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Abstract

A computationally expensive and memory in-
tensive neural network lies behind the re-
cent success of language representation learn-
ing. Knowledge distillation, a major technique
for deploying such a vast language model
in resource-scarce environments, transfers the
knowledge on individual word representations
learned without restrictions. In this paper, in-
spired by the recent observations that language
representations are relatively positioned and
have more semantic knowledge as a whole, we
present a new knowledge distillation objective
for language representation learning that trans-
fers the contextual knowledge via two types of
relationships across representations: Word Re-
lation and Layer Transforming Relation. Un-
like other recent distillation techniques for the
language models, our contextual distillation
does not have any restrictions on architectural
changes between teacher and student. We vali-
date the effectiveness of our method on chal-
lenging benchmarks of language understand-
ing tasks, not only in architectures of various
sizes, but also in combination with DynaBERT,
the recently proposed adaptive size pruning
method.

1 Introduction

Since the Transformer, a simple architecture based
on attention mechanism, succeeded in machine
translation tasks, Transformer-based models have
become a new state of the arts that takes over more
complex structures based on recurrent or convo-
lution networks on various language tasks, e.g.,
language understanding and question answering,
etc (Devlin et al., 2018; Lan et al., 2019; Liu et al.,
2019; Raffel et al., 2019; Yang et al., 2019). How-
ever, in exchange for high performance, these mod-
els suffer from a major drawback: tremendous com-
putational and memory costs. In particular, it is not
possible to deploy such large models on platforms
with limited resources such as mobile and wearable

devices, and it is an urgent research topic with im-
pact to keep up with the performance of the latest
models from a small-size network.

As the main method for this purpose, Knowl-
edge Distillation (KD) transfers knowledge from
the large and well-performing network (teacher)
to a smaller network (student). There have been
some efforts that distill Transformer-based mod-
els into compact networks (Sanh et al., 2019; Turc
et al., 2019; Sun et al., 2019, 2020; Jiao et al., 2019;
Wang et al., 2020). However, they all build on the
idea that each word representation is independent,
ignoring relationships between words that could be
more informative than individual representations.

In this paper, we pay attention to the fact
that word representations from language mod-
els are very structured and capture certain
types of semantic and syntactic relationships. -
Word2Vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014) demonstrated that trained em-
bedding of words contains the linguistic patterns
as linear relationships between word vectors. Re-
cently, Reif et al. (2019) found out that the dis-
tance between words contains the information of
the dependency parse tree. Many other studies also
suggested the evidence that contextual word rep-
resentations (Belinkov et al., 2017; Tenney et al.,
2019a,b) and attention matrices (Vig, 2019; Clark
et al., 2019) contain important relations between
words. Moreover, Brunner et al. (2019) showed
the vertical relations in word representations across
the transformer layers through word identifiability.
Intuitively, although each word representation has
respective knowledge, the set of representations of
words as a whole is more semantically meaningful,
since words in the embedding space are positioned
relatively by learning.

Inspired by these observations, we propose a
novel distillation objective, termed Contextual
Knowledge Distillation (CKD), for language tasks
that utilizes the statistics of relationships between
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word representations. In this paper, we define
two types of contextual knowledge: Word Rela-
tion (WR) and Layer Transforming Relation (LTR).
Specifically, WR is proposed to capture the knowl-
edge of relationships between word representations
and LTR defines how each word representation
changes as it passes through the network layers.

We validate our method on General Language
Understanding Evaluation (GLUE) benchmark and
the Stanford Question Answer Dataset (SQuAD),
and show the effectiveness of CKD against the
current state-of-the-art distillation methods. To val-
idate elaborately, we conduct experiments on task-
agnostic and task-specific distillation settings. We
also show that our CKD performs effectively on a
variety of network architectures. Moreover, with
the advantage that CKD has no restrictions on stu-
dent’s architecture, we show CKD further improves
the performance of adaptive size pruning method
(Hou et al., 2020) that involves the architectural
changes during the training.

To summarize, our contribution is threefold:

• (1) Inspired by the recent observations that
word representations from neural networks
are structured, we propose a novel knowledge
distillation strategy, Contextual Knowledge
Distillation (CKD), that transfers the relation-
ships across word representations.

• (2) We present two types of complementary
contextual knowledge: horizontal Word Rela-
tion across representations in a single layer
and vertical Layer Transforming Relation
across representations for a single word.

• (3) We validate CKD on the standard lan-
guage understanding benchmark datasets and
show that CKD not only outperforms the state-
of-the-art distillation methods but boosts the
performance of adaptive pruning method.

2 Related Work

Knowledge distillation Since recently popu-
lar deep neural networks are computation- and
memory-heavy by design, there has been a long
line of research on transferring knowledge for the
purpose of compression. Hinton et al. (2015) first
proposed a teacher-student framework with an ob-
jective that minimizes the KL divergence between
teacher and student class probabilities. In the field
of natural language processing (NLP), knowledge

distillation has been actively studied (Kim and
Rush, 2016; Hu et al., 2018). In particular, after
the emergence of large language models based on
pre-training such as BERT (Devlin et al., 2018; Liu
et al., 2019; Yang et al., 2019; Raffel et al., 2019),
many studies have recently emerged that attempt
various knowledge distillation in the pre-training
process and/or fine-tuning for downstream tasks
in order to reduce the burden of handling large
models. Specifically, Tang et al. (2019); Chia et al.
(2019) proposed to distill the BERT to train the
simple recurrent and convolution networks. Sanh
et al. (2019); Turc et al. (2019) proposed to use the
teacher’s predictive distribution to train the smaller
BERT and Sun et al. (2019) proposed a method to
transfer individual representation of words. In addi-
tion to matching the hidden state, Jiao et al. (2019);
Sun et al. (2020); Wang et al. (2020) also utilized
the attention matrices derived from the Transformer.
Several works including Liu et al. (2020); Hou et al.
(2020) improved the performance of other compres-
sion methods by integrating with knowledge distil-
lation objectives in the training procedure. In par-
ticular, DynaBERT (Hou et al., 2020) proposed the
method to train the adaptive size BERT using the
hidden state matching distillation. Different from
previous knowledge distillation methods that trans-
fer respective knowledge of word representations,
we design the objective to distill the contextual
knowledge contained among word representations.

