Diagnosing the First-Order Logical Reasoning Ability Through LogicNLI

Jidong Tian'1, Yitian Li'', Wenqing Chen'?, Liqiang Xiao'?,
Hao He'?* and Yaohui Jin'?
'MoE Key Lab of Artificial Intelligence, Al Institute, Shanghai Jiao Tong University
2State Key Lab of Advanced Optical Communication System and Network,
Shanghai Jiao Tong University

{frank92,
xiaoligiang,

Abstract

Recently, language models (LMs) have
achieved significant performance on many
NLU tasks, which has spurred widespread
interest for their possible applications in the
scientific and social area. However, LMs have
faced much criticism of whether they are truly
capable of reasoning in NLU. In this work,
we propose a diagnostic method for first-order
logic (FOL) reasoning with a new proposed
benchmark, LogicNLI. LogicNLI is an
NLI-style dataset that effectively disentangles
the target FOL reasoning from commonsense
inference and can be used to diagnose LMs
from four perspectives: accuracy, robustness,
generalization, and traceability. Experiments
on BERT, RoBERTa, and XLNet, have uncov-
ered the weaknesses of these LMs on FOL
reasoning, which motivates future exploration
to enhance the reasoning ability.

1 Introduction

Recently, Transformers-based (Vaswani et al.,
2017) language models (LMs), such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
have achieved great success on natural language
understanding (NLU). However, there are grow-
ing concerns about whether LMs can truly under-
stand natural language or not. Tasks with complex
reasoning have provided evidence that LMs lack
expected reasoning abilities (Liu et al., 2020; Bha-
gavatula et al., 2020). Even if neural models can
make correct predictions, they tend to make deci-
sions through spurious statistical correlations rather
than reasoning abilities (Kaushik and Lipton, 2018;
Ribeiro et al., 2019; Jiang and Bansal, 2019; Mc-
Coy et al., 2019). Therefore, an increasing number
of studies have focused on diagnosing specific rea-
soning abilities of state-of-the-art LMs (Sugawara
et al., 2020; Gontier et al., 2020).
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First-order logical (FOL) reasoning is one of the
most widely used reasoning forms in natural lan-
guage (Davis, 2017; Yu et al., 2020), which has
a simple paradigm consisting of combinations of
seven fundamental logics (FOLs, including con-
junction A, disjunction V, negation —, implication
—, equation =, universal quantifier V, and existen-
tial quantifier 3) with simple propositions (Davis,
2017). Nevertheless, whether LMs can truly make
FOL reasoning is still inconclusive in NLP (Hahn
et al., 2021; Clark et al., 2020).

As a result, we propose a systematic diagnostic
method for FOL reasoning by proposing a novel
benchmark, named Logical Natural Language
Inference (LogicNLI). The proposed benchmark
follows three principles: 1) It includes abundant
logical expressions covering all seven FOLs and
their commonly used combinations in texts; 2) The
instances of the benchmark conform to natural lan-
guage; 3) It introduces as little commonsense as
possible to prevent the targeting FOL reasoning and
commonsense inference from being entangled with
each other (Clark et al., 2020). According to the
principles, LogicNLI is an NLI-style dataset (Bow-
man et al., 2015; Talmor et al., 2020), including
triplets of facts, rules, and a statement. The objec-
tive is to determine the logical relation (entailment,
contradiction, or neutral in NLI (Bowman et al.,
2015)) between the premise (facts and rules) and its
corresponding hypothesis (statement) by FOL rea-
soning shown in Figure 1. In practice, we have in-
troduced an additional logical relation, “Paradox”,
to represent the situation where the hypothesis and
its negative proposition can be logically entailed
to the premise simultaneously based on different
reasoning paths (bottom of Figure 1). This novel
logical relation forces the model to search at least
two reasoning paths to infer the authenticity of two
opposing propositions, thereby effectively avoiding
spurious correlations caused by dataset bias.

