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Abstract

Aspect-based sentiment analysis (ABSA) task
consists of three typical subtasks: aspect term
extraction, opinion term extraction, and senti-
ment polarity classification. These three sub-
tasks are usually performed jointly to save re-
sources and reduce the error propagation in the
pipeline. However, most of the existing joint
models only focus on the benefits of encoder
sharing between subtasks but ignore the dif-
ference. Therefore, we propose a joint ABSA
model, which not only enjoys the benefits of
encoder sharing but also focuses on the differ-
ence to improve the effectiveness of the model.
In detail, we introduce a dual-encoder design,
in which a pair encoder especially focuses
on candidate aspect-opinion pair classification,
and the original encoder keeps attention on se-
quence labeling. Empirical results show that
our proposed model shows robustness and sig-
nificantly outperforms the previous state-of-
the-art on four benchmark datasets.

1 Introduction

Sentiment analysis is a task that aims to retrieve
the sentiment polarity based on three levels of gran-
ularities: document level, sentence level, and en-
tity and aspect level (Liu, 2012), which is under
the urgent demands of several society scenarios
(Preethi et al., 2017; Cobos et al., 2019; Islam and
Zibran, 2017; Novielli et al., 2018). Recently, the
aspect-based sentiment analysis (ABSA) task (Pon-
tiki et al., 2014), focusing on excavating the spe-
cific aspect from an annotated review, has aroused
much attention from researchers, in which this pa-
per mainly concerns the aspect/opinion term extrac-
tion and sentiment classification task. The latest
benchmark proposed by Peng et al. (2020) formu-
lates the relevant information into a triplet: target
aspect object, opinion clue, and sentiment polarity
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Figure 1: The subtasks in our proposed model.

orientation. Thus, the concerned aspect term ex-
traction becomes a task of Aspect Sentiment Triplet
Extraction (ASTE). Similarly, the relevant informa-
tion is formulated into a pair with aspect term and
sentiment polarity, and the task is defined as As-
pect Term Extraction and Sentiment Classification
(AESC). Figure 1 shows an example of ASTE and
AESC.

Two early methods handle the triplet extraction
task efficiently (Zhang et al., 2020a; Huang et al.,
2021). Both are typically composed of a sequence
representation layer to predict the aspect/opinion
term mentions and a classification layer to infer the
sentiment polarity of the predicted mention pair of
the last layer. However, as is often the case, such
model design may easily result in that the errors of
the upper prediction layer would hurt the accuracy
of the lower layer during the training procedure.

To tackle the error cascading phenomenon on
the pipeline model, a growing trend of jointly mod-
eling these subtasks in one shot appears. Xu et al.
(2020) proposed a joint model using a sequence
tagging method, based on the bidirectional Long
Short-Term Memory (LSTM) and Conditional Ran-
dom Fields (CRF). However, they found that if a
tagged mention belongs to more than one triplet,



this method will be ineffective. Zhang et al. (2020a)
proposed a multi-task learning approach with the
aid of dependency parsing on tail word pair of
corresponding aspect-opinion pair. However, this
non-strict dependency parsing may miss capturing
structural information of term span. Meanwhile,
the many-target to one-opinion issue is not effec-
tively handled.

The promising results achieved by machine read-
ing comprehension (MRC) frameworks on solving
many other NLP tasks (Li et al., 2020, 2019a) also
inspires the ASTE task. Mao et al. (2021) and Chen
et al. (2021) attempted to design question-answer
pair in terms of MRC to formulate the triplet extrac-
tion. Nevertheless, both need to make the converted
question correspond one-to-one to the designed
question manually, hence increasing computation
complexity.

Among these joint models, Wu et al. (2020)
transformed the sequence representation into the
two-dimension space and argued that the word-pair
under at least one assumption could represent the
aspect-opinion pair as input of different encoders.
Although this model indicated significant improve-
ment, it treated the word-pair without taking span
boundary of aspect term and opinion term into con-
sideration and incorporated nonexistent pre-defined
aspect-opinion pairs.

Considering the problems mentioned above, we
propose a dual-encoder model based on a pre-
trained language model by jointly fine-tuning mul-
tiple encoders on the ABSA task. Similar to prior
work, our framework uses a shared sequence en-
coder to represent the aspect terms and opinion
terms in the same embedding space. Moreover, we
introduce a pair encoder to represent the aspect-
opinion pair on the span level. Thus, our dual-
encoder model could learn from the ABSA sub-
tasks individually and benefit from each other in an
end-to-end manner.

Experiments on benchmark datasets show that
our model significantly outperforms previous ap-
proaches at the aspect level. We also conduct a
series of experiments to analyze the gain of ad-
ditional representation from the proposed dual-
encoder structure.

The contributions of our work are as follows:
•We propose a jointly optimized dual-encoder

model for ABSA to boost the performance of
ABSA tasks.
• We apply an attention mechanism to allow

information transfer between words to promote the
model to know the word pairs before inference.
• We achieve state-of-the-art performance on

benchmark datasets at the time of submission.

