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Abstract

Masked language models (MLMs) have con-
tributed to drastic performance improvements
with regard to zero anaphora resolution (ZAR).
To further improve this approach, in this study,
we made two proposals. The first is a new pre-
training task that trains MLMs on anaphoric
relations with explicit supervision, and the
second proposal is a new finetuning method
that remedies a notorious issue, the pretrain-
finetune discrepancy. Our experiments on
Japanese ZAR demonstrated that our two pro-
posals boost the state-of-the-art performance,
and our detailed analysis provides new insights
on the remaining challenges.

1 Introduction

In pronoun-dropping languages such as Japanese
and Chinese, the semantic arguments of predicates
can be omitted from sentences. As shown in Fig-
ure 1, the semantic subject of the predicate used is
omitted and represented by φ, which is called zero
pronoun. This pronoun refers to the criminal in
the first sentence. This way, the task of recogniz-
ing the antecedents of zero pronouns is called zero
anaphora resolution (ZAR). This study focuses
on Japanese ZAR.

ZAR is a challenging task because it requires
reasoning with commonsense knowledge about the
semantic associations between zero pronouns and
the local contexts of their preceding antecedents.
As shown in Figure 1, to identify the omitted se-
mantic subject of used, the model should know
the semantic relationship between the criminal’s
weapon and a hammer, namely, a hammer is likely
to be used as a weapon for murder and thus was
used by the criminal, is crucial. We hereinafter
refer to such knowledge as anaphoric relational
knowledge.

A conventional approach to acquire anaphoric re-
lational knowledge is to collect predicate–argument

*Work done while at Tohoku University.

It seems that ! used a hammer.

犯人の
criminal-GEN

使用した
used

The criminal’s weapon was found in the victim’s room. 

!-NOM
!-NOM

凶器が
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模様。
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被害者の
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から
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Figure 1: Example of argument omission in Japanese.

pairs from large-scale raw corpora and then, use
them as features (Sasano et al., 2008; Sasano and
Kurohashi, 2011; Yamashiro et al., 2018), or us-
ing selectional preference probability (Shibata and
Kurohashi, 2018) in machine learning models. A
modern approach is to use masked language mod-
els (MLMs) (Devlin et al., 2019), which is effec-
tive in implicitly capturing anaphoric relational
knowledge. In fact, recent studies used pretrained
MLMs and achieved drastic performance improve-
ments in the tasks that require anaphoric relational
knowledge, including Japanese ZAR (Joshi et al.,
2019; Aloraini and Poesio, 2020; Song et al., 2020;
Konno et al., 2020).

To get more out of MLMs, in this paper, we
propose a new training framework that pretrains
and finetunes MLMs specialized for ZAR. The idea
is two-fold.

First, we design a new pretraining task that trains
MLMs with explicit supervision on anaphoric rela-
tions. Many current pretraining tasks adopt a form
of the Cloze task, where each MLM is trained by
predicting the original token filling the [MASK]
token. Although this task provides each MLM with
no supervision on anaphoric relations, the MLM
implicitly learns about them. In contrast, our new
task, called the pseudo zero pronoun resolution
(PZERO), provides supervision on anaphoric rela-
tions. PZERO assumes that when the same noun
phrases (NPs) appear multiple times in a text, they
are coreferent. From this assumption, we mask one
of such multiple-occurring NPs as a pseudo zero
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大学が
university-NOM

交通手段を
means of transports-ACC

調査した
surveyed

結果、
result,

大半の
most

電車を
train-ACC

教員は
teachers-NOM

使用する。
use.

The university has surveyed teachers' means of transport and found that most teachers use the train.

[ MASK ]

教員の
teachers-GEN

pseudo antecedent

pseudo zero pronoun

Figure 2: Example of our new pretraining task, PZERO. The second teachers is regarded as a pseudo zero pronoun
and is masked, and the first teachers is its pseudo antecedent and should be selected to fill the mask.

pronoun and consider the other NPs as its pseudo
antecedents.1 As shown in the example in Fig-
ure 2, the NP, teachers, appears twice. The second
is masked as a pseudo zero pronoun, and the first is
regarded as its pseudo antecedent. Then, given the
masked zero pronoun, an MLM is trained to select
its (pseudo) antecedent from the candidate tokens
in the context. The explicit supervision on such
pseudo anaphoric relations allows MLMs to more
effectively learn anaphoric relational knowledge.

Second, we address the issue called pretrain-
finetune discrepancy (Yang et al., 2019). Generally,
some part of an MLM is changed for finetuning on
a target task, e.g., discarding the pretrained parame-
ters at the last layer or adding randomly-initialized
new parameters. Such changes in the architecture
are known to be obstacles to the adaptation of pre-
trained MLMs to target tasks. To solve this issue,
we design a new ZAR model that takes over all
the pretrained parameters of an MLM to the ZAR
task with minimal modification. This realizes a
smoother adaptation of the anaphoric relational
knowledge acquired during pretraining to ZAR.

Through experiments on Japanese ZAR, we ver-
ify the effectiveness of PZERO and the combination
of PZERO and our new ZAR model. Also, our anal-
ysis offers insights into the remaining challenges
for Japanese ZAR. To sum up, our main contribu-
tions are as follows:

• We propose a new pretraining task, PZERO,
that provides MLMs with explicit supervision
on anaphoric relational knowledge;

• We design a new ZAR model2 that makes
full use of pretrained MLMs with minimal
architectural modifications;

• Our empirical results show that both the pro-
posed methods can improve the ZAR perfor-
mance and achieve state-of-the-art F1 scores;

• Our analysis reveals that the arguments far

1In addition to antecedents, we deal with postcedents. We
use the term “antecedents" to refer both concepts for brevity.