Based on LogicNLI, we propose a systematic
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Figure 1: Reasoning processes in LogicNLI. Given a set of facts (Blue) and rules (Orange), The first step is to
translate the language expressions into the FOL expressions. Based on expressions, logical reasoning is made step
by step, where proofs (Grey) are the intermediate results of each step. Finally, the proposed statements (Green) are
judged based on multi-step reasoning. Besides, LogicNLI provides a new condition of “PARADOX” that both the
positive and negative propositions can be inferred simultaneously (shown in the dotted frame).

diagnostic approach by comprehensively consid-
ering four perspectives: accuracy, robustness to
irrelevant information, more-hop generalization,
and proof-based traceability. We perform diagno-
sis on three state-of-the-art LMs, BERT (Devlin
etal., 2019), RoBERTa (Liu et al., 2019), and XL-
Net (Yang et al., 2019). Results reveal that LMs
can neither fully understand the logical rules nor
apply them to reason like humans. In conclusion,
our main contributions include: 1) We design a
novel benchmark, LogicNLI, following three basic
principles to diagnose LMs’ FOL reasoning ability.
This method of benchmark construction is general
for different reasoning types in NLU. 2) Based on
LogicNLI, we design a diagnostic approach com-
posed of accuracy, robustness, generalization, and
traceability, which measures LMs’ FOL reason-
ing ability from different perspectives. 3) Results
on three LMs show that even the best performing
model on LogicNLI, RoBERTa, cannot fully in-
fer according to logic and generalize to different
scenarios. Analysis could inspire the further explo-
ration of incomprehensible logic.

2 Related Work
2.1 NLU Benchmark

With the development of language models, many
traditional NLU datasets, such as SQuAD (Ra-
jpurkar et al., 2016, 2018), HotpotQA (Yang et al.,
2018), and MNLI (Williams et al., 2018), seem

to have been resolved. However, new concerns
about spurious correlations (Ribeiro et al., 2019;
Jiang and Bansal, 2019) motivate novel datasets
to benchmark specific NLU abilities. Some of
these datasets concentrated on commonsense or
domain knowledge, such as CosmosQA (Huang
et al., 2019), PiQA (Bisk et al., 2020), Common-
senseQA (Talmor et al., 2019), and SociallIQA (Sap
et al., 2019). Other datasets focused on specific
reasoning in NLU, including numerical reason-
ing (Amini et al., 2019; Dua et al., 2019; Tafjord
et al., 2019; Ravichander et al., 2019), corefer-
ential reasoning (Dasigi et al., 2019; Sakaguchi
et al., 2020), abductive reasoning based on com-
monsense (Bhagavatula et al., 2020), and pragmatic
reasoning that is originated from linguistics (Jeretic
et al., 2020). These studies provided diverse views
to benchmark how machines understand language.

2.2 FOL Reasoning Benchmark

Among these NLU abilities, FOL reasoning
is a fundamental reasoning ability that attracts
an increasing number of studies to benchmark.
LogiQA (Liu et al., 2020) and ReClor (Yu et al.,
2020) are two comprehensive datasets with domain
knowledge. However, even if a model performs
poorly on these datasets, it is inconclusive that the
model lacks the FOL reasoning ability because
the targeting ability cannot be disentangled from
other reasoning abilities, such as commonsense in-
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Dataset Logic Natural Commonsense
#FOLs Proof Language Domain Predicate

LogiQA 5 X v v %
ReClor 5 X v v %
CLUTRR 2 v v % J
LTL 5 i x % M
SoftReasoner| 4 Vv Vv « «
LogicNLI | 7 v v | x -

Table 1: Comparisons among FOL datasets. Logic,
Natural Language, and Commonsense correspond to
three principles. #FOLs means how many FOLs are
covered in the dataset, while Domain/Predicate indi-
cates whether plenty of domain knowledge/predicate
relations is/are required to solve the task.

ference. In addition, these two datasets do not
provide proofs to trace back the reasoning pro-
cess. CLUTRR (Sinha et al., 2019) also requires
two FOLs but focuses more on the predicate re-
lation (belongs to commonsense) understanding.
LTL (Hahn et al., 2021) is a propositional logi-
cal benchmark containing five FOLs but does not
conform to natural language. Clark et al. (2020)
propose a series of novel FOL benchmarks (named
SoftReasoner) that introduce as little commonsense
as possible. It concentrates on a specific FOL com-
bination, conjunctive implication with negation,
rather than on diverse FOL forms. Inspired by Soft-
Reasoner (Clark et al., 2020), we construct Logic-
NLI with common combinations of all seven FOLs
to diagnose the FOL reasoning ability. Compared
with other datasets (shown in Table 1), LogicNLI
covers the most comprehensive FOL forms and
effectively separates logic and commonsense. Fur-
thermore, LogicNLI also provides all proofs for
each instance so that we can evaluate LMs’ FOL
reasoning from different perspectives.