2 Our Approach

2.1 Problem Formulation

In this paper, we split the ABSA task into two peri-
ods: aspect/opinion term extraction and sentiment
classification (SC), as shown in Figure 1. The as-
pect/opinion term extraction subtask extracts the
aspect terms (AT) and opinion terms (OT) in the
sentences without considering the sentiment polari-
ties (SP). Furthermore, according to the sentiment
polarity tagging style of the dataset, the SC subtask
is divided into two categories: ASTE, tagging SP
on AT and OT, and AESC, which tags SP only on
AT.

In particular, we denote AT, OT and SP as
the set of predefined aspect terms, opinion terms
and sentiment polarities, respectively, where AT ∈
AT, OT ∈ OT, and SP ∈ SP = {POS, NEU,
NEG}. Given a sentence s consisting of n tokens
ω1, ω2, ..., ωn, we denote T as the sentence output
of our model. Specifically, for the ASTE task, T =
{(AT,OT, SP )}, and for the AESC task, T =
{(AT, SP )}.

2.2 Model Overview

Our approach for the ABSA task is designed to sub-
tly model high affinity between aspect/opinion pair
and ground truth by effectively leveraging the pair
representation, which adapts the same encoder de-
sign proposed by Wang and Lu (2020) to the aspect-
based sentiment analysis problem. As shown in
Figure 2, our dual-encoder comprises two mod-
ules: (1) a sequence encoder, with a pre-trained
language model to represent AT and OT with the
corresponding context; (2) a pair encoder, encoding
the aspect-opinion pair for each sentiment polarity.

2.3 Differences from Table-sequence Model
of Relation Extraction

Our approach differs from Wang and Lu (2020) in
the AT/OT extraction subtask modeling. For the
sentiment classification module in this work, we
still follow the efficient relation extraction module
design of Wang and Lu (2020) for tackling pair
classifications. For the reason that we found there
are many commonalities in modeling including the
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Figure 2: The framework of our model. Dashed lines are for optional components. Note that here our adopted
encoder shares the same design as the table sequence encoder in Wang and Lu (2020).

same general dual-encoder design between Rela-
tion Extraction (RE) task and ABSA task. Never-
theless, there must be a difference in the sequence
labeling part between these two different task pur-
poses: the head of relation arc in ABSA must be
aspect term (AT), and the tail of arc must be opin-
ion term (OT). While in the RE task, the head entity
and the tail entity have a symmetrical relationship,
without restriction on the head and tail of arc. Thus
in the implementation of this work, we designed a
fine-grained sequence labeling component, which
labels AT/OT to the head/tail of arc instead of treat-
ing it as the same entity in RE just like what Wang
and Lu (2020) did in their work.

Our proposed strategy is more adapted to the
characteristics of the ABSA task. With this mod-
ified model structure, our model could efficiently
infer the AT, OT, and their corresponding relation-
ship.

2.4 Token Representation

For a length-n input sentence s = ω1, ..., ωn, be-
sides the word-level representation xword, we also
feed the characters of the word into the LSTM to
generate the character-level representation xchar.
Additionally, the pre-trained language model pro-
vides the contextualized representation xplm. Fi-
nally, we concatenate these three representations

of each word to feed into the dual-encoder:

xi = [xchar;xword;xplm]. (1)

In our proposed dual-encoder architecture, we
still treat the ASTE/AESC task as a unified se-
quence tagging task in previous work: for a given
sentence s, where AT and OT on the main diagonal
are annotated with B/I/O (Begin, Inside, Outside),
each entry Ei,j of the upper triangular matrix de-
notes the pair (ωi, ωj) from the input sentence. Our
work is partially motivated by Wu et al. (2020) but
significantly different.

First, we improve the word-level pair represen-
tation to span-level pair representation with more
accurate boundary information fed into our model.
The tagging scheme of our model is illustrated in
Figure 3, in which the main diagonal are filled with
AT and OT accompanying entries to the right of the
main diagonal with span pairs. Compared to (Wu
et al., 2020), our method may heavily reduce the
redundancy aroused by AT and OT tags at the right
of the main diagonal.

Second, we consider the context information on
both two-dimension spaces and the historical infor-
mation with the utilization of the recurrent neural
network (RNN). However, Wu et al. (2020) merely
adopted a single encoder which based on DE-CNN
(Xu et al., 2018)/BiLSTM/BERT (Devlin et al.,
2019) to establish token representation, and they



��

������

�����

���

��

��

�������

���

�� ��
��
��

��
��
�

��
�

�� ����
��
��
�

��
�

�

�

�

����

����

����

���

���

���

��� ��� ������

��� ����

����

Figure 3: A tagging example for our model.

formulated the final word-pair representation by a
simplified method of attention-guided word-pair
concatenation.

