learning in speech pro-
cessing has also shown increasing promise. Follow-
ing BERT, many approaches (Jiang et al., 2019; Liu
et al., 2021, 2020; Chi et al., 2021) are proposed
to learn high-level acoustic representations rather
than surface features such as log Mel-spectrograms
or waveform, which can reveal the abundant infor-
mation within audio signals.

2.2 Multimodal Pre-training

While pre-training for audio-and-language repre-
sentations has rarely been studied, several attempts
have been made to pre-train models for vision-
and-language tasks on visual question answering
(Antol et al., 2015) and visual commonsense rea-
soning (Zellers et al., 2019) datasets. In general,
these vision-and-language pre-training methods
can be divided into two categories, according to
their different encoder architectures as follows: (a)
prior works like ViLBERT (Lu et al., 2019) and
LXMERT (Tan and Bansal, 2019), apply two uni-
modal networks to encode input text and images
respectively and adapt cross-modal interactions in a
symmetric fusion manner; (b) the other category of
pre-training frameworks like VisualBert (Li et al.,
2019), Unicoder-VL (Li et al., 2020a) and UNITER
(Chen et al., 2020), concatenate vision and lan-
guage features as a unified single-stream input and
utilize a universal encoder to learn joint multimodal
representations.

However, transfer above algorithms directly
from vision-and-language to audio-and-language
field faces challenges, including: (1) unified archi-
tecture is not suitable for audio-language modali-
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ties, since both text and audio signals are generally
long sequences, and cross-modal aggregation at
the very beginning phase with Transformer self-
attention mechanism will lead to higher compu-
tational complexity; (2) audio signals are more
informative than language texts, which contain
both semantic information of text content and per-
sonal feelings. Thus, it is not suitable to apply the
symmetric cross-modal fusion module proposed in
prior vision-and-language pre-training researches.
Based on these facts, we design our backbone
model with a language stream encoding module
and a text-referred audio stream encoding module,
which allow necessary intra- and inter-modality
connections during pre-training with less computa-
tional cost.

The closest work to our approach is from Haque
et al. (2019) and our approach differs from it in
two aspects. First, we use a more explicit, multi-
component design for the cross-modality connec-
tions (i.e., with a text-referred audio stream encod-
ing module and a novel cross-modality fusion com-
ponent). Second, we employ different pre-training
tasks which accept both text and audio frames as
input to conduct contextualized masked language
modeling and masked cross-modal acoustic model-
ing tasks.

3 Our Approach

In this section, we first present our cross-modal
pre-training framework CTAL, including details of
text and audio pre-processing and encoding mod-
ules for separate modalities. Then we present our
pre-training tasks. In the end, we propose a novel
fusion mechanism which can be utilized in the fine-
tuning stage. Following conventions, we use bold
upper case letters to represent matrices and bold
lower case letters to represent vectors.

3.1 The CTAL Framework

We build our cross-modal Transformer by extend-
ing the original Transformer (Vaswani et al., 2017)
into the multimodal paradigm. As shown in Fig-
ure 1, CTAL takes audio sequences and their corre-
sponding text sequences as the input. Each audio
sequence is represented as a sequence of frames,
and each text sequence is represented as a sequence
of tokens. Then we encode the input to the linguis-
tic embedding and audio embedding, and feed them
into a text encoding module and a text-referred
audio encoding module respectively to generate

final language representations and text referred au-
dio representations. Following the notations used
by Vaswani et al. (2017), we adapt Q, K and V
as queries, keys and values for attention mecha-
nism, MultiHead(Q, K, V) as multi-head attention,
FFN(X) as position-wise feed forward networks
and LayerNorm(X) as layer normalization.