3 Task Definition

In this section, we introduce how the task on Log-
icNLI is defined. On the basis, we also exhibit
how FOL reasoning is embodied in LogicNLI. We
first define elements in LogicNLI: Facts F' =
{f1, f2,+ -+, fn} are composed of simple propo-
sitions; Rules R = {ry,r9, -+ , 1y} are always
compound propositions with FOL; Statement s
is the targeting proposition; Premise P = (F, R)
includes all facts and rules.

Based on the above definitions, the final objec-
tive of LogicNLI is to determine the logical relation
between P and s under two assumptions: 1) World
assumption is open (OWA); 2) The statement s and

Facts: (F1) Harold is distinct. (F2) Daisy is not
distinct. (F3) Alan is not distinct.

Rules: (R1) If someone is alive, then he is nei-
ther grieving nor worrisome. (R2) If there is at
least one people who is distinct, then Alan is
grieving. (R3) Harold being alive is equivalent
to Alan being grieving. (R4) Someone being
both worrisome and drab is equivalent to being
colorful and distinct.

Statement: (S) Harold is grieving.

Proofs: (P1) Alan is grieving. (P2) Harold is
alive.

Path: F1 + R2 - P1 + R3 — P2 + R1 — =S
Label: Contradiction

Figure 2: An instance in LogicNLI, including facts,
rules, a statement, proofs, the path, and the label.

its negative expression —s are independent condi-
tioning on P (—s L s|P). The logical relations
include “Entailment”, “Contradiction”, “Neutral”,
and ‘“Paradox”, whose conditions are shown in
Equation 1, where - means syntactic consequence.

FEntailment, PFsAPVF—s

_ ) Contradiction, P¥F sAPk s
vy= Neutral, P¥FsANPF¥F-s M

Paradozx, PFsAPF —s

4 LogicNLI

4.1 Overview

LogicNLI includes more than 30K instances con-
sisting of facts, rules, a statement to be judged,
proofs, the reasoning path, and the label (shown
in Figure 2). For each instance, it requires a multi-
hop FOL reasoning process to reason out the final
answer. To simplify the reasoning process, we set
two limitations: 1) only considering the reason-
ing from cause to effect; 2) neglecting the true
meanings of predicates. Therefore, LogicNLI is
more suitable for benchmarking the specific (FOL)
reasoning ability instead of serving as a compre-
hensive NLU task. As a result, we leave open the
question of how LMs perform in real reasoning
scenarios with FOLs because it is difficult to disen-
tangle multiple influencing factors.

LogicNLI also provides four kinds of test sets
that correspond to four diagnostic abilities in diag-
nosis, including total accuracy, robustness to irrel-
evant information, more-hop generalization, and
proof-based traceability. Specifically, we attempt
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to answer the following questions relevant to the
FOL reasoning ability based on these evaluations:
Q1: Do models truly perform FOL reasoning
automatically in diverse scenarios? Q2: Do rea-
soning results accord with reasonable logic? Ac-
curacy, robustness, and generalization are adopted
to answer Q1 from different conditions. Accuracy
is the most common in-domain evaluation that mea-
sures the overall performance of LMs. Compared
with accuracy, the robustness test offers a scenario
that increases/decreases non-proof sentences. As
robustness does not change the reasoning process,
it can be regarded as an in-domain evaluation. The
generalization test offers a scenario that increases
the reasoning hop and therefore increases proofs,
so it is an out-of-domain evaluation. Traceability
test is introduced to answer Q2 by validating the
whole reasoning process according to the proofs.

4.2 Dataset Gerneration and Statistics

We adopt a semi-automatic method to generate Log-
icNLI with two steps: 1) logic generation, and 2)
natural language generation. As for the logic gen-
eration, we adopt an automatic method to generate
each logic expression to ensure the validity of FOL
reasoning. Specifically, We first select a list of sub-
jects, S = {s;},7 < n, and a list of adjectives as
predicates, P = {p;},j < m, and define a set of
logical templates 7" in advance. For each instance,
we randomly select logic expressions from 7" and
the corresponding subjects and predicates from S
and P. In terms of the natural language generation,
we first adopt a rule-based method to generate ini-
tial language expressions and then make manual
revisions. Manual correction aims to fix grammat-
ical errors and semantic ambiguities. Besides, it
also enhances the diversity of expressions. As for
test sets of different abilities, we add additional lim-
itations to generate data that meets different needs
based on the above generation method.