Thus, our dual-encoder could jointly encode AT,
OT (with the corresponding context on both di-
mensions), and AT-OT pairs with representation
information sharing.

2.5 Sequence Encoder

Following the previous work of Vaswani et al.
(2017), we construct the sequence encoder as a
Transformer network.

Here we apply a stack of m self-attention layers,
shown in Figure 2. Each layer consists of two
sublayers: namely multi-head attention sublayer,
feed-forward sublayer, at the top of each sublayer
followed with both residual connection and layer
normalization.

2.5.1 Multi-head Attention Sublayer

In this section, the token representation xi is fed
into a multi-head attention sublayer.

At first of our sequence encoder, the token rep-
resentation xi will be mapped into vector space as
query Qi, key Ki, value Vi:

Qi = xiWQ

Ki = xiWK

Vi = xiWV

(2)

then the value vectors of all positions will be aggre-
gated according to the normalized attention weight

to get the single-head representation:

SingleHead(Qi,Ki,Vi) = softmax(
QiK

T
i√

d/m
)V

(3)
where m is the number of heads, d is the dimension
of xi, and in our sequence encoder, Q = K =
V = xi.

Then with multi-heads attention, our model
builds up representations of the input sequence:

ri = MultiHead(Qi,Ki,Vi)

= Concat(SingleHead1,..,m(Qi,Ki,Vi))W
O

(4)
where WO ∈ Rd. We adopt the residual connec-
tion and layer normalization (Ba et al., 2016) on ri
and xi:

ai = LayerNorm(ri + xi) (5)

2.5.2 Feed-Forward Sublayer
The outputs of the multi-head attention are fed into
a feed-forward network:

ei = FFNN(ri) = (aiW1 + b1)W2 + b2 (6)

where W1,W2,∈ Rd×d/m and b1, b2 ∈ Rd. At
last, the sequence representation will be performed
by layer normalization with residual connection:

Si = LayerNorm(ei + ai) (7)

2.6 Pair Encoder
As shown in Eq. (3), our task-specific pair repre-
sentation is an n× n matrix of vectors, where the
vector at row i and column j represents i-th and
j-th word pair of the input sentence. For the l-th
layer of our network, we first add a Multi-Layer
Perception (MLP) layer with ReLU (Nair and Hin-
ton, 2010) to contextualize the concatenation of
representations from the sequence encoder:

S′l,i,j = ReLU(MLP([Sl−1,i;Sl−1,j ])) (8)

Then we utilize the multi-dimensional recurrent
neural network (MDRNN) (Graves et al., 2007)
and gated recurrent unit (GRU) (Cho et al., 2014)
to contextualize S′l,i,j . The contextualized pair rep-
resentation Pi is computed iteratively from the hid-
den states of each cell:

Pl,i,j = GRU(S′l,i,j ,Pl−1,i,j ,Pl,i−1,j ,Pl,i,j−1)
(9)

The pair encoder does not consider only the word
pair at neighboring rows and columns but also those
of the previous layer.



2.7 Training
Given a sentence s with pre-defined tags AT , OT ,
and SP ∈ {POS, NEU, NEG}, we denote the AT
or OT tag of token ωi as ai and the SP tag between
the tokens ωi and ωj as tij . To predict the label
of the posterior of the aspect/opinion terms ŷ, we
apply a softmax layer on the sequence embedding
of aspect/opinion terms Sl. Similarly, to obtain the
distribution of sentiment polarity type label v̂, we
apply softmax on the pair representation of Pl:

P (ŷ|ai, s) = softmax(WtermSl) (10)

P (v̂|tij , s) = softmax(WpolaPl) (11)

where Wterm and Wpola are learnable parameters.
At the training, we adopt the Cross-Entropy as

our loss function. For the gold aspect and opinion
term ai ∈ AT

⋃
OT and gold polarity tij ∈ SP,

the training losses are respectively:

Lterm = −
∑

ai∈AT∪OT

log(P (ŷ = y|ai, s)) (12)

Lpola = −
∑

tij∈SP,i 6=j

log(P (v̂ = v|tij , s)) (13)

where the y and v are the gold annotations of cor-
responding terms.

To jointly train the model, we utilize the sum-
mation of these two loss functions as our training
objective:

L = Lterm + Lpola (14)

3 Experiments

3.1 Data
To make a fair comparison with previous methods,
we adopt two versions of datasets for the ASTE
task: (1) ASTE-Data-V1, originally provided by
Peng et al. (2020) from the SemEval 2014 Task 4
(Pontiki et al., 2014), SemEval 2015 Task 12 (Pon-
tiki et al., 2015) and SemEval 2016 Task 5 (Pontiki
et al., 2016), and (2) ASTE-Data-V2, the refined
version annotated by Xu et al. (2020), with addi-
tional annotation of implicitly overlapping triplets.
Furthermore, the name of each dataset is composed
of two parts. The former part denotes the year when
the corresponding SemEval data was proposed, and
the latter part is the domain name of the reviews on

restaurant service or laptop sales. Data statistics of
them is shown in Table 9.