Contextual knowledge of word representations
Understanding and utilizing the relationships
across words is one of the key ingredients in lan-
guage modeling. Word embedding (Mikolov et al.,
2013; Pennington et al., 2014) that captures the
context of a word in a document, has been tradi-
tionally used. Unlike the traditional methods of
giving fixed embedding for each word, the con-
textual embedding methods (Devlin et al., 2018;
Peters et al., 2018) that assign different embed-
dings according to the context with surrounding
words have become a new standard in recent years
showing high performance. Xia and Zong (2010)
improved the performance of the sentiment classifi-
cation task by using word relation, and Hewitt and
Manning (2019); Reif et al. (2019) found that the
distance between contextual representations con-
tains syntactic information of sentences. Recently,
Brunner et al. (2019) also experimentally showed
that the contextual representations of each token
change over the layers. Our research focuses on



366

knowledge distillation using context information
between words and between layers, and to our best
knowledge, we are the first to apply this context
information to knowledge distillation.

3 Setup and background

Most of the recent state-of-the-art language models
are stacking Transformer layers which consist of
repeated multi-head attentions and position-wise
feed-forward networks.

Transformer based networks. Given an input
sentence with n tokens, X = [x1, x2, . . . , xn] ∈
Rdi×n, most networks (Devlin et al., 2018; Lan
et al., 2019; Liu et al., 2019) utilize the embed-
ding layer to map an input sequence of sym-
bol representations X to a sequence of continu-
ous representations E = [e1, . . . , en] ∈ Rde×n.
Then, each l-th Transformer layer of the identical
structure takes the previous representations Rl−1

and produces the updated representations Rl =
[rl,1, rl,2, . . . , rl,n] ∈ Rdr×n through two sub-
layers: Multi-head Attention (MHA) and position-
wise Feed Forward Network (FFN). The input at
the first layer (l = 1) is simply E. In MHA op-
eration where h separate attention heads are op-
erating independently, each input token rl−1,i for
each head is projected into a query qi ∈ Rdq ,
key ki ∈ Rdq , and value vi ∈ Rdv , typically
dk = dq = dv = dr/h. Here, the key vectors
and value vectors are packed into the matrix forms
K = [k1, · · · , kn] and V = [v1, · · · , vn], respec-
tively, and the attention value ai and output of each
head oh,i are calculated as followed:

ai = Softmax

(
KT · qi√

dq

)
and oh,i = V · ai

The outputs of all heads are then concatenated
and fed through the FFN, producing the single word
representation rl,i. For clarity, we pack attention
values of all words into a matrix form Al,h =
[a1, a2, .., an] ∈ Rn×n for attention head h.

Knowledge distillation for Transformer. In
the general framework of knowledge distillation,
teacher network (T ) with large capacity is trained
in advance, and then student network (S) with
pre-defined architecture but relatively smaller than
teacher network is trained with the help of teacher’s
knowledge. Specifically, given the teacher param-
eterized by θt, training the student parameterized

by θs aims to minimize two objectives: i) the cross-
entropy loss LCE between the output of the student
network S and the true label y and ii) the differ-
ence of some statistics LD between teacher and
student models. Overall, our goal is to minimize
the following objective function:

L(θs) = E
[
LCE+λLD

(
Kt(X; θt),K

s(X; θs)
)]

where λ controls the relative importance between
two objectives. Here, K characterizes the knowl-
edge being transferred and can vary depending on
the distillation methods, and LD is a matching loss
function such as l1, l2 or Huber loss. Recent studies
on knowledge distillation for Transformer-based
BERT can also be understood in this general frame-
work. In particular, each distillation methods of
previous works are summarized in Appendix A.

4 Contextual Knowledge Distillation

We now present our distillation objective that trans-
fers the structural or contextual knowledge which
is defined based on the distribution of word repre-
sentations. Unlike previous methods distilling each
word separately, our method transfers the informa-
tion contained in relationships between words or
between layers, and provides a more flexible way of
constructing embedding space than directly match-
ing representations. The overall structure of our
method is illustrated in Figure 1(a). Specifically,
we design two key concepts of contextual knowl-
edge from language models: Word Relation-based
and Layer Transforming Relation-based contextual
knowledge, as shown in Figure 1(b).