Statistics of LogicNLI are listed in Table 2. Log-
icNLI includes 9 training sets, 9 development sets,
and 15 test sets. We adopt different subjects and
predicates for independently constructed training
sets, development sets, and test sets to avoid the
spurious correlations between subjects and predi-
cates. To undermine the label bias, we ensure the
balance of different labels in each dataset.

4.3 Diagnosis

Total Accuracy is the most intuitive indicator
to measure the performance of a model in most

NLU tasks (Storks et al., 2019), but it may not be
sufficient as it cannot avoid the impacts of spurious
correlations. In this work, the accuracy-test set
(Test-A) has a similar distribution to the training
set and the development set, except that the subjects
and predicates are zero-shot.

Robustness to Irrelevant Information is an in-
domain evaluation that measures the model’s abil-
ity to extract relevant information from noisy data,
which is typically the first step in many NLU tasks.
Unlike Sinha et al. (2019), our work focuses on the
amount of noise, rather than its taxonomy. There-
fore, we adopt an elimination method to generate
training sets (Train-R), development sets (Dev-R),
and test sets (Test-R). Firstly, facts and rules are
classified into relevant sentences (R1, R2, and R3
in Figure 2) and irrelevant sentences (R4 in Fig-
ure 2). Secondly, we fix the relevant sentences to
ensure that the label remains unchanged and gradu-
ally eliminate irrelevant ones. We finally acquire
robustness sets with different numbers of facts and
rules (from 10 to 24 in steps of 2).

More-hop Generalization is an out-of-domain
indicator to judge whether a model truly un-
derstands the logic rules and applies them to
reasoning instances. Following the setting in
CLUTRR (Sinha et al., 2019), generalization can
be measured by training a model on examples with
<k-hop reasoning and evaluated on ones with >k-
hop reasoning. Therefore, we generate a series of
the more-hop test sets (Test-G) only by controlling
the generation iterations during the logic genera-
tion.

Proof-based Traceability is used to post-verify
whether a model infers the correct answer accord-
ing to the human-understandable logic. In multi-
hop reasoning tasks, it is reasonable to measure
traceability through proofs (Yang et al., 2018; Gon-
tier et al., 2020). Therefore, we propose proof-
based traceability (the example of proofs is shown
in Figure 2) based on the intuitive that if a model
can infer the correct answer according to the right
reasoning paths, it will correctly validate each
proof. Specifically, we construct an traceability-
test set (Test-T) with 6-hop instances to make the
final task an out-of-domain evaluation while ensur-
ing the judgments of proofs are in-domain. Since
“Neutral” samples do not provide any proofs, we re-
move them. To perform the diagnosis, we first train
the model on the training set and test it on Test-T.
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Data Statistics ‘ Train ‘ Dev. ‘ Test-A ‘ Train-R(s) Dev-R(s) Test-R(s) ‘ Test-G(s) ‘ Test-T
#Instances 12000 | 1500 | 1500 72000 9000 9000 9396 6094
Avg. Length 184 182 183 63/ 87/ 111/ 136/ 160/ 184* 342 340
Max. Length 215 212 212 133/ 140/ 167/ 195/ 206/ 232* 389 391
. #Hop <5 <5 <5 <5 6/7/8/9/ 10 6
d-LogieNLL - b cts+Rules) | 15 15 15 5/7/9/11/13/ 15 15 15
#Subjects(n) 382 100 100 382 100 100 100 100
#Predicates(m) | 379 100 100 379 100 100 100 100
YLabels Entailment: Contradiction: Neutral = 1: 1: 1 (1:1:0 for Test-T)
#Instances 16000 | 2000 | 2000 96000 16000 16000 4124 6039
Avg. Length 245 245 245 104/ 125/ 145/ 165/ 185/ 205/ 225/ 245* 330 339
Max. Length 291 279 272 167/ 188/ 227/ 230/ 250/ 274/ 283/ 291* 395 401
LogicNLI #Hop <5 <5 <5 <5 6/7/8/9/ 10 6
#(Facts+Rules) 24 24 24 10/ 12/ 14/ 16/ 18/ 20/ 22/ 24 24 24
#Subjects(n) 382 100 100 382 100 100 100 100
#Predicates(m) | 379 100 100 379 100 100 100 100
%lLabels Entailment: Contradiction: Neutral: Paradox = 1: 1: 1: 1 (1:1:0:1 for Test-T)