Then, for the AESC task, we adopt the dataset
annotated by Wang et al. (2017), which is com-
posed of three datasets, and the statistics is shown
in Table 10. The implementation details of our
dual-encoder model are unfolded in Appendix A.2
for the sake of putting main concentration on
our argument. Our model implementation gen-
erally follows the released code by Wang and
Lu (2020)1, and our code will be available at
https://github.com/Betahj/PairABSA.

3.2 Results on the ASTE Task

Our model will compare to the following baselines
on the ASTE task, and more details about these
baseline models are listed in Appendix A.3.

1) RINANTE+ (Peng et al., 2020).
2) CMLA+ (Peng et al., 2020).
3) Li-unified-R (Peng et al., 2020).
4) Peng et al. (Peng et al., 2020).
5) OTE-MTL (Zhang et al., 2020a).
6) JET (Xu et al., 2020).
7) GTS (Wu et al., 2020).
8) Huang et al. (Huang et al., 2021).
The main results of all the models on the ASTE

task are shown in Table 1. Compared with the best
baseline model (Huang et al., 2021), our BERT-
based dual-encoder model achieves an improve-
ment by 1.39, 0.53, 0.68, and 2.92 absolute F1

score on benchmark datasets. This result signifies
that our dual-encoder model is capable of captur-
ing the difference between AT/OT extraction sub-
task and SC subtask with the help of the additional
pair encoder. Besides, our ALBERT-based model
significantly outperforms all the other competitive
methods on most metrics of 4 datasets 14Rest,
14Lap, 15Rest and 16Rest except for precision
score of 15Rest. Most notably, our ALBERT-based
model achieves an improvement of 6.66, 4.72, 9.08,
and 4.49 absolute F1 score over all the baseline
models on four benchmark datasets, respectively.
This result demonstrates the superiority of our dual-
encoder model. However, we notice that our pre-
cision score of 15Rest is comparable to (Xu et al.,
2020), which might be due to our model is more
biased towards positive predictions but that the F1
score still suggests it is an overall improvement.

The similar phenomenon that our BERT-based

1https://github.com/LorrinWWW/
two-are-better-than-one

https://github.com/Betahj/PairABSA
https://github.com/LorrinWWW/two-are-better-than-one
https://github.com/LorrinWWW/two-are-better-than-one


Models 14Rest 14Lap 15Rest 16Rest

P. R. F1 P. R. F1 P. R. F1 P. R. F1

CMLA+ 39.18 47.13 42.79 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE+ 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
(Peng et al., 2020) 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTL 63.07 58.25 60.56 54.26 41.07 46.75 60.88 42.68 50.18 65.65 54.28 59.42
GTS-BiLSTM 71.41 53.00 60.84 58.02 40.11 47.43 64.57 44.33 52.57 70.17 55.95 62.26
JETt 66.76 49.09 56.58 52.00 35.91 42.48 59.77 42.27 49.52 63.59 50.97 56.59
JETo 61.50 55.13 58.14 53.03 33.89 41.35 64.37 44.33 52.50 70.94 57.00 63.21

GTS+BERT 71.76 59.09 64.81 57.12 53.42 55.21 54.71 55.05 54.88 65.89 66.27 66.08
JETt

+BERT 63.44 54.12 58.41 53.53 43.28 47.86 68.20 42.89 52.66 65.28 51.95 57.85
JETo

+BERT 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
(Huang et al., 2021)+BERT 63.59 73.44 68.16 57.84 59.33 58.58 54.53 63.30 58.59 63.57 71.98 67.52

Ours+BERT 67.95 71.23 69.55 62.12 56.38 59.11 58.55 60.00 59.27 70.65 70.23 70.44
Ours+ALBERT 75.20 74.45 74.82 66.67 60.26 63.30 65.76 69.69 67.67 69.84 74.32 72.01

Table 1: Results on ASTE-Data-V2 test datasets. Baseline results are directly retrieved from (Huang et al., 2021).
The extensive experiment of ASTE-Data-V1 test datasets are supplemented in the Appendix.

Models 14Rest 14Lap 15Rest

AE OE AESC AE OE AESC AE OE AESC

SPAN-BERT 86.71 - 73.68 82.34 - 61.25 74.63 - 62.29
IMN-BERT 84.06 85.10 70.72 77.55 81.00 61.73 69.90 73.29 60.22

RACL-BERT 86.38 87.18 75.42 81.79 79.72 63.40 73.99 76.00 66.05
(Mao et al., 2021) 86.60 - 75.95 82.51 - 65.94 75.08 - 65.08

Baseline+BERT 86.64 85.59 70.20 80.03 80.52 57.81 72.24 75.72 62.91
Ours+BERT 86.94 85.80 70.49 80.26 80.61 57.98 72.68 75.94 63.19