4.1 Word Relation (WR)-based Contextual
Knowledge Distillation

Inspired by previous studies suggesting that neural
networks can successfully capture contextual rela-
tionships across words (Reif et al., 2019; Penning-
ton et al., 2014; Mikolov et al., 2013), WR-based
CKD aims to distill the contextual knowledge con-
tained in the relationships across words at certain
layer. The “relationship” across a set of words can
be defined in a variety of different ways. Our work
focuses on defining it as the sum of pair-wise and
triple-wise relationships. Specifically, for each in-
put X with n words, let Rl = [rl,1, · · · rl,n] be the
word representations at layer l from the language
model (it could be teacher or student), as described
in Section 3. Then, the objective of WR-based CKD
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(a) (b)

Figure 1: Overview of our contextual knowledge distillation. (a) In the teacher-student framework, we define the two
contextual knowledge, word relation and layer transforming relation which are the statistics of relation across the words from the
same layer (orange) and across the layers for the same word (turquoise), respectively. (b) Given the pair-wise and triple-wise
relationships of WR and LTR from teacher and student, we define the objective as matching loss between them.

is to minimize the following loss:

LCKD−WR =
∑

(i,j)∈χ2

wij LD
(
φ(rsi , r

s
j ), φ(r

t
i , r

t
j)
)

+ λWR

∑
(i,j,k)∈χ3

wijk LD
(
ψ(rsi , r

s
j , r

s
k), ψ(r

t
i , r

t
j , r

t
k)
)

(1)

where χ = {1, . . . , n}. The function φ and ψ de-
fine the pair-wise and triple-wise relationships, re-
spectively and λWR adjust the scales of two losses.
Here, we suppress the layer index l for clarity, but
the distillation loss for the entire network is sim-
ply summed for all layers. Since not all terms in
Eq. (1) are equally important in defining contextual
knowledge, we introduce the weight valueswij and
wijk to control the weight of how important each
pair-wise and triple-wise term is. Determining the
values of these weight values is open as an imple-
mentation issue, but it can be determined by the
locality of words (i.e. wij = 1 if |i − j| ≤ δ and
0, otherwise), or by attention information A to fo-
cus only on relationship between related words. In
this work, we use the locality of words as weight
values.

While functions φ and ψ defining pair-wise and
triple-wise relationship also have various possibil-
ities, the simplest choices are to use the distance
between two words for pair-wise φ and the angle
by three words for triple-wise ψ, respectively.

Pair-wise φ via distance. Given a pair of
word representations (ri, rj) from the same layer,
φ(ri, rj) could be defined as cosine distance:
cos (ri, rj) or l2 distance: ‖ri − rj‖2.

Triple-wise ψ via angle. Triple-wise relation
captures higher-order structure and provides more
flexibility in constructing contextual knowledge.
One of the simplest forms for ψ is the angle, which
is calculated as

ψ(ri, rj , rk) = cos∠(ri, rj , rk)

=

〈
ri − rj∥∥ri − rj∥∥2 , rk − rj∥∥rk − rj∥∥2

〉
(2)

where 〈·, ·〉 denotes the dot product between two
vectors.

Despite its simple form, efficiently computing
the angles in Eq. (2) for all possible triples out
of n words requires storing all relative represen-
tations (ri − rj) in a (n, n, dr) tensor1. This in-
curs an additional memory cost ofO(n2dr). In this
case, using locality for wijk in Eq. (1) mentioned
above can be helpful; by considering only the
triples within a distance of δ from rj , the additional
memory space required for efficient computation
is O(δndr), which is beneficial for δ � n. It also
reduces the computation complexity of comput-
ing triple-wise relation fromO(n3dr) toO(δ2ndr).

1From the equation ‖ri − rj‖22 = ‖ri‖22 + ‖rj‖22 −
2〈ri, rj〉, computing the pair-wise distance with the right hand
side of equation requires no additional memory cost.
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Moreover, we show that measuring angles in local
window is helpful in the performance in the experi-
mental section.

4.2 Layer Transforming Relation (LTR)
-based Contextual Knowledge Distillation

The second structural knowledge that we propose to
capture is on “how each word is transformed as it
passes through the layers". Transformer-based lan-
guage models are composed of a stack of identical
layers and thus generate a set of representations for
each word, one for each layer, with more abstract
concept in the higher hierarchy. Hence, LTR-based
CKD aims to distill the knowledge of how each
word develops into more abstract concept within
the hierarchy. Toward this, given a set of representa-
tions for a single word in L layers, [rs1,w, · · · , rsL,w]
for student and [rt1,w, · · · , rtL,w] for teacher (Here
we abuse the notation and {1, . . . , L} is not nec-
essarily the entire layers of student or teacher. It
is the index set of layers which is defined in align-
ment strategy; this time, we will suppress the word
index below), the objective of LTR-based CKD is
to minimize the following loss:

LCKD−LTR =
∑

(l,m)∈ρ2
wlm LD

(
φ(rsl , r

s
m), φ(r

t
l , r

t
m)
)

+ λLTR

∑
(l,m,o)∈ρ3

wlmo LD
(
ψ(rsl , r

s
m, r

s
o), ψ(r

t
l , r

t
m, r

t
o)
)

(3)

where ρ = {1, . . . , L} and λLTR again adjust the
scales of two losses. Here, the composition of
Eq. (3) is the same as Eq. (1), but only the ob-
jects for which the relationships are captured have
been changed from word representations in one
layer to representations for a single word in lay-
ers. That is, the relationships among representa-
tions for a word in different layers can be defined
from distance or angle as in Eq. (2): φ(rl, rm) =
cos(rl, rm) or ‖rl − rm‖2 and ψ(rl, rm, ro) =
〈 rl−rm
‖rl−rm‖2 ,

ro−rm
‖ro−rm‖2 〉.