2Our code is publicly available: https://github.
com/Ryuto10/pzero-improves-zar

from predicates and the arguments of predi-
cates in the passive voice are hard to predict.

2 Japanese Zero Anaphora Resolution

Japanese ZAR is often treated as a part of the
predicate-argument structure analysis, which is the
task of identifying semantic arguments for each
predicate in a text. In the NAIST Text Corpus
(NTC) (Iida et al., 2017), a standard benchmark
dataset that we used in our experiments, each pred-
icate is annotated with the arguments filling either
of the three most common argument roles: the nom-
inative (NOM), accusative (ACC), or dative (DAT)
roles. If an argument of a predicate is a syntactic
dependant of the predicate, we say that the argu-
ment is a syntactically dependent argument (DEP)
and is relatively easy to identify. If an argument of
a predicate is omitted, in contrast, we say that the
argument position is filled by zero pronouns. This
study is focused on recognizing such zero pronouns
and identifying antecedents.

The ZAR task is classified into the following
three categories according to the positions of the
arguments of a given predicate (i.e., the antecedent
of a given zero pronoun):

Intra-Sentential (intra): the arguments within the
same sentence where the predicate appears.

Inter-Sentential (inter): the arguments in the sen-
tences preceding the predicate.

Exophoric: the arguments (entities) that exist out-
side the text. These are categorized into one
of three types: author, reader, and general.3

The identification of inter-sentential and exophoric
arguments is an especially difficult task (Shibata
and Kurohashi, 2018). For inter-sentential argu-
ments, a model has to search the whole document.
For exophoric arguments, a model has to deal with
entities outside the document. Because of this dif-
ficulty, many previous studies have exclusively fo-
cused on the intra-sentential task. In this paper, not

3The definitions of Author and reader correspond to those
in Hangyo et al. (2013). General refers to the rest of exophoric.

 https://github.com/Ryuto10/pzero-improves-zar
 https://github.com/Ryuto10/pzero-improves-zar
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only the intra-sentential task, we also treat inter-
sentential and exophoric tasks as the same task
formulations, as in previous studies.

3 Pseudo Zero Pronoun Resolution

3.1 Motivation and Task Formulation

The proposed PZERO is a pretraining task for ac-
quiring anaphoric relational knowledge necessary
for solving ZAR. PZERO is pseudo since it is as-
sumed that all the NPs with the same surface form
have anaphoric relationships. This assumption pro-
vides a large-scale dataset from raw corpora. Al-
though the assumption seems to be too strong, an
empirical evaluation confirmed that the pretraining
task was effective (Section 6).

The task is defined as follows: Let X be a
given input token sequence X = (x1, . . . ,xT )
of length T , where one of the tokens is [MASK].
Here, x ∈ R|V| is a one-hot vector and V is a
vocabulary set. The task is to select the token(s)
corresponding to the original NP of [MASK] from
the input tokens. All the NPs with the same surface
form as the masked NP are the answers of this task.

The most naive approach for masking NP is re-
placing all the tokens in the NP with the same num-
ber of [MASK] tokens. However, this approach is
not appropriate for acquiring anaphoric relational
knowledge, as the model can simply use a super-
ficial clue, that is, the number of [MASK] tokens,
to predict the original NP. Instead, we replace all
the tokens in the NP with a single [MASK] token.
Then, we formulate the task objective as predicting
the last token in the original NP. This formulation
is consistent with that of Japanese ZAR; when the
argument consists of multiple tokens, the very last
token is annotated as an actual argument.

3.2 Preparing Pseudo Data

To create training instances for PZERO, we first
extract n consecutive sentences from raw text and
split them into a subword sequence. We then in-
sert [SEP] tokens as sentence separators (Devlin
et al., 2019). Subsequently, we prune tokens from
the beginning of the sequence and then prepend
[CLS] at the beginning. As a result, the sequence
consists of at most Tmax subword tokens, which is
the maximum input size of our model, as shown
in Section 3.3. Then, for each NP in the last sen-
tence, we search for corresponding NPs with the
same surface form in this sequence. Upon finding
such NPs, we replace the selected NP in the last

sentence with a single mask token and collect this
sequence as a training instance.

3.3 Pretraining Model
Our model for PZERO closely resembles that of
the transformer-based MLM (Devlin et al., 2019).
Given an input sequence X , each token xt ∈
{0, 1}|V| is mapped to an embedding vector of size
D, namely, et ∈ RD as follows:

et = etokent + epositiont . (1)

Here, an embedding vector etokent ∈ RD is ob-
tained by computing etokent = Etokenxt, where
Etoken ∈ RD×|V| is a token embedding matrix.
Similarly, an embedding vector epositiont ∈ RD

is obtained from the position embedding matrix
Eposition ∈ RD×Tmax and a one-hot vector for po-
sition t. Tmax represents the predefined maximum
input length of the model.

Then, the transformer layer encodes the input
embeddings e1, . . . , eT into the final hidden states
H = (h1, . . . ,hT ). Given each hidden state ht ∈
RD of the t-th token, we calculate the score st ∈ R,
which represents the likelihood that the token is a
correct answer, by taking the dot product between
the hidden state of the candidate token ht and mask
token hmask:

st = (W1ht + b1)
> · (W2hmask + b2), (2)

where W1 and W2 ∈ RD×D are parameter matri-
ces, and b1, b2 ∈ RD are bias terms.