Ours+ALBERT 86.52 85.82 74.19 81.80 80.47 61.51 75.42 78.86 64.82

Table 2: Results for AESC on the test datasets annotated by Wang et al. (2017). Baseline results are directly
retrieved from (Mao et al., 2021). The best result of each evaluation metric is bolded.

dual-encoder model shows larger improvements in
F1 scores on 14Rest (1.39) and 16Rest (2.92) than
on 14Lap (0.53) and 15Rest (0.68) verifies the ex-
planation of Xu et al. (2020) on large distribution
differences of 14Rest and 15Rest. Nevertheless,
we also observe a different phenomenon that our
ALBERT-based dual-encoder model achieves sig-
nificant F1 score improvements on 14Rest (6.66)
and 15Rest (9.08), better than 14Lap (4.72) and
16Rest (4.49), makes a challenge to the explana-
tion developed by Xu et al. (2020). From our per-
spective, it might be due to the different fitting
degree between the distribution of ASTE-Data-V2
datasets and corresponding pre-trained language
models. Additionally, we evaluate our model on
the ASTE-Data-V1 datasets and then experimental
results further demonstrate the effectiveness of our
dual-encoder model. These results are shown in
Table 8 of the Appendix.

3.3 Results on the AESC Task

For the AESC task, our model will compare to the
following baselines:

1) SPAN-BERT (Hu et al., 2019).
2) IMN-BERT (Hu et al., 2019).
3) RACL-BERT (Chen and Qian, 2020).
4) Mao et al. (Mao et al., 2021).
To investigate whether the performance of our

model on the AESC task maintains the same effi-
ciency as the ASTE task, we conduct a series of
experiments on AESC datasets. Results of all the
models on the AESC task are shown in Table 2.
Compared with the best baseline model of Mao
et al. (2021), the performance of our model is not
comparable except for the absolute F1 score on AE
and OE of 15Rest dataset. Then, to excavate the
contribution of our dual-encoder structure on the
AESC task, we evaluate our model on the baseline
without the pair encoder. From Table 2 we can see
that the performance of our dual-encoder model is
comparable on the AESC task than single-encoder
structure. The AESC task is only a simplified ver-
sion of the ASTE task without taking AT/OT paring
and sentiment polarity classification into considera-
tion reversely, which is the training objective of our
joint model with the help of task-specific structure



design. Consequently, our model is incapable of
functioning well in the AESC task.

4 Ablation Studies

4.1 Different Pre-trained Language Models
We conduct the experiment on the 14Lap of ASTE-
Data-V2 datasets to excavate the performance of
three frequently utilized pre-trained language mod-
els (PLMs): XLNet (Yang et al., 2019), RoBERTa
(Liu et al., 2019) and ALBERT (Lan et al., 2020).

Table 3 shows that ALBERT helps achieve the
best result among these four PLMs. However, even
with BERT as the baseline model (Xu et al., 2020;
Huang et al., 2021), our model also performs better.
We also notice that, different from most models,
our model is sensitive to different PLMs. Specif-
ically, the absolute F1 score between BERT and
RoBERTa, ALBERT is 1.04 and 4.19, respectively.
It demonstrates that our model performance could
effectively be boosted by our choice of PLM, and
thus we choose ALBERT as our base encoder.

PLM P. R. F1

XLNet 63.24 51.20 56.59
BERT 62.12 56.38 59.11

RoBERTa 61.79 58.60 60.15
ALBERT 66.67 60.26 63.30

Table 3: Comparison of our model with different pre-
trained language models on 14Lap test set of ASTE-
Data-V2.

4.2 Dual-encoder Structure
Therefore, the joint modeling method must take not
only the fitting degree between individual modules
and subtasks but also the difference of each module
into consideration.

Settings P. R. F1

Default Setting 66.67 60.26 63.30
w/o Pair Encoder 58.16 59.15 58.65
w/o Interaction 64.55 58.88 61.58

Table 4: Ablation of our dual-encoder structure on
14Lap test set of ASTE-Data-V2.

4.3 Number of Encoder Layers
The results with different numbers of encoder lay-
ers are in Figure 4. Generally, the performance of
triplet extraction synchronously increases with the
number of encoder layers of both dataset distribu-
tions. Nevertheless, when the number of encoder

1 2 3 4 5 6 7

60

65

70

75

Number of Layers

F
1

sc
or

e

14Lap

16Rest

Figure 4: The impact of number of encoder layers on
model performance.

layers exceeds 3, the performance shows a continu-
ous decreasing trend, except that on 16Rest when
the number of encoder layers is increased to 7, the
performance increases by nearly 2.5 absolute F1

score. Despite this inconsistent phenomenon, to
mainly consider computational/time complexities,
we adopt 3 as the number of encoders.