Alignment strategy. When the numbers of lay-
ers of teacher and student are different, it is impor-
tant to determine which layer of the student learns
information from which layer of the teacher. Pre-
vious works (Sun et al., 2019; Jiao et al., 2019)
resolved this alignment issue via the uniform (i.e.
skip) strategy and demonstrated its effectiveness
experimentally. For Lt-layered teacher and Ls-
layered student, the layer matching function f is

defined as

f(steps × t) = stept × t, for t = 0, . . . , g

where g is the greatest common divisor of Lt and
Ls, stept = Lt/g and steps = Ls/g.

Overall training objective. The distillation ob-
jective aims to supervise the student network with
the help of teacher’s knowledge. Multiple distil-
lation loss functions can be used during training,
either alone or together. We combine the proposed
CKD with class probability matching (Hinton et al.,
2015) as an additional term. In that case, our overall
distillation objective is as follows:

L = LDlogit + λCKD

(
LCKD−LTR + LCKD−WR

)
where λCKD is a tunable parameter to balance the
loss terms.

4.3 Architectural Constraints in Distillation
Objectives

State-of-the-art knowledge distillation objectives
commonly used come with constraints in design-
ing student networks since they directly match
some parts of the teacher and student networks
such as attention matrices or word representations.
For example, DistilBERT (Sanh et al., 2019) and
PKD (Sun et al., 2019) match each word represen-
tation independently using their cosine similarities,∑n

i=1 cos(r
t
l,i, r

s
l,i), hence the embedding size of

student network should follow that of given teacher
network. Similarly, TinyBERT (Jiao et al., 2019)
and MINI-LM (Wang et al., 2020) match the at-
tention matrices via

∑H
h=1KL(At

l,h,A
s
l,h). There-

fore, we should have the same number of attention
heads for teacher and student networks (see Ap-
pendix A for more details on diverse distillation
objectives).

In addition to the advantage of distilling contex-
tual information, our CKD method has the advan-
tage of being able to select the student network’s
structure more freely without the restrictions that
appear in existing KD methods. This is because
CKD matches the pair-wise or triple-wise rela-
tionships of words from arbitrary networks (stu-
dent and teacher), as shown in Eq. (1), so it is
always possible to match the information of the
same dimension without being directly affected
by the structure. Thanks to this advantage, in the
experimental section, we show that CKD can fur-
ther improve the performance of recently proposed
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Table 1: Comparisons for task-agnostic distillation. For the task-agnostic distillation comparison, we do not use task-specific
distillation for a fair comparison. The results of TinyBERT and Truncated BERT are ones reported in Wang et al. (2020). Other
results are as reported by their authors. We exclude BERT-of-Theseus since the authors do not consider task-agnostic distillation.
Results of development set are averaged over 4 runs. “-" indicates the result is not reported in the original papers and the trained
model is not released. † marks our runs with the officially released model by the authors.

Model #Params CoLA MNLI-(m/-mm) SST-2 QNLI MRPC QQP RTE STS-B Avg(Mcc) (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Spear)
BERTBASE (Teacher) 110M 60.4 84.8/84.6 94.0 91.8 90.3 91.4 70.4 89.5 84.1
Truncated BERT (Sun et al., 2019) 67.5M 41.4 81.2/- 90.8 87.9 82.7 90.4 65.5 - -
BERTSmall (Turc et al., 2019) 67.5M 47.1† 81.1/81.7 91.1 87.8 87.9 90.0 63.0 87.5† 79.7
TinyBERT (Jiao et al., 2019) 67.5M 42.8 83.5/83.2† 91.6 90.5 88.4 90.6 72.2 88.5† 81.3
CKD 67.5M 52.7 83.5/83.4 92.4 90.7 89.1 90.8 70.1 89.1 82.4

Table 2: Comparisons for task-specific distillation. For a fair comparison, all students are 6/768 BERT models, distilled
by BERTBASE (12/768) teachers. Other results except for TinyBERT and PKD are as reported by their authors. Results of
development set are averaged over 4 runs. “-" indicates the result is not reported. Average score is computed excluding the
MNLI-mm accuracy.

Model #Params CoLA MNLI-(m/-mm) SST-2 QNLI MRPC QQP RTE STS-B Avg(Mcc) (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Spear)
BERTBASE (Teacher) 110M 60.4 84.8/84.6 94.0 91.8 90.3 91.4 70.4 89.5 84.1
PD (Turc et al., 2019) 67.5M - 82.5/83.4 91.1 89.4 89.4 90.7 66.7 - -
PKD (Sun et al., 2019) 67.5M 45.5 81.3/- 91.3 88.4 85.7 88.4 66.5 86.2 79.2
TinyBERT (Jiao et al., 2019) 67.5M 53.8 83.1/83.4 92.3 89.9 88.8 90.5 66.9 88.3 81.7
BERT-of-Theseus (Xu et al., 2020) 67.5M 51.1 82.3/- 91.5 89.5 89.0 89.6 68.2 88.7 81.2
CKD 67.5M 55.1 83.6/84.1 93.0 90.5 89.6 91.2 67.3 89.0 82.4

Table 3: Comparison of task-specific distillation on SQuAD
dataset. The results of baselines and ours are reported by
performing distillation with their objectives on the top of pre-
trained 6-layer BERT (6/768) (Turc et al., 2019).

Model #Params SQuAD 1.1v
EM F1

BERTBASE (Teacher) 110M 81.3 88.6
PKD(Sun et al., 2019) 67.5M 77.1 85.3
PD(Turc et al., 2019) 67.5M 80.1 87.0
TinyBERT(Jiao et al., 2019) 67.5M 80.4 87.2
CKD 67.5M 81.8 88.7

DynaBERT (Hou et al., 2020) that involves flexible
architectural changes in the training phase.