3.1.1 Input Embeddings
Linguistic Embedding. To encode any input text
with a modest size (30K units) of subword vo-
cabulary, we follow the text pre-processing of
RoBERTa, which tokenizes each input text w =
{w0, w1, ..., wT } with byte-level byte-pair encod-
ing (BBPE) (Radford et al., 2019). Besides, we
also add the special tokens <s> and </s> to repre-
sent start and end tokens. Then we sum up each
token embedding and its corresponding position
embedding to get the final input token embeddings
{ew0 , ew1 , ..., ewT } for language modality. T is
the total length of input tokens.
Audio Embedding. The input audio signal is first
transformed into frames of width 50ms and step
12.5ms. Then the 80 dimension Mel-spectrograms
are extracted from each frame and concatenated
with their first order derivatives, making the fea-
ture dimension to 160. In this way, the raw signal
is converted into sequence of frame-level acoustic
surface features {a0, a1, ..., aT }, where T is the
total number of frames. For simplicity, we denote
this audio feature sequence as input acoustic fea-
tures after this section. Then, we feed these surface
features to a projection layer and add them with
the position embeddings to obtain the input audio
embeddings {ea0 , ea1 , ..., eaT } for audio modality.

3.1.2 Text Encoding Module
As shown in Figure 1, we apply the original Trans-
former encoder to language stream inputs, each
language stream encoding layer consists of one
multi-head self-attention sublayer and one position-
wise feed forward sublayer. We stack N such lan-
guage encoding layer and use the output of k-th
layer as the input to the (k + 1)-th layer. We ini-
tialize H0

w with {ew0 , ew1 , ..., ewT } and obtain the
language representations for the k-th layer with the
followings:

Ĥk+1
w = MultiHead(Q = Hk

w,K = Hk
w,V = Hk

w)

H̃k+1
w = LayerNorm(Ĥk+1

w + Hk
w)

Hk+1
w = LayerNorm(FFN(H̃k+1

w ) + H̃k+1
w )
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Figure 1: The proposed CTAL pre-training framework.

We get the final output HN
w ∈ RT×dw from our lan-

guage stream encoding module, where dw denotes
the hidden size of the language stream represen-
tations. The first token of every text sequence is
always a special start token (<s>), and the final
hidden state corresponding to this token is always
used as the aggregated text sequence representation
for classification tasks.

3.1.3 Text-Referred Audio Encoding Module
For text-referred audio encoding module, we
first initialize hidden representations H0

a with
{ea0 , ea1 , ..., eaT }, and pass them to a stack of N
text-referred audio encoding layers to acquire the
final audio stream representations HN

a .
Our text-referred audio encoding module is dif-

ferent from the original Transformer decoder by
modifying two kinds of multi-head attention mech-
anism. Firstly, in order to learn the bi-directional
intra-modality representation for audio, we get rid
of the future mask in the masked multi-head self-
attention. Specifically for the (l + 1)-th layer:

Ĥl+1
a = MultiHead(Q = Hl

a,K = Hl
a,V = Hl

a)

H̃l+1
a = LayerNorm(Ĥl+1

a + Hl
a)

Secondly, we apply multi-head cross-modal atten-
tion which accepts the final language stream repre-
sentations as keys and values in each layer to apply
the inter-modality interactions:

H̄l+1
a = MultiHead(Q = H̃l+1

a ,K = HN
w ,V = HN

w )

Ḧl+1
a = LayerNorm(H̄l+1

a + H̃l+1
a )

Hl+1
a = LayerNorm(FFN(Ḧl+1

a ) + Ḧl+1
a )

Finally, we obtain the text-referred audio repre-
sentation of N -th layer HN

a ∈ RT ×da , where da
denotes the hidden size of the audio stream repre-
sentations.

3.2 Pre-training Tasks
3.2.1 Masked Language Modeling
For language stream, we take the MLM task for
language intra-modality learning. As shown in Fig-
ure 1, the MLM task setup is almost the same as
RoBERTa (Liu et al., 2019), we dynamically mask
out the input tokens with a probability of 15%.
Masked tokens are replaced with a special <mask>
token 80% of the time, a random token 10%, and
unaltered 10%. The goal of MLM is to predict
these masked tokens based on the observed tokens.
Here, we do not introduce acoustic information for
masked token prediction, since semantic informa-
tion of text can be well enough captured through
language input. It is redundant to introduce cross-
modal inputs here and it is demonstrate through the
ablation study discussed in Section 5.1.