We train the model to maximize the score
of the correct tokens. Specifically, we mini-
mize the Kullback-Leibler (KL) divergence L =
KL(y||softmax(s)), where s = (s1, . . . , sT ).
y ∈ RT is the probability distribution of the posi-
tions of all the correct tokens. In this vector, the
values corresponding to the positions of the correct
tokens are set as 1/n and otherwise 0, where n is
the number of correct tokens.

4 ZAR Models

Supposing that our model obtains anaphoric re-
lational knowledge for ZAR by pretraining on
PZERO, we design a ZAR model, as it can best
utilize such knowledge during finetuning. In this
section, we first describe an argument selection
model (Section 4.1), which is considered the most
straightforward adaptation of a pretrained model
for ZAR. Then, we propose a novel model that
addresses the pretrain-finetune discrepancy (Sec-
tion 4.2).
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Figure 3: Input layer of AS and AS-PZERO. Their differences are that (1) a query chunk exists for AS-PZERO,
and (2) the position of the target predicate is informed via different embedding types: Epredicate and Eposition.

4.1 Argument Selection with Label
Probability: AS

The argument selection model, hereinafter AS, is a
model inspired by the model of Kurita et al. (2018).
From the recent standard practice of the pretrain-
finetune paradigm (Devlin et al., 2019), we add a
classification layer on top of the pretrained model.

The model takes an input sequence X , which
is created in a similar manner to that described
in Section 3.1. X consists of multiple sentences
and is pruned to contain Tmax tokens at maximum.
The target predicate is in the last sentence, and the
[CLS] and [SEP] tokens are included. Also, the
model takes two natural numbers pstart and pend
as inputs, where 1 ≤ pstart ≤ pend ≤ T . These
represent the position of the target predicate.

The model selects a filler token for each argu-
ment slot following a label assignment probabil-
ity over X: argmaxtP (t|X, l, pstart, pend), where
l ∈ {NOM, ACC, DAT}. We regard [CLS] (i.e., x1)
as a dummy token representing the case that the
argument filler does not exist in the input sequence.
The model selects the dummy token in such cases.

The operation on the input layer of the model is
shown on the left-hand side of Figure 3. First, each
token xt ∈ {0, 1}|V| in a given input sequence
X is mapped to an embedding vector et ∈ RD

using the pretrained embedding matrices Etoken

and Eposition, and another new embedding matrix
Epredicate ∈ RD×2, as follows:

et = etokent + epositiont + epredicatet , (3)

where etokent and epositiont are the same as in Equa-
tion 1. Moreover, epredicatet is an embedding vector
computed from Epredicate, pstart, and pend. This
vector represents whether the token in position t is
a part of the predicate or not (He et al., 2017).

Second, we apply a pretrained transformer to
encode each embedding et into the final hidden
state ht ∈ RD. The probability distribution of
assigning the label l over the input tokens ol =

(ol,1, ..., ol,T ) ∈ RT is then obtained by the soft-
max layer:

ol,t =
exp(wT

l ht + bl)∑
t exp(w

T
l ht + bl)

, (4)

where wl ∈ RD and bl ∈ R. Finally, from the
probability distribution ol, the model selects the to-
ken with the maximum probability as the argument
of the target predicate.

When the model selects the dummy token
as an argument, we further classify the argu-
ment into the following four categories: z ∈
{author, reader, general, none}. Here, none
shows no slot filler for this instance. The other
three categories author, reader, and general

represent that there is a certain filler entity
but do not appear in the context (exophoric).
For this purpose, we calculated a probability
distribution over the four categories oexo

l =
(oexol,author, o

exo
l,reader, o

exo
l,general, o

exo
l,none) ∈ R4 by ap-

plying a softmax layer to the hidden state of the
dummy token h1 as follows:

oexol,z =
exp(wT

l,zh1 + bl,z)∑
z exp(w

T
l,zh1 + bl,z)

, (5)

where wl,z ∈ RD, and bl,z ∈ R. Then the model
selects the category with the maximum probability.

In the training step, we assign a gold label to the
last token of an argument mention. If there are mul-
tiple correct answers in the coreference relations
in the context, we assign gold labels to all these
mentions. We prepare a probability distribution
y ∈ RT of gold labels over the input token in a
manner similar to that in Section 3.3. The models
are then trained to assign high probabilities to gold
arguments.

4.2 Argument Selection as Pseudo Zero
Pronoun Resolution: AS-PZERO

One potential disadvantage of the AS model is that
it may suffer from pretrain-finetune discrepancy.
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That is, AS does not use the pretrained parame-
ters, such as W1, W2, b1, and b2 in Equation 2,
but is instead finetuned with randomly-initialized
new parameters, such as wl and bl in Equation 4.
To make efficient use of the anaphoric relational
knowledge acquired during pretraining, we resolve
this discrepancy. Inspired by studies addressing
such discrepancies (Gururangan et al., 2020; Yang
et al., 2019), we propose a novel model for fine-
tuning; argument selection as pseudo zero pronoun
resolution (AS-PZERO).

The underlying idea of AS-PZERO is to solve
ZAR as PZERO. We use the network structure pre-
trained on PZERO as it is. Thus, the parameters
wl and bl are no longer required. To do this, we
modify the input sequence X for ZAR and refor-
mulate the ZAR task as PZERO. Specifically, we
prepare a short sentence, called a query chunk, and
append it to the end of the input sequence X . The
query chunk represents a target predicate-argument
slot whose filler is a single [MASK] token, so ZAR
can be resolved by selecting the antecedent of the
[MASK] token.