Table 2: Statistical information for d-LogicNLI and LogicNLI datasets. A, R, G, and T represent accuracy, robust-
ness, generalization, and traceability, respectively. *Length information under different #(Rules+Facts) is provided

as the length distributions are different in robustness sets.

Next, we extract the instances that are correctly
predicted to form the target set. We then revise all
proofs of the target set to positive expressions to
avoid the “negation” logic’s impact on the evalua-
tion and re-annotate them. Finally, inspired by the
exact match metric (Yang et al., 2018), we define
a proof-based extract match (P-EM) to calculate
the percentage of instances whose proofs are com-
pletely correctly predicted. We adopt P-EM and
proof accuracy (P-Acc) to measure the traceability.

4.4 Degraded LogicNLI

“Paradox” provides a virtual scenario that is not
common in texts, so most classic NLI tasks do not
have this condition. To further understand why we
introduce ‘“Paradox” to LogicNLI, we construct a
degraded dataset, named d-LogicNLI, as a com-
parison. Compared with LogicNLI, d-LogicNLI
only contains premises and hypotheses with logi-
cal relations of “Entailment”, “Contradiction”, and
“Neutral”. From the perspective of dataset con-
struction, we only need to set a filter in the logic
generation stage to filter out paradox propositions.
The statistics of d-LogicNLI are listed in Table 2.

5 Experiments

5.1 Experimental Settings

We conduct experiments on three state-of-the-art
language models (LMs), BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and XL-
Net (Yang et al., 2019), to systematically measure
their FOL reasoning ability. For a fair compari-

Paras. BERT RoBERTa XLNET
batch size 16 16 16
Ir - le™® le™3
Ir for BERT  5¢~¢ 5¢6 -
decay rate 0.9 0.9 0.8
12 coeff. le=® le™® le?
early stop 5 5 5
epochs 20 20 20
optimizer ADAMW ADAMW ADAMW

Table 3: Hyper-parameter settings.

son, we fine-tune the large versions of LMs with
the same hidden size (1024) and adopt a two-layer
perceptron to predict the logical relation. Follow-
ing the input form of NLI tasks, the inputs look
like “[CLS] facts rules [SEP] statement [SEP]”
for BERT and RoBERTa, and “facts rules [SEP]
statement [SEP] [CLS]” for XLNet. The hyper-
parameters are shown in Table 3. We set random
selection and human performance as the lower and
upper boundaries of accuracy. As for human perfor-
mance evaluation, we employ four Ph.D. students
and five post-graduate students of different majors,
reporting the average scores on 500 randomly se-
lected instances from the development and test sets.
We consider a question as being correctly answered
if one of the students gives the correct answer.

5.2 Results

Total Accuracy. From Table 4, all three LMs per-
form better than random guess (25.0%) but worse
than humans (77.5%). RoBERTa performs the best
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Figure 3: Robustness analysis on LogicNLI. All LMs
are trained on Train-R with different number of sen-
tences and tested on the Test-R. Line graphs show
changes of accuracies with increasing number of sen-
tences. Dashed lines are linear fitting equations.

on both the development dataset (65.0%) and Test-
A (68.3%), with a gap of fewer than ten points com-
pared with humans on Test-A. XLNet is slightly
inferior to ROBERTa with the accuracies of 64.0%
and 65.4% on the development dataset and Test-A,
respectively. BERT, the worst LMs of the three,
only achieves only 57.0% and 55.9% accuracies on
two datasets, which are significantly poorer than
humans. Overall, from the perspective of accuracy,
all three LMs cannot reach the human level.

Robustness to Irrelevant Information. Table 4
shows the average results on all Dev-R(s) and Test-
R(s). Similar to accuracy, ROBERTa’s performance
is slightly better than XLNet, but the gap between
the two is not significant. BERT still performs the
worst on both Dev-R and Test-R.