3.2.2 Masked Cross-modal Acoustic
Modeling

For audio stream, we propose MCAM to train the
text-referred audio representations. Prior research
by Baevski et al. (2020b) indicates that the per-
formance of acoustic pre-trained models on down-
stream tasks is improved with the increment in size
of continuous masked frames during pre-training
phase. However, due to the complexity of audio
signals, the long-term dependencies in audio se-
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quences is hard to be captured with acoustic fea-
tures alone. To mitigate that problem, we propose
MCAM to capture effective information of audio
through learning both intra- and inter- modalities
connections between audio and language.

To implement MCAM, we first split the audio
in separate segments according to C consecutive
frames per segment, where C is uniformly sam-
pled from 20 to 50. Then we randomly select 15%
of these segments and for each of them, we mask
it all to zero 80% of the time, replace it with the
other C randomly selected frames within the au-
dio 10% of the time, and keep it unchanged for
the remaining cases. In this manner, we prevent
the model exploiting local smoothness of acoustic
frames and the model is required to make infer-
ence based on global information rather than local
messages. Finally, the goal is to reconstruct these
masked acoustic features based on the remaining
acoustic features and the language stream prompt,
by minimizing the `1 loss between the original
masked acoustic features and the predicted ones.

Overall, our final objective is to minimize the
sum of the loss functions above.

3.3 Fine-Tuning CTAL

CTAL is designed to be a generic pre-training
model for various audio-language tasks. It is
relatively simple to fine-tune CTAL for various
downstream tasks with just one additional output
layer. To further combine information from dif-
ferent modalities, we propose a novel and flexible
fusion mechanism at the fine-tuning stage. We de-
note HN

w ∈ RT×d and HN
a ∈ RT ×d as the final

representation from text encoding module and text-
referred audio encoding module. We assume that
both modules have the same hidden size d.

In SP tasks, we use the compressed hidden vec-
tors to represent both the language and audio input
sequences. Following the idea from Wang (2018),
which proves that max pooling mechanism tends to
make false negatives while attention pooling mech-
anism prefers making false positives, we come up
with both attention-pooling layer and max-pooling
layer to let them complement each other. After
applying attention-pooling and max-pooling to au-
dio stream final representations HN

a , we obtain
hattn
a ∈ Rd and hmax

a ∈ Rd respectively.

hattn
a = Softmax(vattn

a · tanh(Wattn
a ·HN

a )) ·HN
a

hmax
a = MaxPool(HN

a )

where vattn
a and Wattn

a are parameters in the audio
attention-pooling layer.

As discussed in Section 3.1.2, for language
stream, we adapt the final hidden state of the start
token hw0 ∈ Rd as the aggregated text sequence
representation hattn

w for attention-pooling, and we
conduct additional max-pooling for text stream out-
put HN

w to obtain hmax
w .Then we fuse the aggre-

gated sequence representations from two modali-
ties as follows:

hfuse = (hattn
a + hattn

w ) ⊕ (hmax
a + hmax

w )

where ⊕ denotes the vector concatenation, and
the final hidden state hfuse is always used as the
audio-and-language representation for classifica-
tion tasks.

3.3.1 Orthogonal Regularization
One key characteristic of multimodal learning is the
generated representations of different modalities
are supposed to depict a sample from different point
of views. In order to encourage the two modules
to get representations from different perspectives,
we introduce a regularization term which aims at
achieving the representation orthogonality during
the fine-tuning stage:

LOrth =
|hattn

a
T
hattn
w |

‖hattn
a ‖ ‖hattn

w ‖
+
|hmax

a
Thmax

w |
‖hmax

a ‖ ‖hmax
w ‖

4 Experimental Setup and Results

4.1 Pre-training Details
We pre-train our CTAL on the public dataset Lib-
riSpeech (Panayotov et al., 2015), which is a
dataset of reading English speech, including both
audio recordings and corresponding authorized
transcripts. It has 7 subsets in total (train-clean-
100, train-clean-360, train-other-500, dev-clean,
dev-other, test-clean, test-other). The subsets with
“clean” in their names contain audios with higher
recording quality, while the other subsets have low-
quality recordings. We use all three training subsets
for pre-training, including approximately 960 hours
of speech and 280K utterances.