Let X ′ denote the modified input of AS-PZERO.
The input layer of the model is shown on the right-
hand side of Figure 3. The query chunk consists
of a [MASK] token, a token representing a target
argument label (i.e., NOM, ACC, or DAT), and a
target predicate. For example, when the number
of tokens in the target predicate is represented as
Tpredicate = pend − pstart + 1, the length of X ′ is
T +2+ Tpredicate. The modified input sequence is
represented as X ′ = (x1, . . . ,xT+2+Tpredicate

).4

Given a modified input sequence X ′ and the
start and end positions of the target predicate
pstart, pend ∈ N, an input token xt ∈ {0, 1}|V | is
mapped to a token embedding et ∈ RD as follows:

et = etokent + epositiont + eaddposit , (6)

where eaddposit is an additional position embedding,
which informs the model about the position of the
target predicate. This information is intended to be
used for distinguishing the target predicate from
the multiple predicates appearing with an identical
surface form in the input sequence. Specifically,
for the target predicate in the query chunk, eaddposit

is the same as the position embedding of the target
predicate in the original sequence X . Otherwise,

4The beginning of X ′ is trimmed, so that the total number
of tokens in X ′ does not exceed the maximum input length of
the model (i.e., Tmax) and x1 in X ′ is [CLS].

eaddposit is zero:

eaddposit =

{
epositiont′ (pstart 5 t′ 5 pend)

0 (otherwise),
(7)

where t′ = t− (T + 3) + pstart. For example, as
shown in Figure 3, the position embeddings of the
target predicate (con and ##firm) are added to those
in the query chunk. Thus, we can avoid using the
extra embedding matrix Epredicate in Equation 3.

We encode the embeddings with the transformer
layer, and then use Equation 2 for the remaining
computation of AS-PZERO to fill out the [MASK]
token with the argument of the target predicate. If
the score of the dummy token (x1) is highest, the
model computes exophoric scores as described in
Section 4.1 using Equation 5.

5 Experimental Settings

PZERO Dataset Japanese Wikipedia corpus
(Wikipedia) is the origin of the training data of
PZERO.5 All the NPs in the corpus are PZERO

targets. To detect NPs, we parsed Wikipedia using
the Japanese dependency parser Cabocha (Kudo
and Matsumoto, 2002) and applied a heuristic rule
based on part-of-speech tags. We used n = 4 con-
secutive sentences to develop the input sequence
X . From 17.4M sentences in Wikipedia, we ob-
tained 17.3M instances as training data for PZERO.
ZAR Dataset For the ZAR task, we used NAIST
Text Corpus 1.5 (NTC) (Iida et al., 2010, 2017),
which is a standard benchmark dataset of this
task (Ouchi et al., 2017; Matsubayashi and Inui,
2018; Omori and Komachi, 2019; Konno et al.,
2020). We used the training, development, and test
splits proposed by Taira et al. (2008). The numbers
of intra-sentential, inter-sentential, and exophoric
for the training/test instances were 18068/6159,
11175/4081, and 13676/3826, respectively. The
NTC details are shown in Appendix A. The eval-
uation script corresponds to that of Matsubayashi
and Inui (2018).
Model Our implementation is based on the Trans-
formers library (Wolf et al., 2020). We used the pre-
trained parameters of the bert-base-japanese model
as the initial parameters of our pretraining models.

We trained our model using an Adam opti-
mizer (Kingma and Ba, 2015) with warm-up steps.
As a loss function, we used cross-entropy for the

5We used the dump file as of September 1st, 2019 obtained
from dumps.wikimedia.org/jawiki/.

https://dumps.wikimedia.org/jawiki/
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ZAR DEP All
ID Method intra

(a) M&I 55.55 90.26 83.94 ± 0.12
(b) O&K 53.50 90.15 83.82 ± 0.10
(c) Konno et al. (2020) 64.15 92.46 86.98 ± 0.13

(d) AS 69.32 93.65 88.87 ± 0.12
(e) AS-PZERO 69.91 93.83 89.06 ± 0.11

Table 1: F1 scores on the NTC test set on intra-
sentential setting. M&I: Matsubayashi and Inui (2018).
O&K: Omori and Komachi (2019).

Cloze task and prediction of exophoric and used
KL divergence for the rest. The details of the hyper-
parameter search are in Appendix B. Regarding the
experiments on ZAR, we trained each model using
five random seeds and reported the average score.

6 Results and Analysis

We have two distinct goals in this experiment, that
is, to investigate the effectiveness of (1) pretraining
on PZERO and (2) finetuning on AS-PZERO. To
achieve these goals, we first compare our AS and
AS-PZERO models with previous studies to ensure
that our models are strong enough in a conventional
experimental setting, i.e., the intra-sentential set-
ting (Section 6.1). Then we investigate (1) and (2)
based on inter-sentential setting (Section 6.2).

6.1 Intra-sentential Experiment

In this setting, the input sequence consists of a
single sentence, and only the intra-zero and DEP
arguments are targets of the evaluation. As men-
tioned in Section 2, most of the previous studies
on Japanese ZAR use this setting (Matsubayashi
and Inui, 2018; Omori and Komachi, 2019; Konno
et al., 2020). Thus, we can strictly compare our
results with those of other studies in this setting.