5 Experiments

We conduct task-agnostic and task-specific distilla-
tion experiments to elaborately compare our CKD
with baseline distillation objectives. We then report
on the performance gains achieved by our method
for BERT architectures of various sizes and insert-
ing our objective for training DynaBERT which can
run at adaptive width and depth through pruning
the attention heads or layers. Finally, we analyze
the effect of each component in our CKD and the
impact of leveraging locality δ for wijk in Eq. (1).

Dataset. For task-agnostic distillation which
compresses a large pre-trained language model into
a small language model on the pre-training stage,

we use a document of English Wikipedia. For eval-
uating the compressed language model on the pre-
training stage and task-specific distillation, we use
the GLUE benchmark (Wang et al., 2018) which
consists of nine diverse sentence-level classifica-
tion tasks and SQuAD (Rajpurkar et al., 2016).

Setup. For task-agnostic distillation, we use the
original BERT without fine-tuning as the teacher.
Then, we perform the distillation on the student
where the model size is pre-defined. We perform
distillation using our proposed CKD objective with
class probability matching of masked language
modeling for 3 epochs while task-agnostic distil-
lation following the Jiao et al. (2019) and keep
other hyperparameters the same as BERT pre-
training (Devlin et al., 2018). For task-specific dis-
tillation, we experiment with our CKD on top of
pre-trained BERT models of various sizes which
are released for research in institutions with fewer
computational resources2 (Turc et al., 2019). For
the importance weight of each pair-wise and triple-
wise terms, we leverage the locality of words, in
that wij = 1 if |i − j| ≤ δ and 0, otherwise. For
this, we select the δ in (10-21). More details includ-
ing hyperparameters are provided in Appendix B.
The code to reproduce the experimental results is
available at https://github.com/GeondoPark/CKD.

2https://github.com/google-research/bert

https://github.com/GeondoPark/CKD
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Figure 2: Task specific distillation on various sizes of models. We consider diverse cases by changing (a) the network structures,
(b) the number of parameters and (c) the number of FLOPs. All results are averaged over 4 runs on the development set.

Figure 3: Boosting the performance of DynaBERT via training with CKD. Comparison between the original DynaBERT and
CKD-augmented DynaBERT according to (a) the number of parameters and (b) the number of FLOPs. The results are averaged
over 4 runs on the development set.

5.1 Main Results
To verify the effectiveness of our CKD objective,
we compare the performance with previous distil-
lation methods for BERT compression including
task-agnostic and task-specific distillation. Follow-
ing the standard setup in baselines, we use the
BERTBASE (12/768)3 as the teacher and 6-layer
BERT (6/768) as the student network. Therefore,
the student models used in all baselines and ours
have the same number of parameters (67.5M) and
inference FLOPs (10878M) and time.

Task-agnostic Distillation. We compare with
three baselines: 1) Truncated BERT which drop
top 6 layers from BERTbase proposed in PKD (Sun
et al., 2019), 2) BERTsmall which trained using the
Masked LM objectives provided in PD (Turc et al.,
2019), 3) TinyBERT (Jiao et al., 2019) which pro-

3In notation (a/b), a means the number of layers and b
denotes a hidden size in intermediate layers. The number of
attention heads is defined as b/64.

pose the individual word representation and atten-
tion map matching. Since MobileBERT (Sun et al.,
2020) use the specifically designed teacher and stu-
dent network which have 24-layers with an inverted
bottleneck structure, we do not compare with. Dis-
tilBERT (Sanh et al., 2019) and MINI-LM (Wang
et al., 2020) use the additional BookCorpus dataset
which is no longer publicly available. Moreover,
the authors do not release the code, making it hard
to reproduce. Thus we do not compare in the main
paper for a fair comparison. The comparisons with
those methods are available in Appendix C. Results
of task-agnostic distillation on GLUE dev sets are
presented Table 1. The result shows that CKD sur-
passes all baselines. Comparing with TinyBERT
which transfers the knowledge of individual repre-
sentations, CKD outdoes in all scores except for
the RTE. These results empirically demonstrate that
distribution-based knowledge works better than in-
dividual representation knowledge.
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Table 4: Ablation study about the impact of each component of CKD. ’- *’ denotes
to eliminate *, the component of CKD.

Objectives MNLI-(m/-mm) SST-2 QNLI MRPC QQP STS-B
(Acc) (Acc) (Acc) (F1) (Acc) (Spear)

CKD 80.7/80.8 91.4 88.1 88.8 90.3 87.9
- WR 80.1/80.6 90.6 87.5 88.5 89.7 87.5
- LTR 79.9/80.3 91.1 87.8 88.3 90.3 87.6
- WR - LTR 79.2/79.9 89.1 87.4 88.1 89.2 86.8

Figure 4: Effect of local window size.

Task-specific Distillation. Here, we compare
with four baselines that do not perform distilla-
tion in the pre-training: 1) PD (Turc et al., 2019)
which do pre-training with Masked LM and distills
with Logit KD in task-specific fine-tuning process.
2) PKD (Sun et al., 2019) which uses only 6 layers
below BERTbase, and distillation is also performed
only in task-specific fine-tuning. The GLUE re-
sults on dev sets of PKD are taken from (Xu et al.,
2020). 3) TinyBERT (Jiao et al., 2019). For the
TinyBERT, we also perform distillation only in the
task-specific fine-tuning with their objectives on
the top of the pre-trained model provided by Turc
et al. (2019) for a fair comparison. 4) BERT-of-
Theseus (Xu et al., 2020) which learn a compact
student network by replacing the teacher layers in
a fine-tuning stage. Results of task-specific distil-
lation on GLUE dev sets and SQuAD datasets are
presented in Table 2 and 3, respectively. Note that
briefly, the CKD also outperforms all baselines for
all GLUE datasets and SQuAD dataset except for
RTE for task-specific distillation, convincingly ver-
ifying its effectiveness. These results consistently
support that contextual knowledge works better
than other distillation knowledge.