Average accuracy on Test-R(s) cannot effectively
reflect the robustness directly. We plot the line
graph that describes the trend of the result on Test-
R(s) with the change of the number of sentences
(facts+rules) in Figure 3. All three LMs show
downward trends as the number of irrelevant sen-
tences increases. The performances of BERT and
RoBERTa decrease evenly with the noise increas-
ing, while the performance of XLNet is fluctuating
in the former period but declines rapidly in the
latter. Furthermore, we calculate the degradation
rate d g from the 10-sentence Test-R to 24-sentence
Test-R to measure robustness. Since the descent
process is non-linear, we replace original polylines
with their fitting lines (dotted lines in Figure 3) to
ensure that the degradation rate includes all test
points’ information. The final degradation rates of
BERT, RoBERTa, and XLNet are 24.6%, 25.2%,

Generalization Test on LogicNLI

BERT
RoBERTa
—¥— XLNet

701 683

60

Accuracy(%)

30.6 30.6 30.3 30.6
301 277

No.Hops

Figure 4: Generalization analysis based on LogicNLI.
Results on 6, 7, 8, 9, and 10-hop sets are regarded as
out-of-domain results, while it on <5-hop set is an in-
domain result.

and 21.5%, which shows that XLLNet’s robustness
is slightly better than BERT and RoBERTa.

More-hop Generalization. We plot accuracies
on Test-A and each Test-G in Figure 4 and show
the total accuracy on Test-G in Table 4. From
Figure 4, all three LMs’ performances have dramat-
ically dropped when transferring from in-domain
scenarios to out-of-domain scenarios. However,
their out-of-domain accuracies can almost keep sta-
ble as the number of hops continues to increase
(up to 10). To further compare the generalization,
we define an indicator, 4. = MlM;IMQ x 100%,
to reflect the percentage of performance degrada-
tion when transferring from in-domain scenarios
to out-of-domain scenarios, where M is the in-
domain result on Test-A and M, is the average
out-of-domain result on Test-G. The performance
degradation rates of BERT, RoBERTa, and XLNet
are 43.5%, 26.9%, and 34.3%, respectively. There-
fore, ROBERTa shows the best generalization when
transferring to more-hop reasoning, while BERT
cannot effectively understand logical rules and ap-
ply them to out-of-domain instances.

Proof-based Traceability. Considering P-Acc
on Test-T (Table 4), it seems that 87.6% of proofs
can be validated when adopting RoBERTa to make
the prediction. Even BERT can explain more than
60% proofs. However, we usually judge whether
an instance is understood logically by verifying
the completeness of the whole logical chain in-
stead of the ratio of understandable proofs. There-
fore, P-EM is more suitable than P-Acc to measure
traceability. Considering EM, RoBERTa can val-
idate 53.1% correctly predicted instances, while
BERT and XLNet can only validate 9.3% and
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Models Accuracy Robustness Generalization traceability
Dev. Test-A | Dev-R  Test-R Test-G #Target Test-T(P-EM) #Proof Test-T(P-Acc.)
Random 25.0 25.0 25.0 -
Human 77.5 - - -
BERT 570 559 68.0 66.0 31.6 2143 9.3 12706 61.1
RoBERTa | 65.0 68.3 80.9 80.4 49.9 3529 53.1 21728 87.6
XLNet 640 654 77.0 78.9 43.0 2495 28.6 15112 77.0

Table 4: Diagnostic results of LMs on LogicNLI. All information provide the percentage (%) of each evaluation

except for #Target and #Proof.

28.6% instances, respectively. This result means
that RoOBERTa is the only LM that can perform FOL
reasoning to some extent, which has significantly
better proof-based traceability than BERT and XL-
Net. However, even the best model, ROBERTa, can
only explain approximately half of the predictions,
indicating that the overall predictions made by LMs
do not conform to human logic.