We finetuned AS and AS-PZERO from a pre-
trained MLM. The results in Table 1 show that
both the AS and AS-PZERO models already out-
performed the previous state-of-the-art models in
intra-zero and DEP (Konno et al., 2020) with large
margins. This improvement is due to the differ-
ence in the use of the pretrained MLM; given a
pretrained MLM, we finetuned its entire parame-
ters whereas Konno et al. (2020) used it as input
features. Additionally, our pretrained MLM was
trained better than theirs.

6.2 Inter-sentential Experiment

In this setting, the input sequence consists of multi-
ple sentences: a sentence containing a target predi-
cate and preceding sentences in the document. The
intra-sentential, inter-sentential, exophoric, and
DEP arguments are the evaluation targets.

We investigate the effectiveness of the proposed
PZERO and AS-PZERO. For the experiment, we
initialized the parameters of the transformer-based
model with the pretrained MLM (pretrain 1) and
further pretrained the model on Cloze and PZERO

with the same number of updates. This resulted
in having two pretrained models (pretrain 2 & 3).
Then, we created models of all the possible com-
binations from {pretrain 1, 2, 3} and {AS, AS-
PZERO}, resulting in the six models shown in Ta-
ble 2.

(I) Do inter-sentential contexts help intra-
sentential argument identification? We first in-
vestigate the impact of inter-sentential context on
the performances of intra-zero and DEP by compar-
ing the models (f) and (g) in Table 2 and the models
(d) and (e) in Table 1. Here, note that model ar-
chitectures of (f) and (g) are identical to those of
(d) and (e), respectively. In addition, the evaluation
instances of the intra-zero and DEP categories are
the same for all four models. The differences are
that the models (f) and (g) have broader contexts
(inter-sentential contexts), i.e., multiple preceding
sentences as inputs, and extra training signals from
both the inter-zero and exophoric instances. A
comparison of these four models shows that (f)
and (g) have better performance than (d) and (e)
in intra-zero and DEP. This result indicates that
inter-sentential contexts are important clues even
for identifying intra-sentential argument relations.
This result is consistent with those of Guan et al.
(2019) and Shibata and Kurohashi (2018), which
discussed a method for utilizing inter-sentential
contexts as clues for resolving semantic relations
in target sentences.

(II) Does pretraining on PZero improve the per-
formance of AS? As shown in Table 2, the com-
parison between the models pretrained on PZERO

(j) and Cloze (h) shows that PZERO outperforms
Cloze, especially in inter-zero argument (44.98→
46.37). As discussed in Section 2, inter-zero is
challenging because there are multiple answer can-
didates across the sentences. The improvement in
inter-zero implies that the model effectively learns
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PT Task Further PT Task FT Model ZAR DEP All
ID Cloze Cloze PZERO AS AS-PZERO All intra inter exophoric

(f) " " 62.27 ± 0.42 71.55 44.30 64.04 94.44 82.97
(g) " " 62.47 ± 0.53 71.09 45.20 64.41 94.46 83.03

(h) " " " 62.54 ± 0.47 71.82 44.98 63.94 94.51 83.10
(i) " " " 62.85 ± 0.19 71.52 45.97 64.55 94.49 83.18
(j) " " " 63.06 ± 0.19 71.96 46.37 64.42 94.43 83.26
(k) " " " 64.18 ± 0.23 72.67 48.41 65.40 94.50 83.65

Table 2: F1scores in the NTC test set with the inter-sentential setting. The bold values indicate the best results in
the same column. PT and FT are abbreviations of pretraining and finetuning. The improvement of (k) over (h) is
statistically significant in all the categories of ZAR F1 (p < 0.05) with a permutation test.

PT Task Further PT Task FT Model intra inter

ID Cloze Cloze PZERO AS AS-PZERO Precision Recall F1 Precision Recall F1

(h) " " " 76.52 67.67 71.82 ± 0.21 55.49 37.88 44.98 ± 1.05
(i) " " " 75.59 67.87 71.52 ± 0.22 56.31 38.91 45.97 ± 0.42
(j) " " " 75.85 68.46 71.96 ± 0.38 55.92 39.61 46.37 ± 0.34
(k) " " " 76.06 69.58 72.67 ± 0.32 57.63 41.74 48.41 ± 0.35

Table 3: The NTC test set results of the inter-sentential setting. The bold values indicate the best results in the
same column group. PT and FT are abbreviations of pretraining and finetuning.

anaphoric relational knowledge through the pre-
training on PZERO.

(III) Does pretraining on PZero improve the
performance of AS-PZero? The performance
comparison between the models (j) and (k) demon-
strates the effectiveness of the combination of
PZERO and AS-PZERO. The model (k) achieved
the best result in all categories except for DEP.
This indicates that AS-PZERO has successfully ad-
dressed the pretrain-finetune discrepancy and that it
effecively used the anaphoric relational knowledge
learned from PZERO.

Table 3 shows the precision and recall of the
models (h)-(k) for the intra-zero and inter-zero ar-
guments. The model (k) achieved the best recall
performance in both categories and indicated that
the proposed PZERO contributes mainly to the im-
provement in recall.