Following Radford et al. (2019), we consider
training a BBPE tokenizer on the LibriSpeech
corpus with additional special tokens (<s>, </s>,
<mask>, <pad>) as our language stream tokeniz-
ers. We tokenize the input text into token se-
quence as described in Section 3.1.1. For au-
dio stream, we use Librosa (McFee et al., 2015),
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which is a well-established audio analysis Python
package, to extract the 160-dimension input acous-
tic feature for each frame as described in Sec-
tion 3.1.1. We denote the number of layers (i.e.,
language stream encoding layer and text-referred
audio stream encoding layer) as N, the number of
self-attention heads as A, and the number of hid-
den size as H. We primarily report results on two
model sizes: CTALBASE (N=3, A=12, H=768)
and CTALLARGE (N=6, A=12, H=768). The to-
tal number of parameters for CTALBASE is 60M
and 110M for CTALLARGE. We take the Adam
(Kingma and Ba, 2015) as the optimizer with initial
learning rate of 5e-5 and a linear-decayed learning
rate schedule with warm up (Devlin et al., 2019).
We pre-train our model using 4 16G-V100 GPUs
with a batch size of 16 for 1,000,000 steps, and the
whole pre-training process takes roughly 48 hours.

4.2 Fine-tuning on Downstream Tasks

We transfer our pre-trained CTAL model to three
established SP tasks, with simple and necessary
modifications on the output layers, loss function
and training strategy.

4.2.1 Emotion Classification
In emotion classification task, given a speech clip,
the model is asked to predict which emotion cat-
egory the speech belongs to. Here, we conduct
experiments on the widely-used dataset IEMOCAP
(Busso et al., 2008). The dataset was recorded
from ten actors, divided into five sessions, and
each session has dialogues between two speakers
with different genders. The dataset contains au-
dio, transcriptions, and video recordings, and we
only use audio and transcriptions in our study. The
recorded dialogues have been sliced into utterances
and labeled in 10 categories by three annotators
and utterances without any text content are filtered
out in our experiment. For consistent comparison
with previous works, we follow the settings with
Xu et al. (2019), which use four emotions (angry,
happy, neutral and sad) for classification and per-
form 5-fold cross-validation over sessions, where
each session is used as the test set in turn and re-
maining as training dataset. We adopt two widely
used metrics for evaluation: weighted accuracy
(WA) that is the overall classification accuracy and
unweighted accuracy (UA) that is the average re-
call over all four classes. We report the averaged
WA and UA over the 5-fold cross-validation exper-
iments, and higher WA and UA results represent

Methods WA ↑ UA ↑

LSTM_alignment (Xu et al., 2019) 0.6900 0.7014
MRDE (Yoon et al., 2018) 0.6702 0.6764
MHA (Yoon et al., 2019) 0.6780 0.6880

CTALBASE 0.7286 0.7370
CTALLARGE 0.7395 0.7463

Table 1: Comparison to the SOTA methods on the
IEMOCAP dataset.

better model performances.

To fine-tune on IEMOCAP, we represent the
input sequence (for a pair of audio and text) as
described in Section 4.1, and use the final hid-
den vector hfuse as the audio-and-language rep-
resentation. The only new parameters introduced
during fine-tuning are classification layer weights
W ∈ R4×d and CTAL fine-tuning is driven by the
cross-entropy loss between the predicted class and
the gold label. We use a batch size of 4 and fine-
tune for 20 epochs over each fold with one 16G-
V100 GPU. We take AdamW (Loshchilov and Hut-
ter, 2018) as the optimizer in fine-tuning stage, the
learning rate is initialized as 1e-5 and we apply a co-
sine annealing learning rate schedule (Loshchilov
and Hutter, 2017) to reach the optimum.

We select multiple models that claim to achieve
the SOTA results on IEMOCAP dataset as our
baselines. Please notice that previous methods
are specifically designed for the task with no pre-
training stage. Xu et al. (2019) aims to produce
more strong multimodal representations by learn-
ing the alignment between speech frames and
text words using an attention mechanism, i.e.,
“LSTM_alignment”. Yoon et al. (2018) uses a
dual-RNNs to encode the information from audio
and text separately, then combines them by simple
representations concatenation to predict emotion
classes, i.e., “MDRE”. Yoon et al. (2019) proposes
a multi-hop attention mechanism to infer the cor-
relation between audio and language modalities
based on the output hidden representations of two
bi-directional long short-term memory encoders,
and output the final classification result from the
concatenation of audio and language representa-
tions, i.e., “MHA”.