4.4 The Impact of The Number of GRU
Table 5 shows the results with different settings of
multi-dimensional recurrent neural networks. The
Uni-directional denotes the hidden state from for-
ward GRU results in one quadrant of same dimen-
sion space, the Bi-directional denotes the hidden
state from forward and backward GRU results in
two quadrants of same dimension space, and Quad-
directional denotes the hidden state from forward
and backward GRU results in four quadrants of
same dimension space. We observe that the Quad-
directional setting significantly outperforms the
other two settings. It is also noteworthy that the
performance gap between Bi-directional and Uni-
directional dimensions is much lower than the gap
between Quad-directional and Bi-directional di-
mensions, which might be the reason why most pre-
vious work using bidirectional modelings cannot
perform well. Thus, we choose Quad-directional
as the dimensional setting of our multi-dimensional
RNNs.

4.5 The Effect of Character-level
Representation

To investigate the contribution of character-level
representation to our input sequence, we remove
the character-level representation generated by
LSTM. Experimental result shows that the perfor-
mance decreases by 0.44 absolute F1 score.



Settings P. R. F1

Uni-directional 63.51 59.52 61.45
Bi-directional 64.96 58.60 61.61

Quad-directional 66.67 60.26 63.30

Table 5: Ablation of different settings of multi-
dimensional recurrent neural networks on 14Lap test
set of ASTE-Data-V2.

5 Case Study

To investigate why our model far exceeds the base-
line models, we conduct a case study of three typi-
cal cases from 14Lap test dataset of ASTE-Data-V2,
as shown in Table 6.

From Example-1, we observe that our model
is able to handle the one-to-one case. However,
our dual-encoder structure is more biased towards
coordinative relation between colors and speedy.
More cases we investigated further demonstrating
that our model performs slightly worse on one-to-
one than one-to-many and many-to-many relation
types. From Example-2, we see that our model
can tackle the one-opinion to many-target problem.
However, most previous works are even unable to
tackle one-opinion to two-target. From Example-
3, we observe that our model is capable of well
handling the one-target to many-opinion problem,
which is neglected by most of the existing work
but important for triplet extraction. Because many
sentences compose conflicting sentiments on tar-
get, the model will fail to recognize the opposite
polarity of the same AT when the incorrect AT ex-
traction happens. Finally, we also observe that our
model accurately inferences the boundary of OSX
Lion span, which demonstrates the usefulness of
our transformation that utilizes span to replace the
word. From Example-4, we notice that our model
could efficiently handle the complex situation of
many-opinion to many-target with long-range de-
pendency, which was particularly paid attention
to but not solved well by Zhang et al. (2020a). It
is due to incorporating the self-attention mecha-
nism and GRU in two dimensions, and our model
is sensitive to the difference between the proposed
dual-encoder architecture. Collectively, these afore-
mentioned cases demonstrate the robustness of our
dual-encoder model.

6 Related Work

Recently, NLP has been developed rapidly (He
et al., 2018; Li et al., 2018; Cai et al., 2018; Li

et al., 2019b; Jiang et al., 2020; Zhang et al.,
2021), and the process is further by deep neural
networks (Parnow et al., 2021; Li et al., 2021a)
and pre-trained language models (Li et al., 2021b;
Zhang et al., 2020b). Aspect-based sentiment anal-
ysis was proposed by Pontiki et al. (2014) and also
received lots of attention in recent years.

6.1 ASTE Task

The ASTE task aims to make triplet extraction of
aspect terms, opinion terms, and sentiment polarity,
which was introduced by Peng et al. (2020). In their
work, they leveraged the sequence labeling method
to extract aspect terms and target sentiment and
utilized graph neural networks to detect candidate
opinion terms. Zhang et al. (2020a) proposed a
multi-task framework that decomposes the original
ASTE task into two subtasks, sequence tagging
of AT/OT, and word pair dependency parsing. For
joint learning, Xu et al. (2020) proposed a sequence
tagging framework based on LSTM-CRF. Wu et al.
(2020) constructed an encoder-decoder model to
handle this task with grid representation of aspect-
opinion pairs. Then with the incorporation of a
more specific semantic information guide for the
proposed model, the ASTE is transformed as MRC
task (Chen et al., 2021; Mao et al., 2021). Recently,
Huang et al. (2021) proposed a sequence tagging-
based model to perform representation learning on
the ASTE task.

6.2 AESC Task

The AESC task is to perform aspect terms extrac-
tion and sentiment classification simultaneously.
Hu et al. (2019) and Zhou et al. (2019) used a
span-level sequence tagging method to tackle huge
search space and sentiment inconsistency problems.
Although the huge search space issue has been
solved by Hu et al. (2019), there still exists a low-
performance problem. Addressing this issue, Lin
and Yang (2020) utilized a BERT encoder to con-
textualize shared information of target extraction
and target classification subtasks. Meanwhile, they
used two BiLSTM networks to encode the private
information of each subtask, which greatly boosted
the model performance.

6.3 Dual-encoder Structure

Productive efforts were put into the research of
dual-encoder structure for natural language pro-
cessing tasks in the last few years because of the



Example-1 Also stunning colors and speedy.

gold Also [stunning]OT|POSt1
[colors]AT|POSt1

and speedy.

predict Also [stunning]OT|POSt1
|POSt2

[colors]AT|POSt1
and [speedy]AT|POSt2

.