6.3 Analysis

We analyze the source of the improvement in recall
as observed in Table 3. Table 4 shows our analysis
of the intra/inter-sentential arguments from three
aspects I–III and compares the detailed results of
the baseline model (h) and our model (k).
(I) Number of gold antecedents in input This
number determines the difficulty of the anaphora
resolution. This is because the saliency of the entity

is an important clue, i.e., ZAR is difficult when
the argument appears only once in an input. Our
model improved the performance of such difficult
instances by a large margin (65.87 → 69.12 in
intra-zero and 35.96→ 39.57 in inter-zero).
(II) Position of the argument relative to the tar-
get predicate The distance between a predicate
and its argument determines the difficulty of ZAR.
According to (3), (4), and (5), the performance
of inter-sentential decreased as the predicate was
farther from its argument’s last surface-form ap-
pearance. Interestingly, the performance of the
two models was comparable in (5), which is the
case that the arguments are more than two sen-
tences away from the target predicate. This result
indicates that the proposed method is not effective
for these instances. The error analysis on these
instances revealed the fact that even though the
argument did not appear explicitly, it was seman-
tically present throughout the context as omitted
arguments of the multiple predicates, all pointing
to the same entity. This suggests that combining
our proposed model with a model that propagates
ZAR results through relevant contexts (Shibata and
Kurohashi, 2018) can further improve ZAR perfor-
mance.
(III) Voice of the target predicate Identifying
the arguments of the predicate in the nonactive
voice clause is difficult because of case alternation;
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intra recall # of inter recall # of
ID Type of instances Model (h) Model (k) instances Model (h) Model (k) instances

(I) Number of gold antecedents in input

(1) Only one 65.87 69.12 2001 35.96 39.57 1218
(2) More than one 73.78 74.26 1247 53.1 54.1 872

(II) Position of the argument relative to the target predicate

(3) One sentence before - - 0 48.86 51.96 1099
(4) Two sentences before - - 0 37.7 42.6 411
(5) More than two sentences before - - 0 40.5 40.3 516
(6) Out of input sequence - - 0 0.0 0.0 64

(III) Voice of the target predicate

(7) Active 70.80 72.62 2918 45.02 47.42 1877
(8) Passive 51.8 57.9 309 25.2 29.1 206
(9) Causative 55 50 20 60 60 7

(10) Causative & Passive 100 100 1 - - 0

All 68.9 71.09 3248 43.11 45.65 2090

Table 4: Recall scores for each type of instance in the NTC development set. Models (h) and (k) are from Table 2.

semantic subjects and objects appear in the other
syntactic positions. Table 4 shows that both models
perform worse in (8) and (9) than in (7). Also
the case alternation is different for every predicate.
Thus, the model had to learn each behavior from
training data and raw corpus. However, acquiring
such information is not in the scope of PZERO.

6.4 Discussion on Pseudo Data Generation

In this study, we generated pseudo data for PZERO

by exploiting the strong assumption that all the
NPs with the same surface form have anaphoric
relationships (Section 3.1). The advantage of our
method is its high scalability in data collection; we
can obtain a large amount of pseudo instances from
raw corpora. Our empirical evaluation showed that
our assumption is effective, however more sophis-
ticated methods could be considered. Our future
work includes analyzing the noise in pseudo data,
i.e., NPs with the same surface but no anaphoric
relationships, and its effect on the model perfor-
mance.

7 Related Work

Anaphoric Relational Knowledge Our pro-
posed pretraining task for acquiring anaphoric re-
lational knowledge is related to script knowledge
acquisition (Chambers and Jurafsky, 2009). Script
knowledge models chains of typical events (predi-
cates and their arguments). Between events, some
arguments are shared and represented as variables,
such as purchase X→ acquire X, which can
be regarded as a type of anaphoric relational knowl-

edge. While script knowledge only deals with
shared arguments as anaphoric (coreferring) phe-
nomena, anaphoric relational knowledge is not lim-
ited to them. In the sentence of Figure 1, the word
criminal is not an argument of the predicate and is
ignored in script knowledge, whereas it is within
the scope of this work. Thus, it can be said that this
work deals with broader anaphoric phenomena.

Zero Anaphora Resolution (ZAR) ZAR has
been studied in multiple languages, such as Chi-
nese (Yin et al., 2018), Japanese (Iida et al., 2016),
Korean (Han, 2006), Italian (Iida and Poesio, 2011),
and Spanish (Palomar et al., 2001). ZAR faces
a lack of labeled data, which is a major chal-
lenge, and the traditional approach to overcome
this is to use large-scale raw corpora. Several
studies have employed these corpora as a source
of knowledge for ZAR, e.g., case-frame construc-
tion (Sasano et al., 2008; Sasano and Kurohashi,
2011; Yamashiro et al., 2018) and selectional pref-
erence probability (Shibata et al., 2016). Further-
more, semi-supervised learning approaches, such
as pseudo data generation (Liu et al., 2017) and
adversarial training (Kurita et al., 2018), have been
proposed. However, the use of pretrained MLM has
been the most successful approach (Konno et al.,
2020), and we sought to improve the pretraining
task to better acquire anaphoric relational knowl-
edge.