5.3 Overall Diagnosis

Considering four evaluations comprehensively,
RoBERTa has the best FOL reasoning ability in
complex scenarios and is the only one of three
LMs that can provide a certain degree of trace-
ability. Considering accuracy (in-domain eval-
uation) and generalization (out-of-domain eval-
uation), RoBERTa performs significantly better
than BERT and XLNet. Especially when trans-
ferring from the in-domain scenarios to the out-
of-domain, ROBERTa’s degradation ratio is signif-
icantly lower than BERT’s and XLNet’s, which
means that RoBERTa is better at understanding
logical rules and applying them than the other two
LMs. This conclusion can also be proven by the
traceability test. In reality, although BERT and
XLNet can make correct predictions to some ex-
tent, most of these results cannot be traced back by
the validation of proofs. A certain percentage of
prediction results of RoBERTa can be explained.
Finally, as for robustness, RoOBERTa is indeed more
susceptible to irrelevant information than XLNet.
Even though, RoBERTa still performs better than
XLNet on robustness test, as XLNet’s performance
drops rapidly after reaching a threshold.

In general, even for ROBERTaA, there is still a
long way to the real FOL reasoning. On the one
hand, its performance needs to be improved in both
in-domain and out-of-domain scenarios. On the
other hand, even if RoOBERTa makes the correct
prediction, nearly half of its prediction results are

Statistics A Vv - — = v 3

#Instances 1500 1500 1500 1500 1500 1500 1500
Ave.Length 358 330 270 246 253 275 292
Max.Length 411 364 299 292 279 333 321
#(Facts+Rules) 25 25 25 24 24 30 22
#Subjects(n) 100 100 100 100 100 100 100
#Predicates(m) 100 100 100 100 100 100 100
%Labels Entailment: Contradiction: Neutral = 1: 1: 1

Table 5: Statistical information for each FOL.

Models Performance on Each FOL
A \Y, - — = v 3
Random | 33.3 333 333 333 333 333 333
Human 88.9 100 100 93.3 90.0 96.0 88.0
BERT 589 658 628 682 649 66.8 76.9
RoBERTa | 82.1 94.7 68.5 87.1 84.4 80.5 99.3
XLNet 780 906 662 812 80.1 750 983

Table 6: Performance on each FOLs (%). Except for
-, other FOLs cannot imply ‘“Paradox”, so we remove
“Paradox” and the random accuracy is 33.3%.

still unexplainable. The gap between LMs and hu-
mans motivates us to explore more effective ways
to make more effective reasoning in NLU. Maybe
neural symbolic models are solutions to FOL rea-
soning (Kalouli et al., 2020).

5.4 Analysis of Each FOLs

To further understand the FOL reasoning ability,
we perform the analysis on how LMs understand
each FOL. Specifically, we are required to disen-
tangle the target FOL from other FOLs by adding
logical filters when selecting filters. Among seven
FOLs, only implication and equivalence can be
fully entangled from other FOLs and directly used
for reasoning, while others alone cannot consti-
tute complete reasoning. Therefore, we combine
the other five FOLs with the implication logic to
make the reasoning process effective. Statistics are
shown in Table 5.

Results of FOLs experiments are shown in Ta-
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ble 6. RoBERTa outperforms the other two LMs on
all FOLs. Considering each FOL, the performance
of LMs is almost difficult to surpass humans, ex-
cept on the existential logic. In reality, existential
logic is difficult for humans (with the lowest hu-
man performance) because it requires traversing all
information to extract relevant information. How-
ever, it is not difficult for LMs as existential logic
provides weak constraints that are easy to satisfy.
As a result, most LMs perform better than humans
on such logic. On the contrary, LMs’ performances
on universal logic and negation logic are signifi-
cantly worse than humans’. As for universal logic,
its complexity may come from its ambiguity in lan-
guage. For example, comparing Vz F'(z) — G(a)
and Vz(F(x) — G(z)), although both use univer-
sal logic for reasoning, the former requires stronger
conditions but can only provide simpler conclu-
sions than the latter. This phenomenon makes uni-
versal logic difficult to understand consistently. In
terms of negation, many studies (Hossain et al.,
2020b,c,a) have proved that negation logic itself
is critical but difficult to be understood by neural
networks, which results in more auxiliary meth-
ods to identify and process in natural language.
In addition, we find that all LMs perform better
on single FOL datasets than on Test-A, which is
evidence that LMs suffer from the coupling of dif-
ferent FOLs. Therefore, the analysis of FOLs moti-
vates us to modify LMs by 1) focusing on specific
logic types (negation and universal logic), and 2)
disentangling the different logical forms.