Example-2 Excellent performance, usability, presentation and time response.

gold [Excellent]OT|POSt1
|POSt2

|POSt3
|POSt4

[performance]AT|POSh1
, [usability]AT|POSh2

, [presentation]AT|POSh3
and

[time response]AT|POSh4
.

predict [Excellent]OT|POSt1
|POSt2

|POSt3
|POSt4

[performance]AT|POSh1
, [usability]AT|POSh2

, [presentation]AT|POSh3
and

[time response]AT|POSh4
.

Example-3 OSX Lion is a great performer..extremely fast and reliable.

gold [OSX Lion]AT|POSh1
|POSh2

|POSh3
is a [great]OT|POSt1

performer..extremely [fast]OT|POSt2
and [reliable]OT|POSt3

.

predict [OSX Lion]AT|POSh1
|POSh2

|POSh3
is a [great]OT|POSt1

performer..extremely [fast]OT|POSt2
and [reliable]OT|POSt3

.

Example-4 I am please with the products ease of use; out of the box ready; appearance and functionality.

gold I am [please]OT|POSt1
|POSt2

|POSt3
with the products [ease]OT|POSt4

of [use]AT|POSh1
|POSh4

; out of the box ready;
[appearance]AT|POSh2

and [functionality]AT|POSh3
.

predict I am [please]OT|POSt1
|POSt2

|POSt3
with the products [ease]OT|POSt4

of [use]AT|POSh1
|POSh4

; out of the box ready;
[appearance]AT|POSh2

and [functionality]AT|POSh3
.

Table 6: Case study of our proposed model, where AT/OT denote aspect term/opinion term, POS denotes sensi-
tive polarity of positive, the subscript of sensitive polarity h1/t1 denotes the head/tail term of the 1st pair in terms
of corresponding sentiment, etc.

natural ability to model representational similar-
ity maximization associated tasks (Chidambaram
et al., 2019; Yu et al., 2020; Bhowmik et al., 2021).
Generally, these approaches encoded a single com-
ponent of the corresponding task separately for
the processing in the next phase. Recently, Wang
and Lu (2020) proposed a sequence-table repre-
sentation learning architecture for a typical triplet
extraction task: relation extraction, and this work
established an example of tackling the triplet extrac-
tion task with the dual-encoder based architecture.

7 Conclusion

In this paper, we observe the significant differences
between the AT/OT extraction subtask and the SC
subtask of ABSA for the joint model. Specifically,
the results on 8 benchmark datasets with significant
improvement over state-of-the-art baselines verify
the effectiveness of our proposed model. Further-
more, to distinguish such differences and keep the
shared part between different modules simultane-
ously, we construct a dual-encoder framework with
representation learning and self-attention mecha-
nism. In addition to the encoder-sharing approach,
our dual-encoder framework can capture the dif-
ference between the subtasks by interconnecting
encoders at each layer to share the critical informa-
tion.
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A Additional Results

A.1 Evaluation Metric

We adopt F1 score as our evaluation metric as other
baseline models. In precise, we measure the F1
score calculated between the final exact match of
AT/OT span, AT/OT types and corresponding po-
larity predictions and gold triplets.

A.2 Implementation Details

For the token representation, we utilize 100-
dimensional GloVe (Pennington et al., 2014) as
initialization and restrict the update of word em-
bedding. The hidden size is 200. The decay rate is
0.05, and the decay steps are 1000. Besides, to fur-
ther boost the performance of our proposed model,
we utilize the ALBERT-xxlarge-v1 (Lan et al.,
2020) as our pre-trained language model. We also
use Adam with a learning rate of 0.001 and update
parameters with a batch size of 24. Training is
limited to the preset max steps. All models are
implemented on the TITAN RTX. More implemen-
tation details are listed in Table 7.

Setting Value

Char/ Char/Word/Glove 100
Word/Glove 100
Hidden Embedding Dim 200
Token Embedding Dim 100
Char Embedding Dim 30
Gradient Clipping 5.0
Batch Size 24
Optimizer Adam
Learning Rate 1e−3

Dropout Rate 0.5
Decay Rate 0.05
Number of Layer 3
Attention Heads 8

Table 7: Hyperparameter settings for our models

A.3 Baselines

Our model will compare to the following baselines
on the ASTE task.

1) RINANTE+ (Peng et al., 2020). The model
RINANTE is modified from that by Ma et al.
(2018). RINANTE+ is an LSTM-CRF model
which first uses dependency relations of words
to extract opinion and aspects with the sentiment.
Then, all the candidate aspect-opinion pairs with
position embedding are fed into the Bi-LSTM en-
coder to make a final classification.

2) CMLA+ (Peng et al., 2020). The model is
adjusted from the one by Wang et al. (2017), which

is an attention-based model, following the same
two-stage processing with dependency relations as
RINANTE+.