5.2 Effect of CKD on various sizes of models

For the knowledge distillation with the purpose of
network compression, it is essential to work well
in more resource-scarce environments. To this end,
we further evaluate our method on various sizes
of architectures. For this experiment, we perform
distillation on a task-specific training process on
top of various size pre-trained models provided by
Turc et al. (2019). We compare CKD with three
baselines: 1) LogitKD objective used by Sanh et al.
(2019); Turc et al. (2019). 2) TinyBERT (Jiao et al.,
2019) objective which includes individual word
representations and attention matrix matching. 3)
MINI-LM (Wang et al., 2020) objective which in-
cludes attention matrix and value-value relation
matching. We implement the baselines and runs

for task-specific distillation. We note that MINI-
LM and TinyBERT objective are applicable only
to models (*/768) which have the same number of
attention heads with the teacher model (12/768).
Figure 2 illustrate that our CKD consistently ex-
hibits significant improvements in the performance
compared LogitKD. In addition, for task-specific
distillation, we show that CKD works better than
all baselines on (*/768) student models. The results
on more datasets are provided in Appendix E.

5.3 Incorporating with DynaBERT
DynaBERT (Hou et al., 2020) is a recently pro-
posed adaptive-size pruning method that can run
at adaptive width and depth by removing the at-
tention heads or layers. In the training phase, Dyn-
aBERT uses distillation objectives which consist
of LogitKD and individual word representations
matching to improve the performance. Since the
CKD objective has no constraints about architec-
ture such as embedding size or the number of atten-
tion heads, we validate the objective by replacing it
with CKD. The algorithm of DynaBERT and how
to insert CKD are provided in Appendix D. To ob-
serve just how much distillation alone improves
performance, we do not use data augmentation and
an additional fine-tuning process. We note that ob-
jectives proposed in MINI-LM (Wang et al., 2020)
and TinyBERT (Jiao et al., 2019) cannot be di-
rectly applied due to constraints of the number of
attention heads. As illustrated in Figure 3, CKD
consistently outperforms the original DynaBERT
on dynamic model sizes, supporting the claim that
distribution-based knowledge is more helpful than
individual word representation knowledge. The re-
sults on more datasets are provided in Appendix E.

5.4 Ablation Studies
We provide additional ablation studies to analyze
the impact of each component of the CKD and
the introduced locality (wi,j = δ) in Eq. (1) as
the weight of how important each pair-wise and
triple-wise term is. For these studies, we fix the
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student network with 4-layer BERT (4/512) and
report the results as an average of over 4 runs on
the development set.

Impact of each component of CKD. The pro-
posed CKD transfers the word relation based and
layer transforming relation based contextual knowl-
edge. To isolate the impact on them, we experiment
successively removing each piece of our objective.
Table 4 summarizes the results, and we observe that
WR and LTR can bring a considerable performance
gain when they are applied together, verifying their
individual effectiveness.

Locality as the importance of relation terms.
We introduced the additional weights (wij , wijk) in
Eq. (1) for CKD-WR (and similar ones for CKD-
LTR) to control the importance of each pair-wise
and triple-wise term and suggested using the local-
ity for them as one possible way. Here, we verify
the effect of locality by increasing the local win-
dow size (δ) on the SST-2 and QNLI datasets. The
result is illustrated in Figure 4. We observe that as
the local window size increases, the performance
improves, but after some point, the performance is
degenerated. From this ablation study, we set the
window size (δ) between 10-21.

6 Conclusion

We proposed a novel distillation strategy that lever-
ages contextual information efficiently based on
word relation and layer transforming relation. To
our knowledge, we are the first to apply this con-
textual knowledge which is studied to interpret the
language models. Through various experiments, we
show not only that CKD outperforms the state-of-
the-art distillation methods but also the possibility
that our method boosts the performance of other
compression methods.
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A Explanation of previous methods and
their constraints

Table 5 present the details of knowledge distilla-
tion objectives of previous methods and their con-
straints.

DistilBERT (Sanh et al., 2019) uses logit distil-
lation loss (Logit KD), masked language modeling
loss, and cosine loss between the teacher and stu-
dent word representations in the learning process.
The cosine loss serves to align the directions of
the hidden state vectors of the teacher and student.
Since the cosine of the two hidden state vectors is
calculated in this process, they have the constraint
that the embedding size of the teacher and the stu-
dent model must be the same.

PKD (Sun et al., 2019) transfers teacher knowl-
edge to the student with Logit KD and patient loss.
The patient loss is the mean-square loss between
the normalized hidden states of the teacher and stu-
dent. To calculate the mean square error between
the hidden states, they have a constraint that the
dimensions of hidden states must be the same be-
tween teacher and student.

TinyBERT (Jiao et al., 2019) uses additional
loss that matches word representations and atten-
tion matrices between the teacher and student. Al-
though they acquire flexibility on the embedding
size, using an additional parameter, since the atten-
tion matrices of the teacher and student are matched
through mean square error loss, the number of at-
tention heads of the teacher and student must be
the same.