Table 1 presents our experimental results on
IEMOCAP dataset. Since some prior works ex-
periment with different train/test split, we re-
implement baseline models with their published
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Methods Acc2 ↑ F1 ↑ MAE ↓ Corr ↑

MulT 0.7966 0.8008 0.6367 0.6292

CTALBASE 0.8036 0.8055 0.6061 0.6828
CTALLARGE 0.8077 0.8101 0.6027 0.6809

Table 2: Comparison to the SOTA methods on the
CMU-MOSEI dataset.

codes12. Both CTALBASE and CTALLARGE out-
perform all three baselines by a substantial margin,
obtaining 3.86% and 4.95% respective absolute
WA improvement, and 3.56% and 4.49% respec-
tive absolute UA improvement over the prior state
of the art.

4.2.2 Sentiment Analysis
The goal of the sentiment analysis task is to predict
the degree of positive and negative sentiment. Com-
pared to the emotion classification task, sentiment
analysis is a regression task rather than a classifi-
cation task. We adopt CMU-MOSEI (Zadeh et al.,
2018) dataset for evaluation, which contains 23,454
movie review video clips from YouTube. We use
only audio and corresponding transcriptions as in-
put in our experiments. Each sample in the dataset
is labeled with a sentiment score from -3 (strongly
negative) to 3 (strongly positive) by human annota-
tors. We follow the same experimental protocol as
MuIT (Tsai et al., 2019), with the same train/test
data split and the same evaluation metrics, which
includes two classification metrics: (1) binary ac-
curacy (i.e., Acc2: accuracy over positive/negative
sentiments classification), and F1 score; (2) two re-
gression metrics: mean absolute error (MAE), and
the Pearson correlation coefficient (Corr) between
model’s predictions and human annotations. Since
the prior top results reported on the CMU-MOSEI
dataset are all achieved using all three modalities,
so does MulT3, we prune the vision-related com-
ponents in MulT and re-train the model using only
audio and text information.

During fine-tuning on sentiment analysis, we in-
troduce additional parameters w ∈ Rd to project
the final hidden representation hfuse to the senti-
ment score, and the model is trained to minimize
the `1 loss between the predicted scores and the

1MDRE:https://github.com/david-yoon/
multimodal-speech-emotion.git

2LSTM_alignment:https://github.com/didi/
delta

3MulT:https://github.com/yaohungt/
Multimodal-Transformer

gold annotations. The other fine-tuning settings
over CMU-MOSEI are almost the same as IEMO-
CAP. As show in Table 2, we observe improve-
ments across all 4 metrics for CTAL over MulT
baseline under both base and large settings.

4.2.3 Speaker Verification
Speaker verification focuses on verifying the
speaker identity of an utterance through compar-
ing it with the pre-recorded voiceprint information.
In this experiment, we adopt LibriSpeech (Panay-
otov et al., 2015) for evaluation, which includes
292K utterances collected from more than 2,438
speakers. Following the same experiment setting
with prior works (Wan et al., 2018; Jung et al.,
2019), we fine-tune our pre-trained model with
all training splits (train-clean-100, train-clean-360
and train-other-500), and evaluate it with test-clean
part, which contains 40 brand new speakers to the
training part. Please note that, although the train
set for our speaker verification task is identical
with the one we used for pre-training, the speaker
identity information and test-clean data are not re-
leased during the pre-training process. Thus, it is
fair to perform comparisons between our models
with other prior works. We add a classifier over the
head of fused embeddings hfuse and adopt cross-
entropy loss to fine-tune it. The output size of the
classifier is same to the number of unique speakers
in train set.

Methods EER ↓

GE2E (Wan et al., 2018) 0.0379
RawNet (Jung et al., 2019) 0.0253

CTALBASE 0.0194
CTALLARGE 0.0155

Table 3: Comparison to the SOTA methods on the Lib-
riSpeech dataset.