3) Li-unified-R (Peng et al., 2020). Li-unified-
R utilizes a modulated multi-layer LSTM encoder
by Li and Lu (2019), and adopts the same aspect-
opinion pair classification as RINANTE+.

4) Peng et al. (Peng et al., 2020). This model
adopts GCN to capture dependency information,
and at the second stage, uses the same strategy of
RINANTE+ to fulfill triplet extraction.

5) OTE-MTL (Zhang et al., 2020a). A multi-
task learning approach that incorporates word de-
pendency parsing boosts the performance of triplet
extraction.

6) JET (Xu et al., 2020). This model jointly
extracts all the subtasks through a unified sequence
labeling method. JETt and JETo denote two differ-
ent tagging forms.

7) GTS (Wu et al., 2020). A sequence tagging
model leverages the property element upper trian-
gular matrix to model the extraction of aspect and
opinion terms.

8) Huang et al. (Huang et al., 2021). The lat-
est sequence labeling model which utilizes the re-
stricted attention field mechanism and represents
word-word perceivable pairs for the final classifica-
tion.

For the AESC task, our model will compare to
the following baselines:

1) SPAN-BERT (Hu et al., 2019). It is a BERT-
based model which utilizes span representation to
perform the AESC task.

2) IMN-BERT (Hu et al., 2019). It is a multi
task learning model modified by He et al. (2019)
and utilizes BERT as encoder to perform aspect
term extraction and sentiment classification.

3) RACL-BERT (Chen and Qian, 2020). It is a
multi-layer multi-task learning model with mutual
information propagation to boost the performance
of the AESC task.

4) Mao et al. (Mao et al., 2021). It is a dual-
MRC architecture model to detect the AT/OT and
corresponding sentiment polarity by means of a
two-round query answering approach.

A.4 Results on ASTE-Data-V1 for ASTE

Results on the ASTE-Data-V1 datasets also show
the effectiveness of our model. But there is an
interesting phenomenon that on the 16Rest test set,
the result of ALBERT-based model is lower than



Models 14Rest 14Lap 15Rest 16Rest

P. R. F1 P. R. F1 P. R. F1 P. R. F1

CMLA+ 40.11 46.63 43.12 31.40 34.60 32.90 34.40 37.60 35.90 43.60 39.80 41.60
RINANTE+ 31.07 37.63 34.03 23.10 17.70 20.00 29.40 26.90 28.00 27.10 20.50 23.30
Li-unified-R 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51
(Peng et al., 2020) 44.18 62.99 51.89 40.40 47.24 43.50 40.97 54.68 46.79 46.76 62.97 53.62
JETt 70.39 51.68 59.72 57.98 36.33 44.67 61.99 43.74 51.29 68.99 51.18 58.77
JETo 62.26 56.84 59.43 52.01 39.59 44.96 63.25 46.15 53.37 66.58 57.85 61.91

JETt
+BERT 70.20 53.02 60.41 51.48 42.65 46.65 62.14 47.25 53.68 71.12 57.20 63.41

JETo
+BERT 67.97 60.32 63.92 58.47 43.67 50.00 58.35 51.43 54.67 64.77 61.29 62.98

Ours+BERT 73.96 67.87 70.78 65.13 57.03 60.81 64.86 63.30 64.07 74.77 72.20 73.46
Ours+ALBERT 77.32 75.52 76.41 68.65 61.22 64.72 67.56 66.81 67.18 73.18 73.33 73.25

Table 8: Results on ASTE-Data-V1 test datasets. Baseline results are directly retrieved from (Xu et al., 2020).

Dataset 14Rest 14Lap 15Rest 16Rest
Sentences Target Sentences Target Sentences Target Sentences Target

ASTE-Data-V1-Train 1,300 2,145 920 1,265 593 923 842 1,289
ASTE-Data-V1-Valid 323 524 228 337 148 238 210 316
ASTE-Data-V1-Test 496 862 339 490 318 455 320 465

ASTE-Data-V2-Train 1,266 2,338 906 1,460 605 1,013 857 1,394
ASTE-Data-V2-Valid 310 577 219 346 148 249 210 339
ASTE-Data-V2-Test 492 994 328 543 322 485 326 514

Table 9: Statistics of the datasets used for the ASTE task.

Datasets Sentence Aspect Opinion

Restaurant14-Train 3,044 3,699 3,484
Restaurant14-Test 800 1,134 1,008

Laptop14-Train 3,048 2,373 2,504
Laptop14-Test 800 654 674

Restaurant15-Train 1,315 1,199 1,210
Restaurant15-Test 685 542 510

Table 10: Statistics of the datasets used for the AESC
task.

that of BERT-based model. It may be due to the
inconsistent domain between the test set and the
pre-trained language model.

A.5 Data Statistics
Table 9 and Table 10 show the statistics of the
datasets we used.