Pseudo Zero Pronoun Resolution
(PZERO) Several studies have created training
instances in a similar way as in PZERO. For
example, Liu et al. (2017) casted the ZAR problem
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as a reading comprehension problem, such that
the model chose an appropriate word for the
[MASK] from the vocabulary set. The difference
is that, unlike their work, we filled the [MASK]
by selecting a token from the given sentences.
Also, Kocijan et al. (2019) created similar training
data for Winograd Schema Challenge (Levesque,
2011). While we considered replacing arbitrary
NPs with [MASK], they exclusively replaced the
personal name. We expect that our approach is
more suitable for ZAR because arguments are not
necessarily personal names.
Pretrain-finetune Discrepancy Addressing the
discrepancy between pretraining and finetuning is
one of the successful approaches for improving the
use of pretrained MLMs. For example, Gururangan
et al. (2020) addressed the discrepancy with respect
to the domain of the training dataset. Furthermore,
Yang et al. (2019) indicated that [MASK] is used
during the pretraining of MLM but never during
finetuning. They improved a model architecture to
mitigate such discrepancies. Therefore, inspired
by these studies, we designed a finetuning model
(AS-PZERO) that is suitable for a model pretrained
on PZERO and demonstrated its effectiveness.
Prompt-based Learning Our use of query
chunk in AS-PZERO can be seen as a prompt-based
learning approach (Radford et al., 2019; Brown
et al., 2020), which has been actively studied (Liu
et al., 2021). In a typical prompt-based learning
with a pretrained MLM, a model is trained to re-
place the masked token with a token from a prede-
fined vocabulary (Schick et al., 2020; Schick and
Schütze, 2021a,b; Gao et al., 2021). Our model
is pretrained on PZERO, which is a task to select
a pseudo antecedent from the preceding context.
Thus, we designed AS-PZERO as a model to se-
lect the argument from the input sentences using
a prompt-based approach to avoid the pretrain-
finetune discrepancy.

8 Conclusion

In this study, we proposed a new pretraining task,
PZERO, which aims to explicitly teach the model
anaphoric relational knowledge necessary for ZAR.
We also proposed a ZAR model to remedy the
pretrain-finetune discrepancy. Both the proposed
methods improved the performance of Japanese
ZAR, leading to a new state-of-the-art performance.
Our analysis suggests that the hard subcategories
of ZAR; distant arguments and passive predicates

are still challenging.
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Dataset dep intra inter exophoric

Training NOM 36934 12219 7843 11511
ACC 24654 2136 948 128
DAT 5744 465 294 60

Development NOM 7424 2665 1812 1917
ACC 5055 445 177 32
DAT 1612 138 101 28

Test NOM 14003 4993 3565 3717
ACC 9407 906 371 55
DAT 2493 260 145 54

Table 5: Statistics of NAIST Text Corpus 1.5

A Statistics of NAIST Text Corpus 1.5

We used NAIST Text Corpus 1.5 (NTC) (Iida et al.,
2010, 2017) for ZAR task. Table 5 shows the num-
ber of instances in NTC.

B Hyperparameter Search on Validation
Set

Table 6 shows a complete list of hyper-parameters
used in this study. For both pretraining and fine-
tuning, maximum learning rate and loss function
are the target of the hyperparameter search. All the
candidates of learning rates and loss functions are
presented in Table 7. We used Nvidia Tesla V100
for the entire experiment.
Pretraining on Cloze For the hyperparameter
search of Cloze task, we adopted the hyperparame-
ters that achieves the lowest perplexity value. We
adopted 1.0 × 10−4 for maximum learning rate.
We used the development set that we created from
Japanese Wikipedia.
Pretraining on PZERO For the hyperparame-
ter search of PZERO; the parameters were deter-
mined by the validation performance on PZERO

and ZAR.6 We eventually employed the parameters
with the highest F1 on inter arguments.
Finetuning on ZAR For the hyperparameter
search of ZAR; the hyperparameters that achieve
the highest overall ZAR F1 were used. Here, we
finetuned pretrained MLM without any further pre-
training. Table 8 shows the result of our search
process.

C Heuristics for Extracting Noun
Phrases from Raw Text

In order to extract noun phrases (NPs) from
Japanese Wikipedia, we first parsed the corpus us-

6The task formulation of PZERO and AS-PZERO are quite
similar. Thus we can evaluate the model, which is pretrained
on PZERO, directly on ZAR without finetuning.

ing Japanese dependency parser Cabocha (Kudo
and Matsumoto, 2002). The parser divides the sen-
tences into a phrase (Japanese “bunsetsu"). Note
that each bunsetsu consists of a sequence of words.
We then extracted the NPs as follows:

1. Choose a phrase that (1) contains noun(s) and
(2) does not contain verb(s).

2. Scan the phrase from the end, and keep elimi-
nating words until a noun appears.

3. Scan the phrase from the beginning, and keep
eliminating words until a word other than a
symbol appears.

4. The remaining words are regarded as a noun
phrase. If the remaining words contain sym-
bols, alphabet, or numbers only, then the
words are not discarded.

Table 9 shows the statistics of Japanese
Wikipedia and the number of PZERO instances
generated from this process.

D Performance on Validation Set

We report the performance on development set of
NTC for model (d) to model (k), in Table 10 and
Table 11. Here, each model ID follows that of
Table 1 and Table 2.

E Number of Parameters of each Model

We report total number of parameters of AS and
AS-PZERO in Table 12.
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Configurations Values

Optimizer Adam (Kingma and Ba, 2015) (β1 = 0.9,β2 = 0.999,ε = 1× 10−8)
Hidden State Size (D) 768 (defined in bert-base-japanese)
Tmax 512 (defined in bert-base-japanese)

Further Pretraining

Mini-batch Size 2,048
Max Learning Rate 1.0× 10−4 (Cloze task), 2.0× 10−5 (PZERO)
Learning Rate Schedule Inverse square root decay
Warmup Steps 5,000
Number of Updates 30,000
Loss Function Cross entropy (Cloze task) and KL divergence (PZERO)
MLM’s Mask Position Random for each epoch