MobileBERT (Sun et al., 2020) utilizes a sim-
ilar objective with TinyBERT (Jiao et al., 2019)
for task-agnostic distillation. However, since they
match the hidden states with l2 distance and atten-
tion matrices with KL divergence between teacher
and student, they have restrictions on the size of
hidden states and the number of attention heads.

MiniLM (Wang et al., 2020) proposes distilling
the self-attention module of the last Transformer
layer of the teacher. In self-attention module, they
transfer attention matrices such as TinyBERT and
MobileBERT and Value-Value relation matrices.
Since they match the attention matrices of the
teacher and student in a one-to-one correspondence,
the number of attention heads of the teacher and
student must be the same.

The methods introduced in Table 5 have con-
straints by their respective knowledge distillation
objectives. However, our CKD method which uti-

lizes the relation statistics between the word repre-
sentations (hidden states) has the advantage of not
having any constraints on student architecture.

B Details of experiment setting

This section introduces the experimental setting in
detail. We implemented with PyTorch framework
and huggingface’s transformers package (Wolf
et al., 2019).

Task-agnostic distillation We use the pre-
trained original BERTbase with masked language
modeling objective as the teacher and a docu-
ment of English Wikipedia as training data. We
set the max sequence length to 128 and follow the
preprocess and WordPiece tokenization of Devlin
et al. (2018). Then, we perform the distillation for
3 epochs. For the pre-training stage, we use the
CKD objective with class probability matching of
masked language modeling and keep other hyper-
parameters the same as BERT pre-training (Devlin
et al., 2018).

Task-specific distillation Our contextual knowl-
edge distillation proceeds in the following order.
First, from pre-trained BERTbase, task-specific fine-
tuning is conducted to serve as a teacher. Then, pre-
pare the pre-trained small-size architecture which
serves as a student. In this case, pre-trained mod-
els of various model sizes provided by Turc et al.
(2019) are employed. Finally, task-specific distilla-
tion with our CKD is performed.

To reduce the hyperparameters search cost, λWR

in Eq. (1) and λLTR in Eq. (3) are used with same
value. For the importance weights introduced for
pair-wise and triple-wise terms, the locality is ap-
plied only to the importance weight w of the word
relation (WR)-based CKD loss. The importance
weight w of the layer transforming relation (LTR)-
based CKD loss is set to 1. In this paper, we report
the best result among the following values to find
the optimal hyperparameters of each dataset:

• Alpha (α) : 0.7, 0.9

• Temperature (T ) : 3, 4

• λWR, λLTR : 1, 10, 100, 1000

• λCKD : 1, 10, 100, 1000

Other training configurations such as batch size,
learning rate and warm up proportion are used fol-
lowing the BERT (Devlin et al., 2018).
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Table 5: Overview of distillation objectives used for language model compression and their constraint on architec-
ture. Sk means scaled softmax function across the kth-dimension.

Knowledge Distillation Objectives Constraint

DistilBERT (Sanh et al., 2019)
n∑

i=1

cos(rtl,i, r
s
l,i), LD

Logit Embedding size

PKD (Sun et al., 2019)
n∑

i=1

[
MSE(

rtl,i

‖rtl,i‖2
−

rsl,i

‖rsl,i‖2
)
]
, LD

Logit Embedding size

TinyBERT (Jiao et al., 2019)
n∑

i=1

[
MSE(rtl,i −Wrr

s
l,i)
]
,

H∑
h=1

[
MSE(At

l,h −As
l,h)
]
, LD

Logit Attention head

Mobile-BERT (Sun et al., 2020)
n∑

i=1

[
MSE(rtl,i − rsl,i)

]
,

H∑
h=1

[
KL
(
At

l,h,A
s
l,h

)]
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Logit
Embedding size
Attention head

MiniLM (Wang et al., 2020)
H∑

h=1

[
KL
(
At

l,h,A
s
l,h

)]
,
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h=1

[
KL
(
S2(V

t
l,h · V t

l,h
T
), S2(V

s
l,h · V s

l,h
T
)]

Attention head

Table 6: Full comparison of task-agnostic distillation comparing our CKD against the baseline methods. For the task-agnostic
distillation comparison, we do not use task-specific distillation for a fair comparison. The results of TinyBERT cited as reported
by Wang et al. (2020). Other results are as reported by their authors. Results of the development set are averaged over 4 runs. “-"
means the result is not reported and the trained model is not released. † marks our runs with the officially released model.

Model #Params CoLA MNLI-(m/-mm) SST-2 QNLI MRPC QQP RTE STS-B
(Mcc) (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Spear)

BERTBASE (Teacher) 110M 60.4 84.8/84.6 94.0 91.8 90.3 91.4 70.4 89.5
Truncated BERT (Sun et al., 2019) 67.5M 41.4 81.2/- 90.8 87.9 82.7 90.4 65.5 -
BERTSmall (Turc et al., 2019) 67.5M 47.1† 81.1/81.7 91.1 87.8 87.9 90.0 63.0 87.5†

DistilBERT (Sanh et al., 2019) 67.5M 51.3 82.2/- 91.3 89.2 87.5 88.5 59.9 86.9
TinyBERT (Jiao et al., 2019) 67.5M 42.8 83.5/83.2† 91.6 90.5 88.4 90.6 72.2 88.5†

MINI-LM (Wang et al., 2020) 67.5M 49.2 84.0/- 92.0 91.0 88.4 91.0 71.5 -
CKD 67.5M 52.7 83.5/83.4 92.4 90.7 89.1 90.8 70.1 89.1

C Additional comparison on
task-agnostic distillation

We report the fair comparison of our method and
baselines about the task-agnostic distillation in Sec-
tion 5.1 of the main paper. Several works (Sanh
et al., 2019; Wang et al., 2020) use the additional
BookCorpus dataset which is no longer publicly
available. Here, we present the full comparison of
CKD and baselines including DistilBERT (Sanh
et al., 2019) and MINI-LM (Wang et al., 2020).
As shown in Table 6, even though we do not use
the BookCorpus dataset, we outperform all base-
lines on four datasets and obtain comparable per-
formance on the rest of the datasets.