5.5 Analysis of “Paradox”

In this section, we provide further analysis on why
to introduce the virtual label “Paradox” into Logic-
NLI by comparing d-LogicNLI and LogicNLI. As
shown in Figure 5, d-LogicNLI is a particular case
of LogicNLI under the mutually exclusive condi-
tion of “Entailment” and “Contradiction”. There-
fore, although “Paradox” is usually a virtual label
in most scenarios, it is critical to complement the
space of the logical relation.

In practice, we can summarize two effects of
“Paradox”: 1) “Paradox” provides more accurate
FOL information for model training, thereby effec-
tively suppressing the impacts of spurious correla-
tions caused by dataset bias; 2) “Paradox” makes
the diagnostic scenarios more complete and com-
plex, so it can better distinguish the FOL reason-
ing abilities of different LMs. We will illustrate

d-LogicNLI LogicNLI

contradiction contradiction

paradox

entailment entailment

neutral neutral

Figure 5: Comparison of logical relation spaces of d-
LogicNLI and LogicNLI.

Models Data P-Acc  6r daa P-EM
d-LogicNLI ~ 73.1 23.7 440 1.1
BERT LogicNLI 559 246 435 9.3
d-LogicNLI  80.7 17.0 40.0 0.9
ROBERTa / iNLI 683 252 269  53.1
XLNet d-LogicNLI 857 7.2  36.8 4.1

LogicNLI 654 215 343 28,6

Table 7: Comparison of important indicators on d-
LogicNLI and LogicNLI. 6 and d4_,¢ are degrada-
tion rates introduced in the results of robustness and
generalization, respectively. P-EM is a metric to mea-
sure traceability.

these two statements by comparing important in-
dicators on d-LogicNLI and LogicNLI (shown in
Table 7). Firstly, the in-domain results (Accuracy
and J ) of all three LMs (and human performance)
on d-LogicNLI are overall better than those on Log-
icNLI, proving that either d-LogicNLI provides
much simpler evaluation datasets than LogicNLI
does, or d-LogicNLI provides more precise and
unbiased training instances than LogicNLI pro-
vides. Secondly, we observe that LMs trained on d-
LogicNLI are hardly traceable based on Test-T (the
maximum P-EM achieved by XLNet is only 4.1%),
while LMs trained on LogicNLI have significantly
better traceability. This phenomenon support that d-
LogicNLI does not provide sufficient information
for LMs to master the FOL reasoning ability. Fi-
nally, the generalization indicators ¢ 4, of BERT,
RoBERTa, and XLNet trained on d-LogicNLI are
44.0%, 40.0%, and 36.8%, respectively, showing
that the transferring ability of LMs trained on d-
LogicNLI is not as good as those trained on Log-
icNLI. This is implicit evidence to support that
LogicNLI provides more information for LMs to
understand FOL rules.

5.6 Discussion

From Table 4, RoOBERTa performs the best on Log-
icNLI while XLNet outperforms the other two LMs
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on d-LogicNLI. According to the original work of
these LMs (Liu et al., 2019; Yang et al., 2019),
XLNet modifies the architecture of BERT, while
RoBERTa mainly introduces a larger corpus to train
the model. In most simple reasoning scenarios,
such as RACE (Lai et al., 2017) and SQuAD (Ra-
jpurkar et al., 2016), the performance of XLNet is
usually better than RoOBERTa’s. However, in other
scenarios that require more complicated reason-
ing processes, such as LogiQA (Liu et al., 2020)
and datasets defined in GLUE (Wang et al., 2019b)
and SuperGLUE (Wang et al., 2019a), RoBERTa,
trained on a larger corpus, usually outperforms
XLNet. Based on the above analysis, LogicNLI
provides more complex reasoning scenarios than
d-LogicNLI. Therefore, RoOBERTa can highlight its
advantages even more on LogicNLI.

6 Conclusion

In this paper, we propose a diagnostic method to di-
agnose LMs’ FOL reasoning ability. This method
introduces a novel proposed benchmark, LogicNLI,
that disentangles the FOL reasoning from com-
monsense inference. Specifically, it includes four
evaluations to measure the FOL reasoning ability
from different perspectives. Results on three LMs
show that although some LMs (RoBERTa) own a
certain interpretable FOL reasoning ability, they
still cannot make sensible FOL reasoning like hu-
mans. Detailed analysis motivates us to enhance
specific reasoning abilities or explore new methods
to make neural models understand more refined
logic.
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