For evaluation, we utilize the representation be-
fore classifier as the input audio’s identity embed-
ding. Cosine distance of each paired audio embed-
dings is used as the indicator for the final decision.
Similar to prior studies, we report the equal er-
ror rate (EER) as the evaluation metric, and lower
EER represents better model performance. We
choose two SOTA models as our baselines (Wan
et al., 2018; Jung et al., 2019) where GE2E (Wan
et al., 2018) designs a general loss function that
emphasizes examples that are difficult to verify
at each step of the training process, and RawNet
(Jung et al., 2019) proposes an end-to-end network

https://github.com/david-yoon/multimodal-speech-emotion.git
https://github.com/david-yoon/multimodal-speech-emotion.git
https://github.com/didi/delta
https://github.com/didi/delta
https://github.com/yaohungt/Multimodal-Transformer
https://github.com/yaohungt/Multimodal-Transformer
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that input raw audio waveforms to extract speaker
embeddings. The comparison results are shown
in Table. 3. From the table, we observe that our
CTALBASE outperforms GE2E and RawNet by
1.85% and 0.59% respectively, and CTALLARGE

outperforms two baselines by 2.24% and 0.98%
respectively.

5 Analysis

5.1 Ablation Studies

We present the ablation result of different key com-
ponents in CTAL in Table 4. For experimental
efficiency, all of the ablation experiments are con-
ducted with CTALLARGE.

Overall, the pre-training of CTAL improves the
performance across all the three downstream tasks
(by comparing settings “w/o Pre-training” and
CTALLARGE), and we find that CTALLARGE sig-
nificantly outperforms CTALBASE across all tasks.
Besides, with the increment in the size of pre-
training data, CTAL achieves better performances
on all evaluation metrics except Acc2 and F1 in
sentiment analysis task (by comparing settings (a)
“pre-train with train-clean-360” and CTALLARGE).
The effectiveness of the asymmetry encoder design
for audio-and-language representations is demon-
strated by comparing CTALLARGE to LXMERT
and VisualBERT, where all models are designed
to have similar size of parameters.

By comparing (b) “w/o MLM” to “w/o Pre-
training” and (c) “w/o MCAM” to “w/o Pre-
training”, we see the benefits of pre-training on
MCAM and MLM respectively. However, by com-
paring (b) and (c) with CTALLARGE, both of them
suffer dramatically performance decrease over all
downstream tasks. This indicates the importance of
joint-training with MLM and MCAM tasks during
the pre-training stage. So far, the effectiveness of
pre-training and different tasks are demonstrated.

Setting (d) “w/o Orthogonal Fusion” re-
moves our proposed cross-modality orthogonal-
fusion component and by comparing it with
CTALLARGE, we observe that the model’s per-
formance decreases on all three downstream tasks,
which proves its effectiveness. Setting (e) “w/o au-
dio Outputs” and (f) “w/o language Outputs” only
use the output embeddings from either audio or
language encoding module for downstream fine-
tuning. Through comparing them to (d), we find
each kind of embeddings contributes to the Audio-
and-Language tasks and the best performance is

achieved through the appropriate fusion of both
parts. At last, setting (g) “w/o Cross-modal Pre-
training” utilizes unimodal pre-training models,
RoBERTa and Mockingjay pre-trained with Lib-
riSpeech dataset, and fuses their output embed-
dings for the downstream tasks. To be noticed,
“w/o Cross-modal Pre-training” is chosen to have
the same model size as CTALLARGE for the com-
parison purpose. Additionally, we present the
performance of each single modality pre-trained
model, Mockinjay and RoBERTa, to demonstrate
the advantages of multimodal pre-training. From
the results, we find our approach still holds better
performance across all three tasks, which proves
the importance of introducing inter-modality learn-
ing during pre-training phase.

5.2 Effect of Pre-training
We analyze the effect of pre-trained CTAL by visu-
alizing its performance on downstream tasks versus
different proportions of training data being used.

10% 30% 50% 70% 100%
Amount of training data

W
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0.50

0.59

0.64
0.66

0.67

0.55
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0.67
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0.71
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(a) WA vs proportions
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0.68
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0.75

MDRE
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CTAL

(b) UA vs proportions

Figure 2: Results of models on different proportions of
training data on IEMOCAP in terms of WA and UA.
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(a) MAE vs proportions
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(b) Correlation vs proportions

Figure 3: Results of models on different proportions of
training data on CMU-MOSEI in terms of MAE and
Correlation.