Finetuning

Mini-batch Size 256
Max Learning Rate 1.0× 10−4 (AS) and 1.0× 10−5 (AS-PZERO)
Learning Rate Schedule Same as described in Appendix A of Matsubayashi and Inui (2018)
Number of Epochs 150
Stopping Criterion Same as described in Appendix A of Matsubayashi and Inui (2018)
Loss Function KL divergence (AS) and KL divergence (AS-PZERO) and Cross entropy (prediction of exophoric)

Table 6: List of hyper-parameters

Pretraining Task Finetuning Model Loss Function

Cloze - {Softmax Cross Entropy}
PZERO - {Sigmoid Cross Entropy, KL Divergence}
- AS {Sigmoid Cross Entropy, KL Divergence}
- AS-PZERO {Sigmoid Cross Entropy, KL Divergence}

Maximum Learning Rate

Cloze - {1.0× 10−4, 5.0× 10−5, 2.0× 10−5, 1.0× 10−5, 5.0× 10−6}
PZERO - {1.0× 10−4, 5.0× 10−5, 2.0× 10−5, 1.0× 10−5, 5.0× 10−6}
- AS {1.0× 10−4, 5.0× 10−5, 2.0× 10−5, 1.0× 10−5}
- AS-PZERO {1.0× 10−4, 5.0× 10−5, 2.0× 10−5, 1.0× 10−5}

Table 7: Candidates of hyper-parameters. Bold value indicates the adopted values.



3803

ZAR DEP All
Loss Function Learning Rate All intra inter exophoric

Argument Selection as PZERO (AS-PZERO)

Sigmoid Cross Entropy 1.0× 10−4 61.66 71.10 45.29 61.98 94.64 83.07
5.0× 10−5 62.00 71.52 45.25 62.80 94.80 83.25
2.0× 10−5 62.28 71.26 47.25 62.15 94.47 83.23
1.0× 10−5 62.20 71.17 48.02 61.57 94.54 83.22

KL Divergence 1.0× 10−4 63.30 72.40 47.33 64.21 94.82 83.74
5.0× 10−5 63.73 72.55 48.39 64.33 94.99 83.97
2.0× 10−5 62.52 71.78 46.98 62.96 94.91 83.52
1.0× 10−5 61.60 70.38 47.29 61.44 94.45 82.86

Argument Selection with Label Probability (AS)

KL Divergence 1.0× 10−4 62.77 72.68 45.65 63.15 95.03 83.70
5.0× 10−5 62.28 71.87 46.65 62.39 94.96 83.48
2.0× 10−5 61.73 71.58 45.99 61.56 94.52 82.97
1.0× 10−5 61.57 71.60 45.57 61.22 94.73 83.04

Sigmoid Cross Entropy 1.0× 10−4 59.25 69.02 41.30 60.42 94.36 82.05
5.0× 10−5 57.51 66.88 40.34 58.47 93.90 81.20
2.0× 10−5 59.29 68.87 42.33 60.16 94.24 82.07
1.0× 10−5 59.40 68.90 43.28 59.77 94.47 82.22

Table 8: F1 scores on the NTC development set for hyper-parameter search. Bold value indicates the best results
in the same column.
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Training Development

Documents 1,121,217 300
Sentences 17,436,975 3,622
Instances of PZERO 17,353,590 3,236

Table 9: Statistics of Japanese Wikipedia

ZAR DEP All
ID Method intra

(d) AS 70.41 94.21 89.48±0.10
(e) AS-PZERO 70.66 94.23 89.50±0.08

Table 10: F1 scores on the NTC development set on
intra-sentential setting.
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PT Task Further PT Task FT Model ZAR DEP All
ID Cloze Cloze PZERO AS PZERO All intra inter exophoric

(f) " " 62.97±0.27 72.67 46.84 63.33 94.99 83.73
(g) " " 63.34±0.16 72.61 47.21 64.04 94.96 83.83

(h) " " " 63.42±0.29 72.85 48.26 63.21 95.02 83.92
(i) " " " 63.63±0.29 72.57 48.70 63.82 94.95 83.92
(j) " " " 63.15±0.45 72.95 47.48 62.84 94.96 83.78
(k) " " " 64.59±0.17 74.03 49.60 64.12 95.00 84.27

Table 11: F1scores on the NTC 1.5 development set on inter-sentential setting. Bold value indicates the best
results in the same column. PT and FT are abbreviations of pretraining and finetuning.

Model Number of Parameters

AS 111,223,312
AS-PZERO 112,395,268

Table 12: Number of parameters of the models
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ZAR DEP All
Method All intra inter exophoric

Finetuning

AS 62.27±0.42 71.55 44.30 64.04 94.44 82.97
AS-PZERO 62.47±0.53 71.09 45.20 64.41 94.46 83.03

10K Further Pretraining + Finetuning

Cloze + AS 62.52±0.37 71.40 44.79 64.55 94.48 83.08
Cloze + AS-PZERO 62.42±0.30 71.04 45.31 64.15 94.49 83.04
PZERO + AS 62.63±0.41 71.63 45.14 64.47 94.39 83.07
PZERO + AS-PZERO 63.52±0.19 72.07 47.43 64.95 94.58 83.46

30K Further Pretraining + Finetuning

Cloze + AS 62.54±0.47 71.82 44.98 63.94 94.51 83.10
Cloze + AS-PZERO 62.85±0.19 71.52 45.97 64.55 94.49 83.18
PZERO + AS 63.06±0.19 71.96 46.37 64.42 94.43 83.26
PZERO + AS-PZERO 64.18±0.23 72.67 48.41 65.40 94.50 83.65

Table 13: F1scores on the NTC 1.5 test set. Bold value indicates the best results in the same column.