D Applying CKD to DynaBERT

In this section, we describe how we apply our CKD
objective to DynaBERT (Hou et al., 2020). Train-
ing DynaBERT consists of three stages: 1) Rewire
the model according to the importance and then
2) Go through the two-stage of adaptive pruning
with distillation objective. Since we suppress some
details of DynaBERT for clarity, refer to the pa-
per (Hou et al., 2020) for more information.

We summarize the training procedure of Dyn-
aBERT with CKD in algorithm 1. To fully exploit

the capacity, more important attention heads and
neurons must be shared more across the various
sub-networks. Therefore, we follow phase 1 in Dyn-
aBERT to rewire the network by calculating the
loss and estimating the importance of each atten-
tion head in the Multi-Head Attention (MHA) and
neuron in the Feed-Forward Network (FFN) based
on gradients. Then, they train the DynaBERT by
accumulating the gradient varying the width and
depth of BERT. In these stages, they utilize distil-
lation objective which matches hidden states and
logits to improve the performance. We apply our
CKD at these stages by replacing their objective
with CKD as shown in algorithm 1 (Blue). Since
CKD has no restrictions on student’s architecture,
it can be easily applied.

E More Results

Due to space limitations in the main paper, we only
report the results on a subset of GLUE datasets for
experiments about the effect of model size for CKD
and boosting the DynaBERT with CKD. Here, we
report all datasets of GLUE except for CoLA for
two experiments. We exclude the CoLA dataset
since the distillation losses are not converged prop-
erly in the very small-size models.

Here, we present the results of three experiments
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Algorithm 1: Train DynaBERT with CKD
Phase 1: Rewire the network.

input :Development set, trained BERT on downstream task.
Calculate the importance of attention heads and neurons with gradients.
Rewire the network according to the importance.

Phase 2: Train DynaBERTW with adaptive width.
input :Training set, width multiplier list widthList.
initialize a fixed teacher model and a trainable student model with rewired net.
for iter = 1, . . . , Ttrain do

Get the logits y, hidden states R from teacher model.
for width multiplier mw in widthList do

Get the logits y(mw), hidden states R(mw) from student model.
Compute distillation loss.
LDynaBERT = SCE(y(mw),y) + λ1 ·

∑L
l=0 MSE(R

(mw)
l ,Rl)

LCKD = SCE(y(mw),y) + λ1 · LCKD−WR(R
(mw),R) + λ2 · LCKD−LTR(R

(mw),R)
Accumulate gradients L.backward().

Update with the accumulated gradients.

Phase 3: Train DynaBERT with adaptive width and depth.
input :Training set, width multiplier list widthList, depth multiplier list depthList.
initialize a fixed DynaBERTW as teacher model and a trainable student model with the DynaBERTW.
for iter = 1, . . . , Ttrain do

for width multiplier mw in widthList do
Get the logits y(mw), R(mw) from teacher model.
for depth multiplier md in depthList do

Get the logits y(mw,md), hidden states R(mw,md) from student model.
Compute distillation loss.
LDynaBERT = SCE(y(mw,md),y(mw)) + λ1 ·

∑
l,l′∈LS ,LT

MSE(R
(mw,md)
l ,R

(mw)

l′ )

LCKD = SCE(y(mw,md),y(mw)) + λ1 · LCKD−WR(R
(mw,md),R(mw))

+λ2 · LCKD−LTR(R
(mw,md),R(mw))

Accumulate gradients L.backward().

Update with the accumulated gradients.

on additional datasets in order. 1) Effect of CKD
on various sizes of models. 2) Boosting the perfor-
mance of DynaBERT when CKD is applied.

Effect of CKD on various sizes of models. Fig-
ure 5 illustrates the performance of task-specific
distillation on various sizes of models. Again, we
note that MINI-LM and TinyBERT objectives are
applicable only to models (*/768), which have the
same number of attention heads as the teacher
model (12/768). As shown in Figure 5, our CKD
consistently exhibits significant improvements in
the performance compared LogitKD for all model
sizes. Compared to TinyBERT and MINI-LM,
CKD shows higher performance on all datasets
for almost all model sizes (*/768).

Incorporating with DynaBERT Figure 6
shows the performance of the original DynaBERT
and when CKD is applied. As illustrated in
Figure 6, CKD further improves the original
DynaBERT on dynamic width and depth size,
convincingly verifying its effectiveness. The

results also present the possibility that our method
boosts the performance of other compression
methods.
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Figure 5: The efficiency of various sizes of models for CKD compared to baselines. The performance graph according to
(a) network structure (b) the number of parameters (c) the number of FLOPs. The results are averaged over 4 runs on the
development set.
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Figure 6: Boosting the performance of DynaBERT when CKD is applied. The performance graph for comparison of original
DynaBERT and CKD according to (a) the number of parameters and (b) the number of FLOPs. The results are averaged over 4
runs on the development set.