In Figure 2a and Figure 2b, we show the perfor-
mance on IEMOCAP dataset. First of all, on both
metrics, CTAL outperforms all baselines across dif-
ferent proportions of training data. Secondly, the
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Settings MLM MCAM Orthognal
Fusion

Cross-
modal

Pre-train

Text
Outputs

Audio
Outputs

Pre-train
960

Hours

Pre-train
360

Hours

Emotion
Classification
(IEMOCAP)

Sentiment
Analysis
(MOSEI)

Speaker
Verification

(LibriSpeech)

WA ↑ UA ↑ Acc2 ↑ F1 ↑ MAE ↓ Corr ↑ EER ↓

w/o pre-training
√ √ √

0.7004 0.7110 0.7804 0.7809 0.6654 0.6086 0.0366

(a)
√ √ √ √ √ √ √

0.7262 0.7386 0.8127 0.8150 0.6050 0.6804 0.0204
(b)

√ √ √ √ √ √
0.7077 0.7185 0.7834 0.7842 0.6629 0.6096 0.0244

(c)
√ √ √ √ √

0.7080 0.7171 0.7812 0.7809 0.6442 0.6440 0.0327
(d)

√ √ √ √ √ √
0.7338 0.7444 0.7948 0.7939 0.6035 0.6832 0.0176

(e)
√ √ √ √ √

0.6497 0.6586 0.7804 0.7795 0.6235 0.6639 -
(f)

√ √ √ √ √
0.7315 0.7412 0.7989 0.7915 0.6065 0.6750 0.0190

(g)
√

(MAM)
√ √ √ √

0.7116 0.7270 0.7820 0.7834 0.6323 0.6527 0.0306

Mockingjay (MAM)
√ √

0.5505 0.5672 0.6887 0.7199 0.8056 0.3556 0.0551
RoBERTa

√ √ √
0.6377 0.6411 0.7451 0.7412 0.6598 0.5760 -

LXMERT (LXMERT)
√ √ √ √ √

0.7145 0.7222 0.7749 0.7740 0.6405 0.6430 0.0320
VisualBERT (VisualBERT)

√ √ √ √ √
0.6778 0.6848 0.7769 0.7722 0.6621 0.6243 0.0375

CTALBASE
√ √ √ √ √ √ √

0.7286 0.7370 0.8036 0.8055 0.6061 0.6828 0.0194
CTALLARGE

√ √ √ √ √ √ √
0.7395 0.7463 0.8077 0.8101 0.6027 0.6809 0.0155

Table 4: The results for performing ablation study with CTALLARGE. Notation “(MAM)” represents the acoustic
stream encoding module is pre-trained with mask audio modeling (MAM) task. The EER is not reported for setting
(d) and RoBERTa, because it does not make sense to perform speaker verification with only semantic embeddings.

Figure 4: Visualization of 10 speakers embeddings via
t-SNE. Different colors represent different speakers.

figures show that CTAL only needs half the amount
of training data to achieve a better performance
than baselines. The results on MOSEI dataset are
shown in Figure 3a and Figure 3b, and the same
conclusion can also be drawn.

In Figure 4, we use t-SNE (Van der Maaten and
Hinton, 2008) to visualize the speaker embeddings
in test set extracted from pre-trained CTAL without
training on downstream tasks. Here, each point
represents an utterance and different speakers have
different colors. We can observe that the model can
have some capability to distinguish utterances of
different speakers with only pre-training.

6 Conclusion

In this work, we proposed CTAL, a novel pre-
training cross-modal Transformer to learn effec-

tive representations for audio-and-language tasks.
It is pre-trained with two pre-training tasks on a
large-scale dataset of audio-and-language pairs. Ex-
tensive empirical analysis demonstrates that our
pre-trained model improves various speech under-
standing performance significantly and achieves
new SOTA results. Besides, we show the effec-
tiveness of different model components and the
competent generalization capability via detailed
ablation studies and analysis.
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